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Abstract

This study investigated whether the concentrations of four metals [lead (Pb), mercury (Hg),
manganese (Mn), and aluminum (Al)] are correlated in cord blood and childhood blood samples
from Jamaican children. Cord blood samples were obtained from 21 pregnant women enrolled in
the second Jamaican Birth Cohort Study from July 1, 2011 to September 30, 2011, and blood
samples were drawn from their children who participated in a follow up study when the children
were 4-8 years old. Correlations were assessed by the Pearson or the Spearman’s rank correlation
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coefficient. The mean ages of children at the childhood visit and their mother at the child’s birth
were 5.5 years and 29.8 years, respectively. About 47.6% of children were male. Statistically
significant correlations between cord blood and childhood blood concentrations of Pb (rspearman=
0.45; P=0.04) and Mn (rpearson = 0.48; £=0.03) were found, and these remained significant
when adjusted for the child’s sex, age, or both. For Al and Hg, rspearman= 0.29 and 0.08,
respectively, but the correlations were not statistically significant (both 2= 0.20). A significant
correlation between cord blood and childhood blood Pb concentrations for children 4-8 years old
has not been previously reported.
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Human exposure

Introduction

Exposure to heavy metals during pregnancy, and the prenatalt! or childhood[?-4]

periods have adverse influences on neurodevelopment, including risk of attention-deficit/
hyperactivity disorder (ADHD)[3] and autism spectrum disorder (ASD).[6] For example,
prenatal exposure to lead (Pb) adversely affects the intelligence quotient (1Q) and cognition
in children.[”] Childhood exposure to Pb is associated with ADHD and ASD as well.[é]

In addition, excess prenatal manganese (Mn) exposure is also consistently reported to

be associated with externalizing problems.[®] Similar adverse effects have been reported
regarding childhood exposure to mercury (Hg),[%101 Mn,[11.22] and aluminum (AlI).[23.14]

Childhood exposure to heavy metals such as Pbl8l and Hg[**Imay influence ASD,[1¢]
possibly through mechanisms involving inter-individual variation in genes such as those
encoding glutathione-S-transferases (GSTs) that, have a critical role in protecting cells
against oxidative stress by detoxification of exogenous chemicals and heavy metals.[15.17]
Some studies also reported that long-term childhood exposures to Pb and Al have an effect
on the pro-oxidant/antioxidant balance in mammalian cells.[18:19] Oxidative stress is thought
to be involved in the pathogenesis of ASD.[20]

Some researchers have used cohort study designs to have an opportunity to assess both
prenatal and childhood exposure to certain heavy metals in order to investigate their
possible effects on physical growth and neurodevelopment.[22-23] A limited number of these
cohort studies investigated whether there was a significant correlation between prenatal

and childhood exposures for some heavy metals-[21-231 For example, Rabinowitz et al.
assessed the correlation between Pb concentrations measured in umbilical cord blood from
200 newborns in Boston, and Pb concentrations assessed in blood of the same children
followed semi-annually during the first 2 years of life. The authors reported that the
arithmetic mean of Pb blood concentrations did not change from birth to 2 years old, but
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Spearman’s rank correlation coefficients of blood Pb concentrations at different ages tended
to increase with age. Specifically, Spearman’s rank correlation coefficients between blood
Pb concentrations at birth and 6 months, 6 and 12 months, 12 and 18 months, and 18 and
24 months were 0.10, 0.20, 0.09 and 0.19, respectively.[23] In addition, using data from
other cohort studies, a moderate Spearman’s rank correlation (Spearman’s r = 0.49) has
been reported between prenatal and childhood dentine Mn levels.[22] Moreover, Sabra et al.
reported a Spearman’s rank correlation of r = 0.4 between maternal and fetal serum levels
for Cd, but did not find any such correlations for the other heavy metals (Hg and Pb).[24]
Kot et al., on the other hand, assessed the correlations of Pb and Mn concentrations in
placenta, with those measured in fetal membrane, umbilical cord, and afterbirth samples and
reported that Pearson correlations between the umbilical cord and placenta concentrations
for Pb and Mn were 0.09 and —0.10, respectively. Pearson correlations between the placenta
and fetal membrane concentrations for these two metals were 0.11 and 0.10, respectively.
The correlations between the umbilical cord and fetal membrane were —-0.23, and 0.63,
respectively, which were both statistically significant at the 5% level of significance,[?1]
although the correlation between umbilical cord and fetal membrane for Pb concentrations
was negative (=0.23).

