Table 1.
Performance on benchmark datasets for on-target cleavage efficiency prediction
| Dataset | Model | Metric | Value |
|---|---|---|---|
| DeepHF wildtype | (27), RNN | Hold-out SCC | 0.8555 |
| DeepHF wildtype | (27), RNN | 10-fold CV SCC | NA |
| DeepHF wildtype | This study, C E | Hold-out SCC | 0.8392 |
| DeepHF wildtype | This study, C E | 10-fold CV SCC | 0.8066 |
| DeepHF eSpCas9 | (27), RNN | Hold-out SCC | 0.8491 |
| DeepHF eSpCas9 | (27), RNN | 10-fold CV SCC | NA |
| DeepHF eSpCas9 | This study, R E | Hold-out SCC | 0.8220 |
| DeepHF eSpCas9 | This study, R E | 10-fold CV SCC | 0.6927 |
| DeepHF SpCas9-HF1 | (27), RNN | Hold-out SCC | 0.8512 |
| DeepHF SpCas9-HF1 | (27), RNN | 10-fold CV SCC | NA |
| DeepHF SpCas9-HF1 | This study, R E+M | Hold-out SCC | 0.8364 |
| DeepHF SpCas9-HF1 | This study, R E+M | 10-fold CV SCC | 0.7900 |
| geCRISPR V520 | (26), mono binary | Hold-out PCC | 0.6700 |
| geCRISPR V520 | (26), mono binary | 10-fold CV PCC | 0.6800 |
| geCRISPR V520 | This study, C E+M | Hold-out PCC | 0.6055 |
| geCRISPR T3619 | This study, C E+M | 10-fold CV PCC | 0.5926 |
| DeepCpf1 H1 | (23) | Hold-out SCC | 0.7600 |
| DeepCpf1 H1 | This study, R E | Hold-out SCC | 0.7283 |
| DeepCpf1 H2 | (23) | Hold-out SCC | 0.7400 |
| DeepCpf1 H2 | This study, C E+M | Hold-out SCC | 0.7184 |
| DeepCpf1 H3 | (23) | Hold-out SCC | 0.5800 |
| DeepCpf1 H3 | This study, R E | Hold-out SCC | 0.5478 |
| DeepCpf1 train | (23) | 10-fold CV SCC | NA |
| DeepCpf1 train | This study, C E+M | 10-fold CV SCC | 0.5165 |