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ABSTRACT The human skin is our outermost layer and serves as a protective bar-
rier against external insults. Advances in next-generation sequencing have enabled
the discoveries of a rich and diverse community of microbes—bacteria, fungi, and
viruses that are residents of this surface. The genomes of these microbes also
revealed the presence of many secretory enzymes. In particular, proteases which are
hydrolytic enzymes capable of protein cleavage and degradation are of special inter-
est in the skin environment, which is enriched in proteins and lipids. In this minire-
view, we will focus on the roles of these skin-relevant microbial secreted proteases,
in terms of both their widely studied roles as pathogenic agents in tissue invasion
and host immune inactivation and their recently discovered roles in intermicrobial
interactions and modulation of virulence factors. From these studies, it has become
apparent that while microbial proteases are capable of a wide range of functions,
their expression is tightly regulated and highly responsive to the environments the
microbes are in. With the introduction of new biochemical and bioinformatics tools
to study protease functions, it will be important to understand the roles played by
skin microbial secretory proteases in cutaneous health, especially the less studied
commensal microbes with an emphasis on contextual relevance.

KEYWORDS Candida, Cutibacterium, dermatophytes,Malassezia, proteases, skin micro-
biology, Staphylococcus, Streptococcus

SKIN MICROBIOME

The skin is our outermost layer that interfaces with the external environment (1) and
is also the site of residence of a rich and diverse microbial community composed

of bacteria, viruses, and fungi (2). The major advance in understanding the community
composition of skin microbes came in the early 2000s with the adoption of culture-in-
dependent techniques (3) together with next-generation sequencing which allows
direct ecological profiling of the skin microbiome (4–6). This is a tremendous step for-
ward in studying human skin microbes because culture-independent profiling of
microbes greatly reduces the growth bias associated with laboratory culture condi-
tions, providing significantly more accurate microbial composition analysis.

The human skin is divided into 3 main subtypes: oily/sebaceous, moist, and dry (7).
Each type of skin site is associated with a particular microbial composition signature
(6). The adult skin microbiome is very stable over a long period, as shown by the mini-
mal changes to the composition especially at the sebaceous sites (8). This is fairly sur-
prising, given the skin is constantly exposed to environmental perturbations and in
contact with opportunistic pathogens. This stability underlines how skin microbes are
masters of their environment—the microbial genes and associated products enable
these microbes to thrive in this nutrient-deprived environment (9).

The skin environment. The human skin is a stratified epithelium consisting of
dividing basal layers of keratinocytes which differentiates into corneocytes in the
uppermost layer of the skin (1). This layer, known as the stratum corneum, was thought
to be the major residence site of microbes. Recent studies have shown the presence of
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a rich microbial community in skin invaginations and hair follicles, especially microbes
that thrive in a more anaerobic environment (10, 11). In healthy individuals, the skin
forms a formidable barrier against external insults through tight junctions in the stra-
tum granulosum and the stratum corneum, which consists of highly keratinized cells in
a lipid matrix (12). Compared to the gut environment that is enriched in carbohydrates,
the main components of the skin surface are proteins and lipids (9). It is perhaps not
surprising that skin microbes, the superior survivors in this dry, acidic environment,
correspondingly harbor a repertoire of hydrolytic enzymes involved in protein and lipid
metabolism. In this review, we will focus on how microbes use enzymes of protein me-
tabolism to facilitate their growth, survival, and/or invasion on the skin surface.

Proteases and protein metabolism. Proteins are one of the two major components
of the stratum corneum (13). In order to utilize this resource, proteins need to be broken
down into peptides and amino acids for uptake by the microbes. This catabolic process
is performed by a class of hydrolytic enzymes called proteases (or proteinases) (14, 15).
Proteases are divided into 7 main classes based on the catalytic mechanism: serine, me-
tallo-, cysteine, aspartate, threonine, asparagine, and glutamate proteases (16). Serine,
metallo- and cysteine proteases account for the majority of the proteases in bacteria and
fungi, while aspartyl proteases are prevalent in many fungal genomes (17).

Secretory proteases are especially intriguing because microbial cells need to expend
energy in synthesizing and secreting proteins, and this has to be carefully regulated under
nutrient-deprived conditions (18). The conventional understanding is that secretory pro-
teases, such as the Cutibacterium acnes proteases that release arginine from skin proteins
(19), mainly function in nutrient acquisition (20). However, the roles of proteases in media-
ting processes beyond general catabolism have been increasingly evident, especially in
mammalian systems (21). Through catalyzing irreversible peptide bond hydrolysis, pro-
teases can precisely mediate biological events crucial for intermicrobial and host-microbial
interactions. Most importantly, the repertoire of secretory enzymes is optimized for the
environment where they reside (22); expression and activities of these enzymes are
dynamic and change as the skin environment is altered.