It has been recognized that the roles of prenatal and childhood exposures to environmental
chemicals in complex disorders such as ASD may be challenging to assess. For example,
if there is an interaction between prenatal and childhood environmental exposures to heavy
metals such as Pb, Hg, Mn, and Al (i.e., a synergistic effect) in relation to ASD, studies
would benefit from having exposure data for both the prenatal and childhood periods.
However, only cohort studies may have an opportunity to obtain this information, which

is exceedingly rare. In situations where only one of these two exposures is available, it is
important to assess or know to what extent these two exposures are correlated.

Since 2009, Rahbar et al. investigated the possible association of childhood exposure to
four heavy metals (Pb, Hg, Mn, and Al) with ASD in Jamaican children who were 2-8
years old.[25-27] Since assessment of both prenatal and childhood exposures to heavy metals
was not possible due to limitations of the age-and sex-matched case-control study design
of Epidemiological Research on Autism in Jamaica (ERAJ),[25-27] the study team thought
it important to investigate whether prenatal exposures to these metals are correlated to
those measured during the childhood period. Although a previous study[?3] reported the
correlation between Pb exposures during the prenatal and childhood periods, they only
followed children until 24 months of age. However, in the ERAJ study in Jamaica, the
prenatal exposure to the four metals is assessed based on cord blood, and the childhood
exposure for the same metals was measured when children were in the age range of 4-8
years. Therefore, using metal concentrations in childhood blood samples from Jamaican
children that participated in the ERAJ study and in a cord blood sub-study of the second
Jamaican Birth Cohort Study (JA Kids 2011,[28]) allowed the concentrations of four metals
(Pb, Hg, Mn, and Al) to be compared. If there is a high (e.g., r = 0.70) positive correlation
between prenatal and childhood exposures to these metals, then one can estimate exposures
to these metals during the prenatal period from those that were available for the childhood
period from the ERAJ study.
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Materials and Methods

General Description

Since 2009, the ERAJ research team at the University of Texas Health Science Center

at Houston (UTHealth) has collaborated with faculty in the Department of Child and
Adolescent Health, at the University of the West Indies (UWI) at Mona in Jamaica.

As part of this research, an age- and sex-matched case-control study was conducted to
investigate the role of childhood exposure to four heavy metals (Pb, Hg, Mn, and Al) in
Jamaican children 2-8 years of age in relation to ASD.[2>-27] |n 2011, while the ERAJ
study was implementing phase I, the second Jamaican Birth Cohort Study (JA Kids study)
was conducted in Jamaica.[?8] The JA Kids study enrolled nearly 9600 women throughout
Jamaica, and collected information regarding socioeconomic status (SES), and exposure
to environmental hazards including some heavy metals by administering SES and other
questionnaires to mothers during the third trimester. Of these pregnant women, 5200 were
interviewed at the time of delivery from July to September of 2011, and information
regarding pregnancy duration and exposure to four metals (Pb, Hg, Mn, and Al) was
collected. The mothers also provided information about SES, pregnancy duration and
exposure to environmental hazards in their third trimester and at the time of delivery.

Due to the overlap between the ERAJ Phase | and JA Kids studies, this study had the
opportunity to conduct a cord blood sub-study by collecting 144 cord blood samples from
mothers who delivered their newborns at the UWI Hospital in Kingston, Jamaica. However,
after the research team completed the data quality checks, it was found that only 130
children from this subsample were born during the enroliment period of the JA Kids study.
Additionally, some children were lost to follow up for various reasons including refusals,
migration, or incomplete/incorrect contact information. Therefore, there were 106 children
in this subsample who had the potential to be included in the follow up of the JA Kids cord
blood sub-study. After removing three sets of twins, heavy metal concentration data were
only available for 100 pregnant mothers and their 100 newborns, which have already been
analyzed to assess the possible association between the concentrations of the four metals in
cord blood and select birth outcomes such as birthweight.[2°]

