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Abstract

The aging population is at a higher risk for age-related diseases and infections. This observation could be due to
immunosenescence: the decline in immune efficacy of both the innate and the adaptive immune systems. Age-related
immune decline also links to the concept of ‘inflamm-aging,’ whereby aging is accompanied by sterile chronic
inflammation. Along with a decline in immune function, aging is accompanied by a widespread of ‘omics’ remodeling.
Transcriptional landscape changes linked to key pathways of immune function have been identified across studies, such as
macrophages having decreased expression of genes associated to phagocytosis, a major function of macrophages.
Therefore, a key mechanism underlying innate immune cell dysfunction during aging may stem from dysregulation of
youthful genomic networks. In this review, we discuss both molecular and cellular phenotypes of innate immune cells that
contribute to age-related inflammation.
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Introduction
The human population is aging, which has led to the rise in
prevalence of many so-called age-related diseases. Not only
is the aging population much more susceptible to age-related
diseases, they are also more susceptible to infections. For
example, elderly individuals are at a higher risk of developing
severe COVID-19 or complications from influenza infections
[1,2]. This increased chance of infection can be due to the decline
of the function of the immune system, a phenomenon called
‘immunosenescence’ [3]. Age-related changes in the function of
the immune system are also accompanied by a chronic sterile
inflammation, a mechanism dubbed ‘inflamm-aging,’ which is
thought to promote age-related disease and functional decline
[4]. Inflamm-aging is associated with many different factors,
most typically encompassing increases in pro-inflammatory
cytokines tumor necrosis factor alpha [TNFa], interleukin 1
beta [IL1b] and interleukin 6 [IL6] [5]. Although these cytokines
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are involved in normal immune function, persistent levels of
pro-inflammatory cytokines can lead to tissue damage, con-
tributing to increased prevalence of chronic diseases (e.g.
Alzheimer’s disease (AD), cancer, etc.) [6].

An important source of inflammatory signals in aged organ-
isms is thought to be the accumulation of senescent cells across
tissues [5,7]. Indeed, accumulating evidence has shown that
senescent cells are characterized by a senescence-associated
secretory phenotype [8–10], which includes a panoply of
pro-inflammatory cytokines, proteases, growth factors and
metabolites [10,11]. The impact of senescent cells on age-related
inflammation, and their potential role as a target for pro-
longevity therapies (i.e. senolytic drugs) have been extensively
reviewed elsewhere [12–15], but remain somewhat uncertain.
Aberrant immune activation with age could also stem from
increased permeability of the intestinal mucosa (i.e. ‘leaky gut’)
[16,17] related to changes to the gut microbiota [18,19], which
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may directly contribute to increased systemic inflammation.
Age-related increase in genomic instability may itself also
drive aspects of inflammaging. Indeed, re-activation of LINE-
1 transposable elements during aging and in senescent cells has
been proposed to drive an interferon response, thus contributing
to sterile inflammation [20–22]. In addition, chronic DNA-
damage signaling itself, for instance in aged lymphocytes,
may also render them more activation-prone through innate
receptors even in the absence of infection [23].

Generally, overall immune dysfunction is a hallmark of
aging, with functional decline impacting both innate immunity
and adaptative immunity [3,24,25]. Age-related deficiencies
in hematopoietic stem cells [HSCs], which reside in the bone
marrow and differentiate throughout life to give rise to mature
cells of the innate and adaptive immune systems, are thought to
underlie at least partly dysfunction of mature immune cells [26].
For instance, aged HSCs from mice show large epigenomic and
transcriptomic differences compared to youthful HSCs which
are likely to adversely impact their differentiation capacity
[27,28]. In addition, aged HSCs tend to produce higher numbers
of innate cells from the myeloid lineage, a phenomenon called
‘myeloid bias’ [26,28,29]. Interestingly, a recent study using
heterochronic bone marrow transplant has shown that at least
part of the inflammatory milieu of aged animals directly stems
from the activity of bone marrow hematopoietic progenitors
[30]. Conversely, HSC function can be directly remodeled by
inflammatory signals, such as those observed during normal
aging [31]. Downstream of HSCs and of special relevance to
‘inflamm-aging’ are cells of the innate immune system, which
constitute the first line of defense against pathogens. Key cell
populations of the innate immune system include monocytes,
macrophages, neutrophils, natural killer cells and dendritic cells
(DCs) [32].