The roles of secretory skin microbial proteases have been extensively studied,
though the focus in early studies is mostly on cutaneous infection and invasion. With
our renewed understanding of the human skin microbiome, many recent studies have
revealed novel roles that microbial proteases play in regulating key biological proc-
esses beyond tissue invasion. In this minireview, we will outline the functional roles of
these secretory proteases with relevance to the skin environment, with an emphasis
on recent discoveries on both the pathogenic and potentially beneficial roles of these
microbial proteases (Fig. 1).

SKIN FUNGAL SECRETORY PROTEASES

Historically, fungal secretory proteases are regarded as key virulence agents in skin
and systemic infections. The most prominent members associated with skin infections
are the dermatophytes, Candida and Aspergillus spp. However, next-generation sequenc-
ing studies of skin samples from healthy individuals in recent years revealed that aside
from the feet, the skin is overwhelmingly populated by a single genus—Malassezia (23).
This has led to a renewed understanding of fungal growth on human skin—colonization
of commensals (growth without host tissue degradation) and infection by pathogens
(involving host tissue destruction and penetration) (24). Recent studies on secretory pro-
teases are increasing our understanding of how these proteases can be essential ele-
ments that facilitate colonization and infection (Table 1).

Candida. Candida is a genus of yeasts in which many species are commensals or
symbionts of the human skin and gut. Candida spp. are often opportunistic pathogens,
causing disease when the host skin or mucosal barriers are disrupted or when the host
is immunocompromised (25). Candida albicans is the main species of Candida found
on human skin and is linked to many common superficial infections (26). Candida spp.
are only a minor component of the healthy skin microbiome. Despite this, Candida
secreted aspartyl proteases (Saps) are perhaps the most well-studied among the
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human fungal skin microbiome (see reference 27 for a more extensive review). Candida
albicans secretes 10 Saps belonging to 2 main families of aspartyl proteases—the can-
didapepsins (Sap1 to -8) and the yapsins which are bound to the fungal cell wall and
membrane via a glycosylphosphatidylinositol anchor (Sap9 and -10) (28–30). The large
number of protease-encoding genes is likely due to the need for specialized proteases
during the various stages of host invasion as well as the specific location of infection,
as these Saps have various pH optima and substrate specificities (30–32). Expression of
Sap1 to -3 is often associated with C. albicans yeasts, while Sap4 to -6 are associated
with hyphal growth (33); the morphological association of Sap7 to -10 has not been
confirmed (30). In both the commensal and infection states, Sap9 is the most highly
expressed protease (29, 34).

Saps are involved in both colonization and infection of epithelial surfaces; these enzymes
are considered to be significant virulence factors in C. albicans invasion of host tissues (31,
35). First, Saps are involved in colonization by processing adhesion proteins, and increased
Sap activity was correlated with stronger adherence of C. albicans to host cells (36). Saps1 to
-4 and -9 are further able to degrade the human a1-protease inhibitor, which results in an
increase in human neutrophil elastase activity, leading to further tissue damage and coloniza-
tion by C. albicans (37). Second, Saps can degrade a wide range of human structural proteins
in vitro, including cytokeratin, collagen, and vimentin (31), which enable epithelial cavitation
and penetration to establish deeper infection. Third, Saps can modulate host immune
responses in multiple ways. Saps contribute to Candida evasion of the host’s immune
response by degrading complement system proteins C3b, C4b, and C5 (38). Sap2 degrades

FIG 1 The role of skin-resident microbial secretory proteases in healthy and diseased skin. When the epidermal barrier is intact,
the microbes and their secreted proteases are localized to the stratum corneum, the topmost layer of the epidermis, and
epidermal invaginations. When the epidermal barrier is breached or compromised, these secretory proteases can reach the
deeper layers of the epidermis and dermis, resulting in skin tissue damage and inflammation. The functions of the proteases
depend on the skin environment—the same protease can have different roles depending on whether the skin barrier is intact.
Only key secreted proteases from each species are shown. The color of the protease icons corresponds to the color of the
microbe. Figure not drawn to scale. AMP, antimicrobial peptide; ECM, extracellular matrix.
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factor H, a complement regulator which promotes host immune cell recognition and binding
to C. albicans (39). This degradation results in a lower host fungicidal response, facilitating fun-
gal cell survival during infection. However, Sap2 or Sap5 overexpression in a hypofilamentous
strain is insufficient to cause immunopathology and likely works in combination with various
hypha-associated factors (40). Saps are further able to efficiently degrade some host antimi-
crobial peptides (AMPs), which promotes fungal survival in the host. AMPs are usually short,
cationic, and amphiphilic peptides secreted by various cell types in the skin (41). Saps can
inactivate human LL-37 (active fragment of cathelicidin), a key epidermal innate immunity
AMP (42); the salivary AMP histatin5 (His5) (43); and AMPs liberated from kininogens by host
proteases (44). Finally, these aspartyl proteases also elicit proinflammatory responses inde-
pendent of their proteolytic activity—Sap1 to -3 stimulate macrophages, increasing interleu-
kin-1b (IL-1b) and tumor necrosis factor alpha (TNF-a) production, while Sap1 and Sap3 also
increase IL-6 production (45, 46).