Study population

In 2013, UTHealth received funding from NIEHS to implement the ERAJ-Phase 11
(ERAJ-2) study.[30] Therefore, when the ERAJ-2 study was implemented, the JA Kids
families who had participated in the cord blood sub-study were invited to participate in the
follow up study of their children, which included drawing approximately 15 mL of blood
that was used for the assessment of the heavy metals, polychlorinated biphenyls (PCBs) and
organochlorine (OC) pesticides, and a portion of this blood was stored for future use as
previously described.[31:32]

In this study, informed consent was obtained from parents/guardians and also by child’s
assent (if the child was 7-8 years old). Forty-four (44) out of the 100 JA Kids families who
participated in the cord blood sub-study agreed to participate in the follow-up study by the
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end of the ERAJ-2 study period (April 30, 2019). The UWI team was successful in obtaining
blood samples from 21 of these 44 children during the follow-up period. This effort resulted
in the availability of the concentrations of four heavy metals (Pb, Hg, Mn, and Al) in 21
pairs of cord blood and childhood blood samples for analysis in this study. Figure 1 shows
the timeline of these studies.

Assessment of heavy metals exposures

For collection of cord blood samples, a protocol was developed by the ERAJ study and UWI
teams to describe the procedures necessary for collecting cord blood from infants at delivery
UWI Hospital in Kingston, Jamaica. The best time to collect cord blood is immediately after
delivery of the infant(s) and prior to expulsion of the placenta as the blood immediately
starts to clot. As a result, after the infant was delivered and the umbilical cord was double
clamped and cut, the needle was inserted for the blood draw just above the clamp that
remained on the umbilical cord. Only one 10 mL lavender top EDTA tube was collected

per infant. Two mL of cord blood separated in another lavender top EDTA, which were
pre-screened for several trace elements or metals, including lead, mercury, manganese, and
aluminum. Cord blood aliquots were allowed to clot for 30—60 minutes at ambient/room
temperature, during which time they were transferred from the hospital to the Molecular
Biology Lab of UW!.[29.33]

Similarly, for collection of blood from children, the study team developed and implemented
standard operating procedures for the blood draw. The UWI team obtained written consent
from parents/guardians and child’s assent (if the child was 7-8 years old) before drawing
about 2 mL of whole blood in lavender top EDTA for assessment of exposure to heavy
metals during childhood.

Samples of cord blood and blood from children that were intended for assessment of
heavy metals analysis were stored at —20°C at the Molecular Biology Lab of UWI and
in the UWI CARIGEN lab, respectively, without any processing and then shipped to

the Michigan Department of Human Health Services (MDHHS) in Lansing, Michigan at
ambient temperature on ice packs for trace metal analyses.

The 21 pairs of cord blood and childhood blood samples were analyzed for
concentrations of the four metals by a Centers for Disease Control and Prevention
(CDC)-certified laboratory at the MDHHS. MDHHS followed standard protocols for
analyzing these samples using a PerkinElmer Elan DRC Il inductively-coupled plasma
mass spectrometer (PerkinElmer, Waltham, MA, USA). Specifically, MDHHS used
method number ITBOO1A (Environmental Health Method: Blood Lead and Cadmium
ICPDRCMS) that is based on the CDC guideline. (https://www.cdc.gov/nchs/data/nhanes/
nhanes_05 06/pbcd_d_met_lead cadmium.pdf) Furthermore, MDHHS is a college of
American Pathologists (CAP) and Clinical Laboratory Improvement Amendments 1988
(CLIA’88) accredited laboratory. They follow the quality control (QC) plan established
in these guidelines. For QCs MDHHS purchased SeronormTM Trace Elements Whole
Blood which were characterized following accreditation guidelines. Once characterized
+3SD ranges were established for each analyte at each QC level. The QCs must meet
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this established criteria in order to accept the run. The limits of detection (LoD) for Pb,

Hg, Mn, and Al were 0.25ug/dL, 0.25ug/L, 2.5ug/L, and 5ug/L, respectively. For Mn, all
concentrations were above the LoD. Metal concentrations below their LoDs were identified
for Pb, Hg, and Al were replaced with their respective LoD/V2.134] The study was conducted
in accordance with the Declaration of Helsinki, and the protocol was approved by the
Institutional Review Boards (IRBs) of UTHealth and UWI, Mona campus, in Kingston,
Jamaica (Project identification code: HSC-SPH-09-0059).

