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Summary

Background:  Previous studies embracing digital technology and automated methods of scoring 
dental arch relationships have shown that such technology is valid and accurate. To date, however 
there is no published literature on artificial intelligence and machine learning to completely 
automate the process of dental landmark recognition.
Objectives:  This study aimed to develop and evaluate a fully automated system and software tool 
for the identification of landmarks on human teeth using geometric computing, image segmenting, 
and machine learning technology.
Methods:  Two hundred and thirty-nine digital models were used in the automated landmark 
recognition (ALR) validation phase, 161 of which were digital models from cleft palate subjects aged 
5 years. These were manually annotated to facilitate qualitative validation. Additionally, landmarks 
were placed on 20 adult digital models manually by 3 independent observers. The same models 
were subjected to scoring using the ALR software and the differences (in mm) were calculated. All 
the teeth from the 239 models were evaluated for correct recognition by the ALR with a breakdown 
to find which stages of the process caused the errors.
Results:  The results revealed that 1526 out of 1915 teeth (79.7%) were correctly identified, and the 
accuracy validation gave 95% confidence intervals for the geometric mean error of [0.285, 0.317] 
for the humans and [0.269, 0.325] for ALR—a negligible difference.
Conclusions/implications:  It is anticipated that ALR software tool will have applications throughout 
clinical dentistry and anthropology, and in research will constitute an accurate and objective tool 
for handling large datasets without the need for time intensive employment of experts to place 
landmarks manually.

Introduction

Dentistry, like many other medical disciplines, is moving towards a 
more digital approach, using technology to the advantage of higher 

quality diagnostics and therapeutics to enhance patient care (1). Digital 
imaging and 3D imaging reconstruction play a greater role than ever 
in both diagnosis and treatment planning in a range of disciplines and 
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applications in the fields of medicine and dentistry (2, 3). The challenge 
is to utilize the developments in digital imaging and computing tech-
nology to create software to automate and improve certain procedures 
such as diagnostics and outcome measurements.

In the dental field, clefts of the lip and palate (CLP) are orofacial 
conditions with many different subgroups and of varying severity. 
The subphenotypes are accompanied by complications from birth 
which include feeding and swallowing difficulties, speech impair-
ment, hearing problems, and dentofacial growth and development 
(4). The last of these, facial growth disturbance is an important out-
come as it affects the quality of life has a significant psychosocial 
impact, especially during adolescence (5, 6) and it is important that 
it is measured accurately and objectively if possible.

Ongoing research in the field of CLP seeks to determine the op-
timal timing in relation to orofacial development for primary surgery, 
and which surgical method(s) should be employed (7). Robust and 
reliable assessment of treatment is an essential part of modern clinical 
governance, to allow for the development of better surgical proto-
cols for those treated in the future. One key ‘core’ outcome measure 
of primary surgery of the palate is facial and maxillary growth and 
this is measured by the degree of maxillary arch constriction which 
may be affected by a range of factors including timing and sur-
gical technique (8). Several scoring systems have been developed to 
quantify the degree of maxillary arch constriction by examination 
of the dental arches relationships. Some scoring systems such as the 
GOSLON (9) and 5-Year-old index (10) are subjective, categorical 
and require examiner calibration and elements of clinical judgement, 
while others are designed to be objective and quantitative e.g., the 
modified Huddart–Bodenham (MHB) index (4) (Figure 1).

The latter system where scoring is quantified using an ordinal 
scale lends itself to digital analysis, and the scoring has been shown 
to be suitable for fully automated software (11). Furthermore, it can 
be used for all cleft types, does not require calibration, is systematic 

and is objective (Figure 1). The MHB scoring system has also been 
validated on plaster models, photographs, and digital models that 
can be captured using intra-oral scanning (12, 13).

The process of optical scanning to produce digital impressions 
is the preferred technique when compared with traditional impres-
sion taking as this is more comfortable for the patient (1). Intra-oral 
scanners produce a 3D model of the scanned arch that can be saved 
and analysed on a computer, and in addition to many other advan-
tages, they do not require physical storage space, making it easier 
for clinics to store and archive patient data for clinical and research 
purposes (1). Digital storage space must of course be considered, and 
a dental model (maxillary or mandible) STL file is around 30 MB. 
However, the STL format is easy to compress—and a zip archive re-
duces it to about 35% of its original size with negligible loss of infor-
mation. However, this was not done for this study and we estimated 
that for 1000 patients 200 GB of storage was required.