Beyond host protein degradation, Saps are also involved in biofilm formation—a process
that can reduce C. albicans susceptibility to current therapeutic agents. Global protease sub-
strate profiling utilizing synthetic pooled peptides (47) revealed that Sap5 and Sap6 are up-
regulated and highly specific to C. albicans biofilms. C. albicans mutants harboring sap5
and/or sap6 deletions exhibit reduced biofilm formation both in vitro and in a rat catheter
biofilm model (48). However, the precise substrates of Sap5 and Sap6 are undefined. The
cell wall-associated Sap9 is also involved in this process; sap9 mRNA expression is upregu-
lated in C. albicans biofilms (49), and a knockout mutant of sap9 displays flatter biofilm
structure (50). This is likely attributed to Sap9’s role in the proteolytic processing of cell wall
proteins, such as Eap1, involved in surface adhesion and biofilm formation (50). This role of
Saps in biofilm formation has been targeted as a potential enhancer of antifungals. Several
aspartyl protease inhibitors when used in combination with commonly prescribed antifun-
gals, which alone have little to no inhibitory effect on biofilms, resulted in reduced forma-
tion of C. albicans biofilms. Lopinavir, the HIV aspartyl protease inhibitor, was able to both
inhibit biofilm formation and disrupt mature biofilm when used in combination with the
antifungal caspofungin (51). Overall, these studies demonstrate that aspartyl proteases are
important for the formation and maintenance of the C. albicans biofilm structures.

Other skin-resident Candida species are also known to possess and express genes cod-
ing for Sap homologues (31). Candida parapsilosis, Candida tropicalis, and Candida dublin-
iensis possess SapP1 to -3, SapT1 to -4 (52, 53), and SapCD1 to -4, respectively. Of the 3
species, C. parapsilosis is the most studied, with SapP1 to -3 observed to degrade host pro-
teins and activate proteolytic cascades in a similar fashion as C. albicans Saps (54–56).

Malassezia. Malassezia (formerly Pityrosporum) is a genus of commensal fungi com-
monly found on human and animal skin. Currently, there are 17 known species of
Malassezia (57). Malassezia species dominate the skin mycobiome in healthy individuals but
are also associated with several skin conditions, such as pityriasis versicolor, seborrheic der-
matitis, and atopic dermatitis (AD) (58). Common anthropophilic Malassezia species include
Malassezia globosa, Malassezia restricta, Malassezia sympodialis, and Malassezia furfur (59).
Functional genomic analysis of these recently sequenced Malassezia species has revealed
that theseMalassezia species possess many aspartyl proteases (Table 2) (60).

Malassezia globosa. The M. globosa genome possesses 17 predicted secretory pro-
teases, of which 14 are aspartyl proteases. In M. globosa culture, MgSAP1 is the

TABLE 2 Predicted secreted proteases in commonMalassezia species

Protease class

No. of proteases in strain:

Malassezia furfur
CBS14141

Malassezia globosa
CBS7966

Malassezia pachydermatis
CBS1879

Malassezia restricta
CBS7877

Malassezia sympodialis
ATCC 42132

Aspartate 5 14 6 12 6
Metallo- 2 1 0 1 3
Serine 7 2 9 4 6

Total 14 17 15 17 15
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secretory protease that dominates the extracellular proteolytic landscape of this yeast
(61). MgSAP1 is ubiquitously expressed by M. globosa on healthy skin at the RNA level.
Using an unbiased, mass spectrometry-based technique (47), we determined that
MgSAP1 has a strong preference for positively charged residues at the P1 position.
Interestingly, this cleavage preference is also observed in various fungal aspartyl pro-
teases such as C. albicans Saps (48) and is likely due to the presence of an aspartate res-
idue in the catalytic flap that confers S1 (binding pocket next to the cleavage site)
specificity (62). MgSAP1 coincubation with Staphylococcus aureus inhibits biofilm for-
mation without affecting planktonic growth, and this effect is likely attributable to the
M. globosa protease cleaving Staphylococcus aureus protein A (SpA), an extracellular
protein involved in S. aureus biofilm formation (63). Since Malassezia spp. and S. aureus
share several common skin niches such as the anterior nares (6), this finding suggests
that Malassezia could play a potentially beneficial role by preventing the formation of
S. aureus biofilms which can be reservoirs for pathogenic dissemination (Fig. 1) (64).

Malassezia furfur. M. furfur is the Malassezia species most often associated with
pityriasis versicolor and systemic infections (65). M. furfur harbors 14 secretory pro-
teases, in which 5 are aspartyl proteases. MfSAP1 is the homologue of MgSAP1 and is
also the main extracellular aspartyl protease secreted by M. furfur (66). MfSAP1 cleaves
many key extracellular matrix (ECM) proteins associated with the human skin, such as
collagens I and IV, fibronectin, cytokeratins, thrombospondin-1, and vitronectin.
Compared to MgSAP1 (61), this protease has similar preferences for substrate cleavage
as determined by a synthetic fluorogenic substrate (66). However, MfSAP1 is a more
catalytically efficient enzyme than MgSAP1 (66). This highlights that even though M.
furfur is much less abundant than M. globosa on human skin, the high enzymatic activ-
ity of MfSAP1 makes this species functionally relevant. This is important considering
that a high concentration of MfSAP1 can interfere with wound healing, as assessed in a
three-dimensional (3D) skin wound model (66).