Statistical Analysis

Descriptive analyses were performed on demographic characteristics and SES of the study
participants, including sex and race of the child, maternal and paternal education levels, and
assets owned by the family. The means of the metal concentrations in cord blood and the
child’s blood were also examined. The concentrations of Mn were normally distributed for
both cord blood and childhood blood, but the distributions of concentrations for Pb, Hg,
and Al were skewed. Therefore, we log-transformed these data using the natural logarithm
(In) to produce a distribution that better approximated a normal distribution. For metals

for which more than 70% of the concentrations were above their respective LoDs, median
differences between cord blood and childhood blood are reported, except for Mn, for which
mean differences are reported. In addition, the concentrations for the four metals in the cord
blood and childhood blood were compared using the Wilcoxon signed-rank test.

Since the distribution of Mn concentrations was approximately normal, the Pearson
correlation coefficient between concentration of Mn in cord blood and childhood blood
was assessed. For metals with skewed distributions for concentrations, the Spearman’s rank
correlation coefficient was assessed as well. However, for assessment of Pb, Hg, and Al
correlations, log-transformed concentrations were used. In addition, for metals that had
more than 90% of concentrations above their respective LoDs, linear regression models
were fitted to predict concentrations of select metals (e.g., Pb) in childhood blood based on
the concentration in cord blood. For example, the straight-line relationship between blood
Pb concentrations in cord blood and childhood blood is used to estimate the equation of
the fitted line based on the estimated y-intercept and slope coefficient. For nonparametric
multivariable assessment of association of Pb concentrations in cord blood with childhood
blood, first, both concentrations (in cord blood and childhood blood) were rank ordered
within their own groups. Then the general linear model (GLM) was applied by considering
the rank of childhood blood concentrations as the dependent variable. The independent
variables included the rank of the cord blood Pb concentrations, which were also adjusted by
sex, age, and both age and sex in different models. Since Mn concentrations were normally
distributed, for multivariable assessment of association of Mn concentrations in cord blood
with childhood blood, we applied the same methodology using GLM but we used the
actual concentration, rather than the rank ordered concentrations. All statistical tests were
performed at a 5% level of significance. All descriptive and inferential statistical analyses
were conducted using SAS 9.4.[3%]
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About 47.6% of children in this study who provided both cord blood and childhood blood
samples (n = 21) were male with mean age of 5.5 years (range 3.8-6.9 years). The mean age
of mothers at birth of their index child was 29.8 years (range 21.2—-44.4). Demographic and
socioeconomic characteristics of the children are in Table 1.

The linear association between the concentrations of Pb, Hg, and Al in cord blood and
childhood blood before and after log-transformation are displayed using scatter plots in
Figure 2.

Figure 3 shows that the distribution of Mn concentrations in cord blood and childhood blood
were approximately normal, hence not transformed.

The geometric mean (GM) concentrations of Pb and Hg in cord blood were 0.62ug/dL and
4.00ug/L, respectively. The GM blood concentrations of Pb and Cd in childhood blood were
1.12pg/dL, and 0.85pg/L, respectively. The arithmetic mean concentration of Mn in cord
blood was 47.64ug/L, whereas that of childhood blood was 10.25ug/L. Arithmetic mean
concentrations of other metals in cord blood and childhood blood are reported in Table 2.

A comparison of median metal concentrations in cord blood and childhood blood revealed
that the median difference was statistically significant for Pb = —0.27ug/dL, (P= <0.001),
for Hg = 3.10ug/L, (P<0.001), and for Mn (mean difference) = 37.39ug/L, (P <0.001).
Additional details are provided in Table 3.