A useful additional feature of the digital models is that they lend 
themselves to computer manipulation, and automated data analysis 
techniques to produce objective outcome scoring tools. In the field 
of CLP outcome measurement using MHB on digital models, a semi-
automated software tool programmed by Rhino 5C++ SDK was 
developed by Ma et al. (14). This enabled objective scoring, elim-
inated the need for calibrated examiners and anchor study models 
and was found to be accurate and reliable. However, it still requires 
the manual identification of landmarks on the dental arches which is 
time consuming and is adversely affected by human error.

In developing automatic scoring software, accurate landmark 
identification is crucial and currently landmarking dental tissues is 
manual. And so, despite the potential benefits that come with the 3D 
information capture, this new technology also introduces new chal-
lenges, in data capturing, data manipulation, and efficiencies in time 
and labour saving (15, 16). This is particularly so when the analyses 
of multiple cases are required, despite its reliability, manual handling 
becomes impractical and difficult to complete. Manual identification 
has been prone to errors such as landmark inaccuracies and vary-
ing degrees of subjectivity from different professionals thus making 
it hard to cross-compare and analyse (17). This motivates the im-
portance of automatic landmarking and an automatic scoring soft-
ware based on it, and places significant value on the development of 
an automated software tool that is based on automated landmark 
recognition (ALR).

Software for automatic landmarking and for an objective out-
come measure using the MHB scoring system is required. This would 
replace the need for time-consuming manual scoring and eliminate 
human error and revolutionize outcome-based cleft research, ultim-
ately resulting in an objective outcome measure of primary surgery. 
The aim of automated scoring is increased efficiency, standardiza-
tion of the scoring of surgical outcomes allowing inter-centre com-
parisons of treatment protocols and the ultimate aim is to produce 
objective evidence of where and how improvements in standards of 
care can be achieved for individual cleft phenotypes.

The overall aim of this study was to create and validate the ac-
curacy of a fully automated ALR algorithm and to use MHB (4) as 
an exemplar outcome measure, and in the process to test the fol-
lowing null hypothesis. ‘ALR as used on digital models is no less 
accurate than manual landmarking’.

Materials and methods

Dental models (Table 1) processed by the ALR software are repre-
sented in the STL format, a common open-source 3D file format. 

Figure 1.  The modified Huddart–Bodenham (MHB) scoring system for CLP 
outcome measurement. CLP, clefts of the lip and palate.
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The models were acquired with the use of an intra-oral scanner (in 
Dundee a 3 shape TRIOS scanner and in Manchester a Sirona InEos 
X5 scanner and Inlab 18.1 software), either directly from the pa-
tients mouth or indirectly, by scanning patients’ study models cre-
ated after taking conventional impressions. Ethical permission for the 
use of these study models was obtained through the East of Scotland 
Research Ethics Service “Craniofacial database” archive (EoSRES 
REC reference: 15/ES/0186). Within an STL file, only the surface of 
the object is described. STL files contain no colour or texture informa-
tion. While STL files generally contain no scale information and the 
units are arbitrary, scanned dental arches are measured in millimetres.

Typically, the surface of the object displayed is referred to as a 
mesh. A mesh is hollow and is constituted by small triangles. The 
constituents of the mesh are defined by the 3D (x, y, and z) values of 
its three vertices. In the initial feasibility studies and experimentation 
on automation of landmark recognition on various dental anatom-
ical features in both maxillary and mandibular arches and various 
characteristics of dental occlusion, a wide range of models were used. 
Forty-five were digital images from scanned plaster study models of 
permanent dentitions of subjects with a variety of malocclusions who 
attended the Orthodontic department of Dundee Dental Hospital, 
24 were maxillary arches and 21 mandibular; 33 were derived from 
direct intra-oral digital scans that were recorded for a forensic odon-
tology research project, and were also of permanent dentitions, while 
80 sets were from a 5-year-old cleft lip and/or palate cohort that were 
recorded for audit and research purposes. All subjects whose models 
were used had given their consent for the use of their models for 
research purposes and all were anonymous at the point of access to 
the researchers. The upper and lower mismatch can be explained by 
an occasional model being unusable or unavailable. The groups and 
number of models per group are listed in Table 1.

Methods
An algorithm was developed to convert the landmarks identified by 
ALR in 3D space to a horizontal measurement of the relationship 
between the maxillary and mandibular dental arches. A feature of 
an intra-oral scanner is that, after scanning the two arches individu-
ally, the models are scanned in occlusion and the coordinates in one 
of scans automatically adjusts to match the occlusion. By opening 
of the maxillary and mandibular STL files in the same viewer they 
will appear in the correct occlusion and the process of comparing 
landmarks from opposite arches is identical to comparing landmarks 
from the same arch.