Dermatophytes. The dermatophytes are a broad group of fungi comprising 3 gen-
era—Microsporum, Trichophyton, and Epidermophyton (67). These fungi are largely
pathogenic in nature, unlike Malassezia and Candida, which are mostly commensals.
Dermatophyte infections are typically superficial, but in certain immunocompromised
patients, deeper dermal infections can occur (68). Trichophyton rubrum is the most
common anthropophilic dermatophyte.

Genes coding for the various secreted proteases are highly conserved across all derma-
tophyte species studied (69–71). Unlike Malassezia and Candida, where the secretory pro-
teases are dominated by aspartyl proteases, dermatophytes’ secretory protease repertoire
consists of serine and metalloproteases. The dermatophyte extracellular serine protease
families include the subtilisins (Subs) (72), dipeptidyl peptidases (Dpps) (73, 74), carboxy-
peptidases (75, 76), and sedolysins (77). The secretory metalloprotease families consist of
the metalloprotease M36 (MEPs) family (72), leucine aminopeptidases (Laps) (73), and deu-
terolysins (75). The expression of these proteases is regulated by the pH of the environ-
ment (78). At alkaline pH, expression is raised for the serine protease Sub3 and metallopro-
tease Lap1, whereas at acidic pH, secretion of aspartic protease Pep1 increases greatly,
which may be relevant in the context of skin and nail infections (75).

The dermatophyte secretory proteases play important roles in degrading skin barrier
and structural proteins for efficient epidermal colonization and invasion. These proteases
are essential to dermatophyte colonization of host skin and nail tissues, where keratin is
the major nutrient source, thereby playing a role in dermatophyte virulence and invasion
of host tissues (79). It is, however, important to note that the keratinase activities of derma-
tophytes are likely relevant only in the presence of sulfite secretion by these fungi (80).
The secretion of sulfites results in reduction of the keratin disulfide cross-linkages, allowing
the proteases to access the compact keratin for proteolytic degradation (81). Degradation
of keratin, which is a hallmark of dermatophytes, proceeds first by endopeptidic cleavage
of reduced keratin by the Subs and fungalysins, followed by the degradation of the result-
ing fragments by the exoproteases Laps, Dpps, and carboxypeptidases to amino acids and
small peptides for assimilation and utilization (71). Importantly, expression and secretion
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of these enzymes are highly regulated and influenced by the external environment (79,
82, 83). A recent study has shown that the protease expression profile of dermatophytes
when grown in vitro and during infection varies considerably (84, 85). Many
proteases secreted by T. rubrum when grown on keratin-based media in vitro are not
found in infection samples and vice versa (86, 87). This emphasizes that potential virulence
factors identified in vitro should be verified for expression in physiologically relevant
human environments.

SKIN BACTERIUM SECRETORY PROTEASES

The skin bacterial community consists of 4 main phyla—Actinobacteria, Bacteroidetes,
Firmicutes, and Proteobacteria (6), where the Gram-positive Corynebacterium, Cutibacterium,
and Staphylococcus account for over half of the skin bacteria (88). Most of the commensal
bacterial strains possess few extracellular protease genes compared to the opportunistic
pathogens (89). The study of skin bacterial proteases was one of the earliest investigations
into the roles of microbial proteases on skin, and most studies have focused on the patho-
genic bacteria utilizing proteases for tissue invasion and immune dysregulation (90). While
many of these bacterial secretory proteases can serve as facile agents of invasion, recent
investigations have shown that the expression of these proteases is tightly controlled and
plays a complex role in modulating other virulence factors during bacterial pathogenesis
(Table 3). In this minireview, we will focus on the secreted proteases produced by Gram-
positive bacteria, which account for the majority of the skin bacterial community.

Cutibacterium (formerly Propionibacterium). Cutibacterium species are Gram-posi-
tive, aerotolerant anaerobic bacteria that include the skin-dwelling Cutibacterium
acnes, Cutibacterium avidum, and Cutibacterium granulosum (91, 92). They are prevalent
across all skin sites and are the most abundant genus of bacteria in sebaceous skin
sites due to their affinity for sebum as a nutrient source (23). As anaerobes, they are
well adapted for survival in the oxygen-depleted skin invaginations, such as hair fol-
licles and the pilosebaceous unit (93). The most well-studied species is Cutibacterium
acnes, which is often associated with acne pathogenesis through biofilm formation
which promotes bacterial adhesion to corneocytes, resulting in formation of come-
dones (94–96).