Statistically significant correlations were found between cord blood and childhood blood
concentrations of Pb (Spearman’s r = 0.45; £=0.04) and Mn (Pearson r = 0.48; P=0.03).
The Spearman’s correlation coefficients for Al and Hg, were 0.29 (£=0.20) and 0.08
(P=0.72), respectively, which were not statistically significant. Furthermore, using linear
regression models, a line between metal concentrations in cord blood and childhood blood
was fitted and used to estimate the y-intercept. Then the significance of the y-intercept being
statistically different from zero was evaluated for each heavy metal with the following
results: Pb (y-intercept = =0.53ug/dL, 2= 0.0001), Hg (y-intercept = 1.40ug/L, P<

0.001), Al (y-intercept = 1.48ug/L, P=0.02), and Mn (y-intercept = 16.01ug/L, P=0.27).
Additional details are provided in Table 4.

The findings from these GLMs indicate that the adjusted linear associations reported in the
analyses of univariable associations remained significant in the multivariable models for Pb
and Mn. For example, when adjusted for sex, age, or both age and sex in GLMs, the adjusted
slope of the linear association between the two concentrations of Pb remained consistent

and significant (i.e., when adjusted by sex (Adj. Slope coefficient = 0.52; P=0.03); by age
(Adj. Slope coefficient = 0.47; P=0.03); and by both age and sex (Adj. Slope coefficient
=0.52; P=10.03). The findings for Mn when adjusted for both age and sex (Adj. Slope
coefficient = 0.08; 2= 0.03) were also similar to those obtained after adjustment for age and
sex separately as shown in Table 5.
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Discussion

In this study, significant correlations were found between cord blood and childhood

blood Pb and Mn concentrations for children 4-8 years old in Jamaica (Spearman’s rank
correlation = 0.45, < 0.04 for Pb; Pearson correlation coefficient = 0.48, < 0.03 for Mn).
However, none of the correlations for Al and Hg were statistically significant. Rabinowitz
et al. have previously reported significant Spearman’s rank correlation coefficients between
cord blood Pb concentrations and Pb concentrations in childhood blood from the same
children followed at birth and 6 months (r = 0.10), 6 and 12 months (r = 0.20), 12 and 18
months (r = 0.09), and 18 and 24 months (r = 0.19).[23] Therefore, findings reported here
extend significant correlation between cord blood and childhood blood Pb concentrations to
children 4-8 years old.

Although only cord blood concentrations of these metals were available for this study, a few
other studies reported a significant correlation between concentrations of heavy metals in
maternal blood and cord blood. For example, al-Saleh et a/. reported a significant correlation
between Pb concentrations in maternal blood and cord blood in pregnant women living in
Riyadh City, Saudi Arabia, (r = 0.83, £< 0.01).[36] Srivastava er a/. also reported similar
findings from a study in India (r = 0.53, £< 0.01), which supports the results of al-Saleh’s
study.[37] Similarly, Wang et a/. conducted a study in the central part of China and reported
a similar correlation between Pb concentrations in maternal blood and cord blood, (r =

0.68, < 0.01).[38] Additionally, Arbuckle et a/. showed the median Pb concentrations

in maternal blood during the 15t trimester (0.60pg/dL) and 3" trimester (0.56pug/dL) were
significantly lower than those in cord blood (0.77ug/dL) in the Maternal-Infant Research

on Environmental Chemicals (MIREC) study in Canada). They also showed significant
Spearman’s correlations between Pb concentrations during the 15t and 3" trimesters (r =
0.72, P< 0.01), and between maternal Pb concentrations measured in the) 3 trimester and
cord blood (r = 0.56, P< 0.01).[391 All these findings suggest potential correlation between
blood Pb concentrations in the prenatal period and in children up to the age of 8 years in
populations with continuous exposure to Pb from various sources such as in Jamaica, though
future studies are needed to confirm this association.

Based on available literature, this study is also the first to report a significant correlation
between Mn concentrations in cord blood and childhood blood (Pearson correlation
coefficient = 0.48, £ < 0.03) for children 4-8 years old in Jamaica. After adjustment for sex,
age, and both age and sex, this association remained consistent and statistically significant.
Arbuckle et al. also reported a significant Spearman’s correlations for Mn concentrations
between “15t and 3" trimesters” (r = 0.65, £< 0.01) and “3" trimester and cord blood”
(r=0.25, < 0.01).13% In addition, the findings from this study suggest that the mean