The algorithm is broken down into steps. The flow diagram in 
Figure 2 gives an overview of the process. Before analysis of the file, 
the software specified whether the model represented mandibular 
or maxillary arch and deciduous or permanent dentition. The ALR 
software then enabled the automatic recognition of the teeth using 
the information from the STL filename.

Orientation
Because different scanners use different orientation conventions, 
the mesh’s orientation needs to be registered by the software to en-
sure accurate analysis. The appropriate orientation is calculated pri-
marily by using the Principal Component Analysis (PCA) method. 
PCA checks the covariance from the centre of mass in all directions. 
It provides unit-vectors to represent left, right, backwards, for-
wards, down, up, and occlusal. The vertical directions (up, down, 
and occlusal) need to be particularly accurate, whereas horizontal 
directions can be more approximate. In simple terms, PCA finds the 
shortest, middle-length, and longest dimensions of the object.

A digital dental model is wider (transverse direction) than it 
is long (antero-posterior dimension) and longer than its height. 
Accordingly, the output of PCA on a dental model should yield 
transverse as the principal (longest) dimension, anterior or posterior 
as the second and vertical the third. The vertical directions are fur-
ther refined by fitting a plane to the tooth tips. PCA’s key advantage 
is that the model can be positioned and orientated anywhere and 
PCA will track it as easily as if the model were already positioned 
ideally.

Peak points identification
The next step is to identify all the ‘peak points’ (local maxima) of 
the mesh. As mentioned earlier, the landmarks that need to be iden-
tified are located on the tips and cusps of teeth, which tend to be 
the highest parts of teeth. Mathematically these can be translated 
as local maxima in the occlusal direction. These highest points will 
be referred to as ‘peak points’ or ‘peaks’ (see Figure 3). In this stage, 
peak points are identified, but at this stage it is not clear yet what 
each peak point represents. To reduce the number of non-tooth fea-
tures found, only the top (occlusal) part of the model is searched. 
A height threshold of 6 mm below the highest point is used to avoid 
irrelevant information being included. This threshold is low enough 
to capture teeth that are worn down or only partially erupted. Some 
points identified will be of no importance, and some may be du-
plicated, but they are filtered out by the software at a later stage 
by more sophisticated means. The successful completion of this step 
simply requires the software to identify at least one peak point per 
tooth on the mesh.

Tooth partition
The software then partitions the model into individual teeth. The 
identification of individual tooth boundaries is based on curvature. 
The curvature value of a particular surface point is a quantitative 
measure of its deviation from a flat surface. The definition of curva-
ture in the ALR software uses positive values for outside corners 
(a bump, cap, or tip) and negative values for inside corners (a slot, 
groove, or crease). The joint between each tooth and the gingivae is a 

Table 1.  Types and counts of the 239 scanned models used in this study.

Count Arch Type Dentition Characteristics

24 Maxillary Digital model Permanent Orthodontic subject
21 Mandibular Digital model Permanent Orthodontic subject
16 Maxillary Intra-oral scan Permanent Forensic research archive 
17 Mandibular Intra-oral scan Permanent Forensic research archive
81 Maxillary Digital model Deciduous 5-Year OFC audit archive
80 Mandibular Digital model Deciduous 5-Year OFC audit archive

B. Woodsend et al. 45



crease and therefore the curvature along it is negative. The software 
starts the scan at the top of a tooth and recursively includes adjacent 
mesh triangles until an edge of considerable negative curvature is 
detected, indicating the boundary between tooth and gingivae. The 
region covered will be referred to as the starting point’s area. Each 
peak point found in the previous step is used as a starting point 
for curvature analysis. Peaks included on the same tooth will have 
areas that overlap. By testing for and merging overlapping areas, 
one tooth is identified and duplication of teeth in the software is 
avoided. Any detected peaks that were not located on a tooth will 
not be bounded by the creases of tooth–gingival joints. As a result, 

the software might incorrectly include a large part of the model as a 
single partition. By imposing the rule ‘stop if travelled more than a 
tooth’s width away from the starting point’, and testing if that rule 
was actually used, non-tooth peaks and their corresponding areas 
can be identified. These non-tooth areas are labelled ‘spilled’ and are 
discarded.