Early studies demonstrated that several Cutibacterium species have extracellular
proteolytic activity when grown in synthetic media (97). Recent proteomic studies of C.
acnes secretome (98) and biofilm (99) confirmed the presence and expression of secre-
tory proteases including a putative subtilisin-like protease. While the exact substrates
of these proteases are yet to be identified, studies have shown that C. acnes interacts
with the host by activating host keratinocyte protease activated receptor 2 (PAR2), sug-
gesting that C. acnes secretes one or more exogenous proteases (100). This activity is
raised in acne lesions, which stimulate host expression of cytokines including gamma
interferon (IFN-g), IL-1a, IL-8, IL-17, and TNF-a and antimicrobial peptides human
b-defensin 2 and LL-37 (101, 102). Metagenomic analysis of C. acnes in follicular micro-
biomes of acne patients and healthy individuals (103) revealed the presence of a CAAX
amino protease, a membrane-bound metalloprotease involved in bacteriocin self-im-
munity in acne patients (104). These studies demonstrate that C. acnes can produce se-
cretory proteases that have important effects on the host, but the exact proteases,
their associated substrates, and molecular functions of the enzymes need further
definition.

Staphylococcus. Staphylococcus is arguably the most extensively studied genus of
skin microbes. Traditionally, staphylococci are classified as coagulase positive or nega-
tive depending on the presence of coagulase that clots blood plasma (105). The skin
harbors a wide range of the coagulase-negative Staphylococcus (CoNS) species, includ-
ing Staphylococcus epidermidis, Staphylococcus capitis, Staphylococcus hominis, and
Staphylococcus warneri (7). The coagulase-positive Staphylococcus aureus is widely
regarded as an opportunistic pathogen capable of producing an arsenal of virulence
factors such as extracellular enzymes involved in host epidermal invasion (Fig. 1).
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Staphylococcus aureus. In healthy individuals, S. aureus is harbored mostly in the
anterior nares of about one-third of the adult population, while skin colonization is
very low (106). S. aureus in the anterior nares can form biofilm that serves as a reservoir
for the dissemination of this opportunistic pathogen (107). This coagulase-positive bac-
terium is historically associated with many skin disorders, ranging from inflammatory
dermatological conditions such as atopic dermatitis (AD) to potentially life-threatening
skin and soft tissue infections (108–111). A hallmark of S. aureus is its repertoire of se-
cretory virulence factors that facilitate its survival and host invasion (112). These secre-
tory pathogenic factors include allergens, toxins, adhesion factors, and extracellular
enzymes including proteases that can facilitate superficial and invasive infections
(113). The most well-characterized proteases include cysteine proteases staphopain A
(ScpA) and staphopain B (SspB), metalloprotease aureolysin (Aur), serine protease V8
(SspA), and the serine protease-like family (SpIA to -F) (114). Aureolysin, which is acti-
vated in an autocatalytic manner, cleaves the proenzyme of V8, which then activates
SspB (115). The exfoliative toxins A and B (ETA and ETB, respectively) are serine pro-
teases that degrade desmoglein, a key desmosome protein that maintains the barrier
integrity but are present only in a few S. aureus strains (116–118). The functions and
involvement in infection of these proteases have been reviewed extensively (90, 119,
120), and we will highlight here the recent findings on the involvement of these pro-
teases in host-microbial interactions.

(i) Degradation of host epidermis-associated proteins. Host structural proteins
such as the extracellular matrix (ECM) proteins and tight and gap junction proteins are
involved in maintaining epidermal integrity. Many of these are targets of S. aureus
extracellular proteases (90). Collagen, a major structural protein of the human dermal
ECM, is a common substrate for S. aureus ScpA, SspB, and Aur (121, 122). A recent study
using S. aureus aur gene knockout demonstrated that beyond its own ability to cleave
collagen, Aur is able to further promote collagen degradation through its activation of
host metalloprotease MMP-9 (121). While collagen is much more abundant in the der-
mal layer, the effect of these proteases becomes especially significant when the dermis
is accessible to the bacteria, such as in wounds or skin abscesses. Interestingly, ScpA
was also shown to be involved in inducing cell death when S. aureus propagates intra-
cellularly, and this is likely due to its role in epithelial tissue destruction, which could
facilitate bacterial exit from the host cell (123).

S. aureus ScpA, SspB, and Aur can degrade the cationic AMP LL-37 (124, 125), pro-
tecting S. aureus from the antimicrobial effect of cathelicidin. In a study done by
Sonesson et al. (125), LL-37 fragments generated from staphopain degradation were
shown to have immunomodulating effects on the host. Furthermore, the expression of
ScpA and SspB was detected directly in skin biopsy specimens, demonstrating that
these cysteine proteases are present in physiologically relevant environments (125).