Mn concentration in cord blood (47.64ug/L) was significantly higher (nearly 4 times)

than in childhood blood (10.25ug/L). Similarly, Arbuckle et a/. reported the median Mn
concentrations in maternal blood increased from the 15t trimester to the 3™ trimester (median
difference = 3.3ug/L),) and the median ratio of cord blood Mn concentration to maternal
blood Mn concentration was 2.5.13% It is well-known that during pregnancy, maternal blood
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Mn concentrations increase due to the increased demand for micronutrients necessary for
fetal growth.[39-41]

In this study, the Spearman’s correlation between Hg concentrations in cord blood and
childhood blood was not statistically significant (r = 0.08; £=0.72). Although there are

no published studies that assessed the correlation of Hg concentrations in cord blood and
childhood blood, some studies reported a significant correlation between Hg concentrations
in maternal blood and cord blood. For example, in a study of pregnant women who lived in
New York City, Lederman et al. reported a significant correlation between Hg concentrations
in maternal blood and cord blood (Spearman’s r = 0.83, < 0.01).[42]

In this study, the Spearman’s correlation between Al concentrations in cord blood and
childhood blood was not statistically significant, (r = 0.29; £=0.20). There are no published
studies that assessed the correlation of the Al concentrations in cord blood and in childhood
blood. Few studies have reported the levels of environmental exposure to Al in other parts of
the world,[43-4%] but in Jamaica due to the export of bauxite to other countries, exposure to
Al could be studied further particularly among children living near bauxite mining areas.[46]

The findings in the Jamaican study of significant positive correlations between prenatal

and childhood exposures to Pb and Mn have important implications for designing future
studies of early life Pb and Mn exposures. Specifically, the findings could guide future
investigators as to whether collection of both cord blood and childhood blood is necessary
for assessment of environmental exposures to Pb and Mn. If there is a high (e.g., r = 0.70)
positive correlation between prenatal and childhood exposures to these metals, then one can
estimate exposures to these metals during the prenatal period from those that were available
for the childhood period from the ERAJ study. The findings provide greater evidence that
assessment of exposure to Pb in both cord blood and childhood blood may not be necessary,
though these results require replication in other populations with a larger sample size.

Limitations

There are some limitations to this study. First, although our sample size of 21 pairs of
metals concentrations in cord blood and childhood blood provides at least 80% power to
detect true correlations of 0.3 or higher, the sample size may not have adequate power to
detect statistically significant correlations between cord blood and childhood blood metal
concentrations for Al and Hg if the true correlation is less than 0.3.

Very few studies have reported any correlations between prenatal and childhood exposure

to Al. Therefore, the study team has not been able to find adequate literature to discuss the
findings related to Al in the context of similar studies in other settings. Hgl4”] and Mn[48] are
assessed more reliably from hair samples which the study team was not able to collect for
this study. Therefore, findings of this study may be particularly relevant for designing future
studies of continuous early life Pb[4%] exposure in circumstances where there is continuous
exposure to Pb in the population, and Pb concentrations can be assessed by using blood
samples. More specifically, recent, serial Pb measurements may offer a better assessment of
long-term and short-term exposures in the population.
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Conclusions

The main findings in this study demonstrated a positive correlation between cord blood and
childhood blood concentrations for Mn and Pb in Jamaican children. We also found that

the median Mn concentration in cord blood was about four times that of childhood blood,
possibly due to the increased demand for micronutrients necessary for fetal growth. Since
blood is considered as the best biomarker for assessment of exposure to Pb, while Mn is best
assessed using hair, these results may be particularly relevant for designing future studies of
early life Pb exposure.
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L ERAJ- (R21)

Page 14

ERAJ-Phase II (R01)

"

controls, 2-8 years old) in ERAJ study

Collected about 2-5 mL of blood from most of the 300
children (150 ASD cases and their sex- and age-matched TD

Collected about 15 mL of whole blood from 480 children (240 ASD cases and 240
TD controls, 2-8 years old) in ERAJ-2 study

I 2009 2010 > 2011 > 2012 2013 > 2014 2015 > 2016 2017 > 2018 2019

JA Kids study and follow up of children at age 4-8 years for assessment of their cognitive
development

Enrolled nearly 9600 women throughout Jamaica in their third trimester information regarding SES, and exposure to environmental
hazards including some heavy metals was collected by administering questionnaires to women.