Importantly, a key mechanism underlying innate immune
cell dysfunction during aging may stem from dysregulation of
youthful genomic networks. Indeed, aging is accompanied by
widespread remodeling of transcriptional landscapes across tis-
sues and cell types (reviewed in [33]). In addition, age-related
inflammatory signatures at the transcriptional levels have been
observed across species and tissues, suggesting that such ‘omic’
remodeling is a conserved aging response [34,35].

In this review, we will focus on how innate immune cells
act as key contributors to age-related inflammation (Figure 1).
We will discuss both molecular and cellular phenotypes which
have been described in the aging innate immune system, and
how they could relate to the phenomenon of inflamm-aging and
immunosenescence.

Macrophages
Macrophages are a central hub or ‘one stop shop’ in the adult
innate immune system. Macrophages accomplish a variety of
key tasks, such as phagocytosis, cytokine production, antigen
presentation and assist in wound healing [36]. Far from being
a homogenous cell type, macrophages have various embryonic
primordium origins (i.e. fetal liver/yolk sac versus bone marrow
stem cells), broadly corresponding to macrophages classified as
‘tissue resident’ (as old as the individual; e.g. microglia, peri-
toneal macrophages) versus ‘de novo’ (continuously produced
throughput life; e.g. monocyte-derived) [37]. These different pop-
ulations of macrophages show clear epigenomic and transcrip-
tional differences (at least in mouse) [38–41], which are partially
shaped by exposure to niche signals [38,39]. Such molecular

differences can lead to differential abilities of macrophages sub-
types to respond to challenges, or sense pathogen-associated
molecular patterns [PAMPs].

Based on the differences between location and the effects the
microenvironment has on gene expression, many differentially
expressed genes are important for specialized functions
[40,41]. Driving differences in gene expression, tissue-resident
macrophage populations have different transcription factors
[TFs] that specifically regulate their gene expression [38,39,42].
For instance in mice, Gata6 is highly expressed in peritoneal
macrophages, Bhlhe40 in large peritoneal macrophages, Spic
in splenic macrophages, Sall1 in microglia and PPARg in
alveolar macrophages, which may drive both specific basal
states and age-related changes [42,43]. Disruption of Gata6
in the myeloid lineage leads to defects in mouse peritoneal
macrophage homeostatic proliferation and in inflammatory
response [44]. Even though tissue-resident macrophages each
have a specific TF that regulates their phenotype, PU.1 is thought
to regulate many TFs associated to tissue-resident macrophages
[38,39,42]. Intriguingly, decreased levels of PU.1 in microglia
associate to delayed onset of Alzheimer’s disease in humans,
suggesting that differences in tissue-macrophage phenotypes
may underlie differences in aging trajectories [45,46]. Further
studies will need to be conducted to understand how these TFs
are regulated with aging, and how they may generally influence
immunosenescence and inflamm-aging.

Aging transcriptome landscape

Accumulating evidence has revealed that de novo and tissue-
resident macrophage populations from both rat and mice
maintain their specificities throughout life despite undergoing
widespread remodeling of their transcriptional landscapes
with aging (Table 1). For example, in a study comparing
the impact of organismal aging on 2 populations of tissue-
resident macrophages from mice (i.e. adipose versus splenic
macrophages), Camell et al. [47] showed that both macrophage
types maintain their transcriptional specificities throughout
life, although they are both affected by aging. Interestingly,
age-related differentially expressed genes were quite different
between the two types of macrophages, suggesting that there
are macrophage population specific responses to aging [47].
Although each transcriptomic study of aging macrophages
from both rat and mice identified clear specificities to each
type of macrophage (even showing differences between the
same macrophage type across studies), a number of recur-
rent misregulated functional categories stand out, includ-
ing upregulation of cytokine pathways and downregulation
of phagosome/endosome-related pathways (Table 1). How-
ever, variability in the reported age-related remodeling of
macrophages may stem from true biological differences (e.g.
niche-effects on macrophages, or intrinsic differences linked
to embryonic origin). In contrast, it is also possible that these
differences stem from technical differences (e.g. microarray
versus RNA-seq, bioinformatic pipelines), from differences in
key biological covariates (e.g. ethnicity/genetic background,
circadian time), or, merely from how young and old age groups
are defined (e.g. young mice defined as young as 2 months or as
old as 6 months old, old mice defined as young as 12 months or
as old as 30 months old). Harmonized studies or meta-analyses
taking into account these variables will be key to understand
general principles of age-related macrophage transcriptional
remodeling.
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Figure 1. Functional genomics insights into inflamm-aging and immunosenescence through the lens of the innate immune system. (A) Aging results in a widespread