(ii) Interference with host immune pathways. S. aureus secreted proteases interfere
with host immune pathways in multiple ways. SspB degrades multiple immune cell
surface receptors such as CD11b, CD16, and CD31 crucial for induction of phagocyto-
sis, enabling S. aureus to evade phagocytosis (126, 127). ScpA, SspB, V8, and Aur are
effective inhibitors of the host complement pathway (128, 129), where the proteases
act upon various complement components including C3 and C5. S. aureus isogenic
mutants lacking SspB, V8, or Aur showed decreased survival in human blood (129).
Galectin, an immunomodulating lectin produced by epithelial cells, is a newly discov-
ered substrate of SspB. In a murine subcutaneous infection model, galectin knockout
mice infected with S. aureus showed smaller lesions than wild-type mice. As galectin
activates neutrophils, SspB enhances S. aureus virulence through cleavage of galectin
that abolishes its ability to activate neutrophils (130). A recent study by Frey et al. uti-
lized N-terminal degradomics to unravel new human serum protein substrates of V8
protease (131). This work highlights the role of V8 in interfering with host inflammatory
signaling pathways through degradation of components of the complement pathway
and host protease inhibitors such as SERPINs.
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While most studies have focused on the proteolytic activity of S. aureus proteases in
affecting the host immune response, a study by Stentzel et al. (132) observed increased
IgE binding to the Spl serine proteases (A to F) in asthmatic patients. This suggests that
the Spl proteases, which are encoded on a single operon, can be potential allergens (132).

(iii) Self-modulating effects. S. aureus can form biofilms which have been associ-
ated with poor healing outcome in wounds (133) and potentially contribute to inflam-
mation in AD (134). The staphopains ScpA and SspB were found to have an inhibitory
effect on biofilm formation and maintenance (135). V8 and Aur were also reported to
inhibit S. aureus biofilm formation (136), where V8 is known to cleave S. aureus adhesin
FnBP (fibronectin-binding protein), a protein mediating cellular adhesion to host ECM
substrates (137).

While S. aureus extracellular proteases are generally regarded as virulence factors,
recent studies have shown that these enzymes can modulate virulence indirectly. A
mutant lacking all 10 of the extracellular enzymes had dramatically reduced penetra-
tion into the deeper skin tissues (138) and decreased skin abscess formation but was
found to be hypervirulent (139), likely due to the roles of these proteases in controlling
the stability of secreted toxins (139–141) and surface-associated adhesion proteins
(142, 143). Using a combination of protease deletion mutants, Gimza et al. identified
Aur and ScpA as the two keystone proteases contributing to virulence through control-
ling abundance of S. aureus virulence factors (144). These studies highlight that the
functions of S. aureus secreted proteases go beyond direct invasion and include modu-
lation of other extracellular factors important to establish infection.

(iv) Importance of strain variation in pathogenicity of S. aureus. In studying S. aur-
eus secretory proteases, it has become clear in recent studies that it is important to
consider the pathogenicity differences among S. aureus strains. This is relevant for
both the presence of protease genes and the complex of regulatory elements that con-
trol protease gene expression (145), of which the agr operon (146, 147) and sarA are
two key regulators (148–150). In a study involving 6-month-old infants, mutations in
the Agr-quorum sensing system were more frequently observed in subjects who did
not develop AD (151). Comparative genomics of diabetic foot ulcer S. aureus strains
associated with different healing outcomes further revealed disparities in the presence
of virulence-associated genes between the strains (152). Overall, it is crucial to consider
the strain-associated heterogenicity leading to varied expression of S. aureus extracel-
lular proteases as this could contribute to differences in disease severity.

Staphylococcus epidermidis. The CoNS species represent one of the most abun-
dant bacterial communities on the human skin and are especially prevalent on moist
and sebaceous skin sites (7). Species of CoNS are generally considered to be commen-
sal or even beneficial members of the skin microbiome as they utilize several mecha-
nisms to limit growth of pathogens on the skin (23, 153). CoNS also possess fewer
extracellular toxins capable of direct tissue invasion (154, 155). Functional annotations
of the CoNS reveal that these species do possess secretory proteases, but the functions
and molecular substrates of these enzymes are poorly defined. The most prominent
member of the skin CoNS is S. epidermidis (156). Several studies have demonstrated S.
epidermidis’s role as a beneficial microbe through increasing innate skin barrier immu-
nity by tuning T cells (157, 158). However, S. epidermidis can cause opportunistic infec-
tions, such as when introduced into the body through medical implants and devices
(159, 160), but such occurrences are rare compared to S. aureus. Overall, S. epidermidis
favors persistence on the skin rather than host invasion and tissue destruction (160).

The secreted proteases of S. epidermidis include the serine protease Esp, metallo-
protease SepA, and cysteine protease EcpA (89). While Esp has low homology to other
staphylococcal proteases, SepA is a homologue of the S. aureus metalloprotease Aur
(161) and EcpA shares substantial homology to the S. aureus staphopains ScpA and
SspB (162).