The scenarios above are demonstrated in Figure 4. The simplest 
case is the LR3 (green) with one peak on one tooth meaning no fur-
ther work is required. The red dot is a spilled peak, it encountered 
no tooth boundary below it and would have tried to fill most of the 
base without the maximum traversal rule. Multiple peaks are on the 

Figure 2.  The stepwise process used for automated landmark recognition (ALR) in the deciduous dentition.
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LL5 (cyan) but because their areas overlap, they can be merged thus 
avoiding duplicity. The buccal (blue) and lingual (yellow) halves of 
the LR6 do not overlap but are at the same point round the jawline 
and can therefore be merged. The jawline, being a quadratic curve 
does not rely on any landmarks and is fitted to the horizontal com-
ponents of the peak points (see Figure 3) which were not labelled as 
spilled as defined in the section entitled tooth partition above.

Tooth assignment
The successful completion of this step results in the partitioning of 
each tooth, without any duplication and with almost all the non-
tooth structures removed. At this stage, no information regarding 
the delineation of each tooth is available, and the next step is tooth 
assignment. The partitions identified within the mesh by the soft-
ware will be referred to as blobs. Each blob represents either a whole 
tooth, a mesial or distal half of a molar, or in rare instances a non-
tooth feature. The software sorts and enumerates the blobs from left 
to right round the jaw. The end goal and final output of the tooth 
assignment method are to correctly label each originally unknown 
tooth with the appropriate tooth type. In labelling the tooth types, 

the software uses machine learning techniques on various tooth 
characteristics, such as total surface area. Each unknown blob in 
the model is compared with a gold-standard database of manually 
labelled blobs (training set, see Figure 5). The tooth characteristics 
cover all tooth types and yield single value per blob. The objective 
is to minimize the total mismatch between the characteristic values 
of each blob with the training values of the tooth type it is assigned. 
There is no limit to how many characteristics can be used, and in 
general it was considered that the more the better. It transpired, how-
ever, that only a few basic dimensional measurements are needed to 
give robust results.

The tooth types searched for are referenced using Palmer short-
hand (e.g. UR2 for an upper right second incisor) with a slight exten-
sion to include half-molars. UR6.0 and UR6.1 represent the mesial 
and distal halves of an UR6, respectively. The software generates a 
list of potential tooth types based on the model’s jaw type (man-
dibular or maxillary) as specified at the beginning of the process.

After tooth assignment, the ALR system is then primed for use on 
whatever system it is applied to. In this context, it was applied to the 
measurement of maxillary arch constriction in a cohort of subjects who 
had surgical correction for cleft lip and palate. To do this the points 
on maxillary teeth and mandibular teeth were mapped and the buccal 
segment teeth crossbites and incisor overjets were given MHB scores.

Validation
Finally, the software validation was conducted by comparing ALR 
landmark placement, to landmark identification of the same models 
manually by dental professionals, using comparison to the consensus 
x, y, and z coordinate of each landmark in 3D space.

During the validation process, 20 models (10 pairs of mandibular 
and maxillary arches) were scored by the ALR system. The same 
models were also scored by professionals in the field of dentistry in-
dividually after they were given the same instructions. The results of 
the validation process are displayed in the results section (Tables 2 
and 3) and analysed in the discussion.

Results

After the creation of the software, it is important to be able to quan-
tify its performance so we can assess the level of reliability. During 
the refinement process for the ALR, after arch orientation, tooth 

Figure 3.  Peak points found (black arrows) and height threshold (blue) on 
dental model.

Figure 4.  A few different tooth partition scenarios demonstrating peaks 
(balls) and their areas on a dental model of a permanent dentition.

Figure 5.  Surface area tooth characteristic chart showing surface areas from 
the training set by tooth type during tooth assignment.
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partition and tooth assignment were conducted, and the quality of 
each ALR step was assessed separately to ensure validity of the final 
landmarking.

A qualitative assessment of the software’s ability to identify teeth 
was performed on all the models listed in Table 1. Teeth were labelled 
by hand and by the machine and compared per tooth. Table 2 pro-
vides summary statistics as raw counts and as percentages. The totals 
in Table 2 include all teeth (recognized by the software or other-
wise) that were present on the model. So, for example, looking at the 
adult cast models, there are 45 models giving a theoretical maximum 
number of teeth of 45 × 16 = 720 but only 588 are listed in the adult 
cast total cell. The remaining 132 were missing from the patient due 
to extractions, impactions or hypodontia or, in some cases, the im-
pression did not go back far enough to include 7s and 8s.

