Skip to main content
. 2021 Nov 17;50(2):e11. doi: 10.1093/nar/gkab1065

Table 1.

Performance on benchmark datasets for on-target cleavage efficiency prediction

Dataset Model Metric Value
DeepHF wildtype (27), RNN Hold-out SCC 0.8555
DeepHF wildtype (27), RNN 10-fold CV SCC NA
DeepHF wildtype This study, C E Hold-out SCC 0.8392
DeepHF wildtype This study, C E 10-fold CV SCC 0.8066
DeepHF eSpCas9 (27), RNN Hold-out SCC 0.8491
DeepHF eSpCas9 (27), RNN 10-fold CV SCC NA
DeepHF eSpCas9 This study, R E Hold-out SCC 0.8220
DeepHF eSpCas9 This study, R E 10-fold CV SCC 0.6927
DeepHF SpCas9-HF1 (27), RNN Hold-out SCC 0.8512
DeepHF SpCas9-HF1 (27), RNN 10-fold CV SCC NA
DeepHF SpCas9-HF1 This study, R E+M Hold-out SCC 0.8364
DeepHF SpCas9-HF1 This study, R E+M 10-fold CV SCC 0.7900
geCRISPR V520 (26), mono binary Hold-out PCC 0.6700
geCRISPR V520 (26), mono binary 10-fold CV PCC 0.6800
geCRISPR V520 This study, C E+M Hold-out PCC 0.6055
geCRISPR T3619 This study, C E+M 10-fold CV PCC 0.5926
DeepCpf1 H1 (23) Hold-out SCC 0.7600
DeepCpf1 H1 This study, R E Hold-out SCC 0.7283
DeepCpf1 H2 (23) Hold-out SCC 0.7400
DeepCpf1 H2 This study, C E+M Hold-out SCC 0.7184
DeepCpf1 H3 (23) Hold-out SCC 0.5800
DeepCpf1 H3 This study, R E Hold-out SCC 0.5478
DeepCpf1 train (23) 10-fold CV SCC NA
DeepCpf1 train This study, C E+M 10-fold CV SCC 0.5165