(i) Degradation of host epidermis-associated proteins. EcpA is expressed as part of
the ecpAB operon upstream of its endogenous inhibitor EcpB. The cysteine protease
EcpA can be found attached to the cell surface of S. epidermidis or secreted into the
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environment, and the proportions of these two forms differ between strains (163).
Williams et al. reported that several cultured S. epidermidis strains isolated from a patient
suffering from the rare Netherton syndrome (monogenic dermatological disease from
loss of the human protease inhibitor LEKTI-1) had EcpA activity (162). In a recent study
on AD patients, Cau et al. (164) observed that when S. epidermidis is present at high den-
sity, such as on AD lesional sites, this can induce expression of ecpA. This protease
expression is under quorum sensing control, and high density of S. epidermidis is corre-
lated with increased ecpA expression (164). Furthermore, this cysteine protease can de-
grade skin structural proteins such as collagen, elastin, fibronectin, and desmoglein-1
(164), the AMP LL-37, and various blood plasma-associated endogenous protease inhibi-
tors (165) in vitro. In a mouse epicutaneous exposure model, only S. epidermidis wild
type, but not the ecpA knockout strain, was able to elicit skin barrier damage and inflam-
mation (164). In addition, S. epidermidis serine protease Esp can also degrade fibronectin,
fibrinogen, and vitronectin in vitro (166), while the metalloprotease SepA is simultane-
ously upregulated by and degrades the sweat-associated anionic AMP dermicidin (161).
Overall, the degradation of these host proteins indicates that S. epidermis has pathogenic
potential, but further studies are needed to decipher what are the factors controlling
expression and activities of these proteases as S. epidermis is prevalent and abundant on
healthy human skin (2). One emerging theory, similar to S. aureus, is the expansion of
particular S. epidermidis agr types that control and increase expression of the proteases
at high density in skin diseases (167).

(ii) Interactions with other microbial communities. The S. epidermidis serine prote-
ase Esp inhibits S. aureus colonization by blocking S. aureus biofilm formation and
destroying preformed S. aureus biofilms (168, 169). Examination of S. aureus biofilm dis-
assembly revealed the ability of Esp to degrade several S. aureus proteins involved in col-
onization and biofilm formation (166). Autolysin (Atl), extracellular matrix protein (Emp),
FnBP, and SpA are some examples of S. aureus proteins targeted by Esp (166). The metal-
loprotease SepA also plays a role in biofilm formation by processing the S. epidermidis
cell-wall-anchored Aap protein to form an adhesin that facilitates biofilm accumulation
(170). Other than S. aureus biofilm inhibition, Esp was found to augment the bactericidal
effect of human keratinocyte AMP b-defensin 2 against S. aureus (169). However, a fol-
low-up study that assessed the expression of esp in S. epidermidis isolates from the nose
of healthy adolescents using semiquantitative PCR did not find any correlation between
esp expression and biofilm inhibition (171). As the gene expression analysis was done for
only 9 strains, follow-up studies with a larger number of S. epidermidis strains are needed
to decipher the relationship between esp expression and biofilm formation.

Streptococcus. The Streptococcus genus is a group of Gram-positive bacteria that are
commonly found in the oral and nasopharyngeal microflora of healthy individuals (172).
Several Streptococcus species including Streptococcus mitis, Streptococcus oralis, Streptococcus
pseudopneumoniae, and Streptococcus sanguinis are prevalent at the dry skin sites in healthy
individuals (2). The most well-characterized Streptococcus is the pathogen group A
Streptococcus (GAS) Streptococcus pyogenes. Though relatively uncommon in the healthy
skin microbiome, S. pyogenes is implicated in a wide range of skin and soft tissue infections
such as impetigo, ecthyma, cellulitis, and necrotizing fasciitis (111, 173).

Streptococcal commensals. The skin commensals S. mitis, S. oralis, and S. sanguinis
produce the extracellular metalloprotease IgA1 protease, which cleaves the human
IgA1 at the hinge region of the heavy chain which connects the constant fragment (Fc)
region to the antigen binding region (Fab) (174). The IgA1 proteases are large proteins
(around 130 to 200 kDa) that possess a Gram-positive cell wall anchoring motif and
can be secreted or cell wall associated. In particular, the iga genes in S. sanguinis and S.
oralis share high homology while S. mitis and Streptococcus pneumoniae iga genes
have moderate similarities (175). The precise functions of these Streptococcus IgA1 pro-
teases are unclear, and most studies have focused on their roles as a virulence factor in
S. pneumoniae, a pathogen that causes bacterial pneumonia and meningitis (172). The
cleavage of the IgA1 hinge region leaves the Fab region intact, and these Fab frag-
ments can in turn mask the bacterial surface epitopes without eliciting a downstream
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immune response as the Fc region is disconnected. Furthermore, IgA protease can in-
hibit phagocytic killing of S. pneumoniae by targeting the capsule-specific human IgA1
monoclonal antibody (176). However, the expression and functions of these IgA pro-
teases, especially those secreted by the common streptococcal skin commensals, have
yet to be investigated in detail.