To summarize the row headers: OK means the software found 
and correctly labelled the tooth. Partition Error means that the tooth 
was not found (see section Tooth partition). Wrong Assignment 
means that the tooth was found but mislabelled (most of which 
were lower incisors) (see section Tooth assignment). Wrong Kind is 
a subset of Wrong Assignment where the software also chose incor-
rectly from incisor, canine, premolar, and molar. In addition to the 
mistakes above, 1 deciduous model failed at the orientation step. 
The find peaks points process has provided accurate results every 
time. It is important to note that in MHB ignores 7s and 8s are not 
included, and scores first permanent molars, premolars, canines and 
central incisor giving only 12 landmarks per model. There was no 
difference in ALR performance between incisors and any of the other 
tooth classes.

For the ALR validation, 20 cast models (213 teeth) were processed 
automatically by the software and manually by 3 experts to inde-
pendently identify the assigned landmarks. From a maximum of 20 × 
12 = 240 teeth, some of the remaining 27 were missing from the patients 
and a few were unrecognized. The results of the landmark accuracy 
validation, comparing the coordinates of landmarks placed by experts 
to landmarks placed by the machine, are shown in Table 3. When com-
paring the coordinates of the landmarks indicated by the software 
and the mean coordinates of the manual examinations, the results are 
similar, with similar levels of deviation from consensus landmarks.

As demonstrated in Table 3, the overall landmark placing of the 
software averages out at 0.389 mm and the landmark placing by 

humans at 0.376 mm. This represents very accurate landmark place-
ment by the software with the mean difference being 0.013  mm. 
That table also demonstrates that manual landmark placement by 
different users can have considerable inter-user variation, and yet 
this is currently the gold standard. There was a definite difference 
in the level of experience of the 3 examiners with A being a student 
novice, and for any future high stakes study this has highlighted the 
need to exercise caution. When investigating the reason, it was felt 
that differences are likely due to 1.  level of experience and 2.  the 
time and carefulness put into the landmarks’ placement. Examiner 
C in particular put several hours into getting them precise. So, the 
advent of automated software placement of the landmarks will have 
the same diagnostic value and will eliminate any intra- or inter-rater 
variations.

The 95% confidence intervals for the geometric mean error of 
the humans are [0.285, 0.317] and for ALR are [0.269, 0.325]. The 
difference between humans and ALR shown in Figure 6 is negligible.

Discussion

The work described in this paper builds on the successful develop-
ment of a plug-in on an open 3D development platform digital tech-
nology by Ma et al. in 2017 (14) using Rhinoceros software, version 
5. Clinicians selected pre-defined landmarks on cusps of mandibular 
and maxillary teeth on 3D digital models. A  three-dimensional 
cubic spline was used to generate a mandibular curve, and a best-fit 
horizontal mandibular reference plane was produced using a least-
squares method. Their project was aimed towards an automated 
scoring of cleft lip and palate outcomes and used horizontal dis-
tances projected from the shortest three-dimensional distances be-
tween the maxillary cusps and the mandibular curve to calculate 
the modified Huddart and Bodenham (MHB) score. This automated 
scoring of digital models using the MHB system produced similar 
results to manual scoring by experienced experts, the current ‘gold 
standard’ thus validating its use.

However, one major drawback remained, the fact that the visual 
and manual identification of the dental landmarks that are selected 
to enable the MHB score to be allocated still required operator inter-
vention. The Ma et al., development (14) was proof of concept that 
the digital system with an MHB algorithm was a valid, reproducible 

Table 2.  Qualitative evaluation of tooth identification errors expressed per-tooth and as percentages.

Cast adult Intra-oral adult Cast deciduous Overall

OK 475 80.8% 157 74.8% 894 80.0% 1526 79.7%
Partition Error 46 7.8% 28 13.3% 136 12.2% 210 11.0%
Wrong Assignment 67 11.4% 25 11.9% 87 7.8% 179 9.3%
Wrong Kind 22 3.7% 9 4.3% 32 2.9% 63 3.3%
Total 588  210  1117  1915  

‘Wrong kind’ is a subset of Wrong assignment.

Table 3.  Average deviation (mm) from the consensus co-ordinates for landmark location on different teeth by the ALR software and for 
each of the 3 examiners (A, B, C). 