O 5,200 pregnant women were interviewed at the time of delivery (from July to September of 2011) and information regarding SES,

pregnancy duration and exposure to environmental hazards was collected.
2,000 of the children in the JA Kids cohort were followed for assessment of their cognitive development between 9-12 and 8-22
months, and between 4-8 years.

JA Kids cord blood sub-study for assessment of concentrations of the six metals in
postnatal blood (children between age 4-8 years)

Cord blood samples were available from 100 children whose mothers provided information about SES,
pregnancy duration and exposure to environmental hazards in their third trimester and at the time of
delivery

O 44 out of the 100 JAKids families who participated in the cord blood sub-study agreed to participate in

the follow up study by the end of the ERAJ-2 study period (April 30,2019).

O Collected whole blood samples from 21 children between age 4-8 years for whom we also had cord

blood.

Figure 1.

Timeline for the JA Kids cord blood sub-study, the JA Kids study, and two phases of the
ERAJ study (ERAJ, ERAJ-2).
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Distribution of log-transformed Pb levels

-
o

o
o

o
=)

'
-
o

-1.5 -1.0 05 0.0 05
In Pb Cord blood (pg/dL)

Fitted values line

(b)

Distribution of log-transformed Hg levels
2 °
1 o

° © o o °
0 - o ©
-1 ° "
-]
o
-2
05 1.0 1.5 20

In Hg Cord blood (pg/L)

Fitted values line

(@

Distribution of log-transformed Al levels

3.0 o
° o
25 o [} o °
o o
20
o
15
o o 0o o o
1.5 20 25 3.0 35
In Al Cord blood (pgiL)
Fitted values line
®

Linear association between untransformed lead (Pb) (a), mercury (Hg) (c), and aluminum
(Al) (e) concentrations in cord blood and childhood blood, as well as the associations of
In-transformed Pb (b), Hg (d), and Al (f) concentrations in cord blood and childhood blood

(n=21).
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Distribution of Mn levels
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Page 17

Demographic characteristics and socioeconomic status of children and their parents, for families who
participated in the JA Kids cord blood sub-study and follow up visits (n = 44).

n=44

n =23

n=21

Variables Categories pvalued
N@®%) N(@®) N(®%)
Male 19(432) 9(39.1) 10 (47.6)
Sex of the child 0.57
Female 25(56.8) 14(60.9) 11 (52.4)
Age of the child Age < 60 S04 4740 S@H
(months) Age = 60 35(79.6) 19(826) 16(76.2)
Afro-Caribbean 38(86.4) 18(78.3) 20(95.2)
Race of the child . 0.13
Mixed 6(13.6) 5(217) 1(4.8)
aPaternaJ education  yp to high school * 23(535) 12(522) 12(60.0)
0.43
(at child’s birth) Beyond high school ** 20 (46.5) 11(47.8)  8(40.0)
Zlaternaj education  yp to high school * 10(25.0) 5(227) 5(27.8)
0.71
(at child’s birth) Beyond high school ** 30 (75.0) 17 (77.3) 13(72.2)
Family owns a home 24 (60.0) 14 (70.0) 10 (50.0) 0.20
Family rented a home 10 (25.0) 4 (20.0) 6 (30.0) 0.47
Family h ithout
Assats owned © aﬁ;“")gyrﬁemmesw' Ut 6(150) 2(100) 4(200) 038
Washing machine 32(80.0) 18(90.0) 14(70.0) 0.13
Family owns a car 27(67.5) 14(70.0) 13 (65.0) 0.74

Note: Demographic characteristics and socioeconomic status of children and their parents, for families who participated in the JA Kids cord blood
sub-study follow up visit when the children were 4-8 years old (n=44), those children who did not provide childhood blood samples during the
follow up visit, (n=23), and those who provided both cord- and childhood- blood samples during the follow up visit, n=21.

*
Up to high school education includes: attended primary, junior-secondary, and secondary/ high/technical schools

Hok

Beyond high school education includes: attended vocational, tertiary college, or university.

a . -
Paternal education was missing for 1 father.

b . o
Maternal education was missing for 4 mothers.

cAssets owned by the household were missing for 4 families.

dP-vaIues are for comparison of results between 23 and 21 children.
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