Streptococcus pyogenes. In contrast to the other Streptococcus skin commensals, S.
pyogenes has high pathogenicity and causes infection on skin and mucosal surfaces.
Similarly to S. aureus, S. pyogenes expresses a variety of extracellular virulence factors
(173) including the secretory cysteine protease streptococcal pyrogenic exotoxin B
(SpeB, also called streptopain), cysteine protease IdeS (IgG-degrading enzyme of S.
pyogenes), and serine protease ScpC (also called SpyCEP).

(i) Degradation of host epidermis-associated proteins. The cutaneous barrier is
composed of layers of differentiated keratinocytes joined together by intercellular junctions
such as the desmosomes and tight junctions (177, 178). SpeB was found to cleave these
intercellular junction proteins including desmoglein-1, desmoglein-3, E-cadherin, and occlu-
din, facilitating the dissemination of and invasion by S. pyogenes in skin infections (179,
180). Host ECM proteins fibronectin and vitronectin are also targets of SpeB (181). An S. pyo-
genes insertional mutant of SpeB which lacks expression of this protease (182) results in a
smaller skin abscess and lesions in murine subcutaneous infection (183). Furthermore, a
mutant strain that constitutively expressed SpeB in a murine subcutaneous infection model
resulted in increased lesion size compared to the wild-type control (184). However, SpeB
expression and protease activity were higher in clinical isolates from nonsevere infections
compared to those isolated from severe infections (185). These studies demonstrate once
again that it is important to consider contextual expression of these bacterial proteases,
and similar to S. aureus, these extracellular S. pyogenes proteases can play a regulatory role
in controlling other virulence factors important for infection to establish.

(ii) Interference with host immune pathways. One of the best-characterized roles
of S. pyogenes secretory proteases is their ability to degrade host immune factors rang-
ing from cytokines (186–189) to complement proteins (190–193) and immunoglobulins
(Igs). One crucial pathway that this pathogen has to overcome is the adaptive immune
response facilitated by Igs. As antibodies can activate phagocytic cells and comple-
ment pathways, S. pyogenes gains resistance to antibody-mediated opsonophagocyto-
sis by degrading these proteins (194, 195). Early studies uncovered the role of SpeB in
degrading multiple Ig classes (196); IdeS, on the other hand, has specificity for cleavage
of both circulating and Fab-bound IgG (194, 195) and was demonstrated to be a more
efficient enzyme than SpeB in degrading IgG (197). Recent work by Persson et al.
brought into question whether the degradation of multiple classes of Igs by SpeB is
physiologically relevant as this cysteine protease can cleave the heavy chain of the Ig
only when these substrates are in the reduced, semimonomeric form (197).

(iii) Interaction with other microbial communities.Most of the attention on S. pyo-
genes secreted proteases has been on their effect on cleavage of host proteins, but less
is understood about their role in interaction with other microbes, especially in the con-
text of a mixed microbial community. In a recent study, Carothers et al. (198) demon-
strated by using an isogenic SpeB mutant of a skin-tropic S. pyogenes strain and
recombinant SpeB that this protease is involved in attenuation of S. aureus biofilm for-
mation. SdrC, a cell-wall-anchored S. aureus adhesin, was shown to be a substrate of
SpeB, and its degradation leads to disruption of the biofilm (198). This study highlights
the importance of understanding the roles of these secretory proteases in the context
of the mixed microbial communities present at different sites.

CONCLUSION/PERSPECTIVE

The roles of skin microbial secretory proteases have long intrigued many, and his-
torically these proteases are regarded as virulent agents in microbial pathogenesis.
Recent studies have revealed that many factors need to be taken into consideration
when studying microbial protease functions. First, secreted proteases from microbes
involved in infection can both serve as direct agents of invasion and indirectly
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modulate the abundance and stability of other virulence factors. Second, expression of
the same proteases can differ dramatically within specific strains of the same species
due to differences in the regulatory elements. Finally, it cannot be emphasized enough
that skin host phenotype and environmental context are critical factors resulting in
dynamic regulation of these secretory enzymes. The presence of potentially virulent
genes does not automatically translate to constitutive expression and emphasizes the
importance to go beyond metagenomic studies to validate expression in situ.
Furthermore, the same protease could have beneficial roles when the skin barrier is
intact but become an agent of pathogenesis when the skin barrier is compromised
due to wounds or skin diseases (Fig. 1). It is therefore essential to consider the context
and environment where the protease is expressed when elucidating the functional
roles of the secreted proteases.

Many advanced analytical tools in studying microbial phenotype and protease
activities have been introduced in recent years. These include large-scale culturomics
studies (199, 200), mass spectrometry-based degradomics (201), and chemical probes
to monitor protease activities (202, 203). Degradomics, the comprehensive functional
analysis of proteases and their associated substrates (21), is a particularly powerful tool
to identify novel protease substrates and quantify the extent of substrate degradation
(204). The application of these techniques, together with the available database of
microbe sequence databases, will advance our understanding of the molecular func-
tions of skin microbial proteases in skin health, especially the understudied skin com-
mensals that account for the vast majority of the skin microbiome.
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