Deviation (mm) Software

Humans

A B C Mean

Incisors 0.454 0.565 0.387 0.349 0.434
Canines 0.369 0.630 0.322 0.291 0.414
Premolars 0.402 0.472 0.313 0.296 0.360
Molars 0.334 0.382 0.269 0.310 0.320
Overall 0.389 0.517 0.310 0.300 0.376
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and accurate substitute for manual scoring. The ALR software de-
scribed here aims to overcome this drawback by removing the 
element of human error through machine learning and thereby im-
prove both diagnosis and assessment of treatment outcomes across 
many fields of dentistry. It facilitates research and data collection, 
improving speed, accuracy, and standardization of data analysis, 
beyond what is feasible with manual methods, and is particularly 
suited to ‘big’ data.

One of the main challenges faced during the development of ALR 
was training the software to discriminate between different tooth 
types. There were several particularly hard to distinguish types, 
some of which we have overcome, giving a good degree of discrim-
ination, but others such as discrimination between first and second 
premolars still need improving. The machine learning model is de-
signed to be easily extendable and could later include other known 
(to humans) distinctive properties which would greatly improve this. 
A larger training dataset would likely help as the model should be 
usable as an outcome measure with smaller as well as larger datasets.

Another drawback is that ALR only supports exclusively de-
ciduous or permanent dentition. One of the next additions to the 
software would be to enable support for mixed dentition. The barrier 
to this feature lies solely in the Tooth Assignment step (see above). 
Using this, MMMPPCIIIICPPMMM denotes an adult arch or mmcii-
iicmm for deciduous. Mixed dentition would have to replace this 
constraint with a more relaxed one allowing with adult or deciduous 
teeth throughout. This will require coding to be done to provide the 
freedom for a premolar to replace a deciduous molar as both could be 
present in the same quadrant. A side-effect of giving machine learning 
more freedom is loss of accuracy and increase in computation time 
(because it now has more intermediate decisions to make). To counter 
this better tooth characteristics to make the distinction between tooth 
types more obvious. The tooth characteristic machine learning model 
is extendable to include other known properties of each tooth type. 
One area that still requires work is making the ALR software more 
user-friendly. Currently, only parts of ALR even have a user interface. 
A simple, intuitive user interface, not requiring extensive training, will 
lead to a reduction of human error in using the software.

ALR is an example of a technological advancement made pos-
sible by collaboration of Dentistry and Mathematics, it is a valuable 
tool that can change the way that many dental related problems are 

approached. The automated system facilitates quicker and more re-
liable outcome assessments by minimizing human errors. By stand-
ardizing outcome assessment in cleft care, multi-centre comparisons 
for audit and research can be simplified, allowing centres throughout 
the world to upload three-dimensional digital models or intra-oral 
scans of the dental arches for remote scoring. Thereafter, these data 
can feed back into the global database on orofacial clefting as part of 
the World Health Organization’s international collaborative ‘Global 
Burden of Disease’ research project for craniofacial anomalies.

Validation of the ALR software means that this can be used to 
identify landmarks with greater consistency than human identifica-
tion. ALR enables analysis of large quantities of patient models to 
provide more accurate predictions for different therapies. That will 
result in the creation of more specific guidelines that will facilitate 
the best possible results for the patients, so they can have the best 
quality of life they possibly could. The fact that ALR obtained re-
sults will always be consistent will make collaboration and cross-
comparison between researching bodies across the world possible 
without expert clinicians having to travel from site to site, making 
such research faster, cheaper, and easier. The method and software 
are found to be a valid, reproducible and consistent for identifying 
landmarking points and through algorithms providing for the first 
time a fully automated system.

Conclusions

This paper is the first report to describe the development of an auto-
mated dental landmarking and scoring software via a combination 
of geometric computing, data fitting, tooth image segmenting, and 
machine learning. This fully automatic landmark recognition can be 
adapted for a range of applications in the field of clinical dentistry, 
dental research, and associated disciplines. One example, cleft lip 
and palate outcome measurement using MHB is used here to illus-
trate the use of the technology.

The utilization of numerical methods for computational geom-
etry and image segmentation on digital dental models and associated 
algorithm software were key to the development of the first fully 
automatic landmarking recognition and outcome assessment scor-
ing tool. The machine learning ALR was found to be reproducible 
and the most accurate and objective method of carrying out dental 
analyses in the future.

ALR can be applied to both deciduous and permanent denti-
tions, has widespread applications throughout dentistry, dental an-
thropology, forensic odontology and in research can constitute an 
invaluable tool for handling large datasets, eliminating human error, 
and time intensive employment of experts to place landmarks manu-
ally. Its implementation promises to provide significant savings in 
terms of cost and time and an improved patient experience when 
compared with traditional diagnostic methods.
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