of molecular changes to terminally differentiated immune cells. These changes can be partially rescued through different interventions. (B) Possible contributors to

age-related changes in macrophage function that will ultimately result in immunosenescence and inflamm-aging.

Age-related functional decline
Although there was some variability among studies, pathways
related to endosome or phagosome biology were found to be
generally downregulated with age across transcriptomic studies.
Indeed, macrophages are primarily phagocytes, and multiple
studies across species have observed defects in this core process
with organismal aging (Table 2). Studies evaluating phagocytic
capacities of various populations of macrophages from both

rat and mice with aging, including peritoneal macrophages,
Kupffer cells, alveolar macrophages, bone marrow macrophages
and bone marrow-derived macrophages [BMDMs] (i.e. differen-
tiated in vitro from bone marrow progenitors and monocytes),
again show contrasting results, consistent with the notion that
different macrophage populations may have specific aging tra-
jectories (Table 2). After an infection or in response to tissue
damage, macrophages are required to clear up apoptotic cells,
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Table 2. Age-related changes to phagocytosis of different populations of macrophages

Population Species Strain Ages Sex Phagocytosis cargo Age-related
change

Reference

Alveolar
macrophages

R. norvegicus F-344xBN 6 m versus 12 m
versus 18 m

NA Opsonized K.
pneumoniae 43,816

increase [138]

M. musculus C57BL/6 2-4 m versus
16 m versus
22–24 m versus
33 m

NA Alexa Fluor 488
beads

decrease [56]

Bone
marrow-derived
macrophages (in vitro
differentiation)

M. musculus C57BL/6 2–4 m versus
18–22 m

F S. pneumoniae decrease [18]

M. musculus C57BL/6 2–3 m versus
15–20 m

M Fluorescent particles no difference [139]

Bone marrow
macrophages (in vivo)

M. musculus C57BL/6 J 2–4 m versus
20–30 m

M Senescent
neutrophils

decrease [51]

Kupffer Cells R. norvegicus F344 ∼1 m versus
12 m versus
24–25 m

M Polystyrene/sucrose
microsphere

increase [140]

Microglia M. musculus C57Bl/6 J 2–3 m versus
20–22 m

M Fluoresbrite Yellow
Green Carboxylate
microsphere (1 μm)

decrease [141]

Peritoneal
Macrophages

M. musculus BALB/c 3 m versus 15 m B Latex beads (1.09 μm) decrease [142]
M. musculus BALB/c 3–4 m versus

20–23 m
B Latex beads (1.09 μm) decrease [143]

M. musculus BALB/c 3 m versus 15 m M Opsonized Candida
albicans
Latex beads Latex
beads (1.09 μm)

No change [144]

M. musculus C57BL/6 2–4 m versus
18–22 m

F S. pneumoniae decrease [18]

M. musculus C57BL/6 2–3 m versus
15–20 m

M Fluorescent particles decrease [139]

M. musculus BALB/c 2 m versus 20 m M Apoptotic
neutrophils

decrease [50]

M. musculus CF-1 3 m versus 22 m M Carbon uptake decrease [145]
Thiogallate-induced
peritoneal exudate
macrophages

M. musculus B6C3-F1

B6.Gld
2 m versus 24 m M Apoptotic

TAMRA/SE-labeled
apoptotic Jurkat T
cells

decrease [146]

F: Female; M: Male; B: both sexes; NA: sex not specified in the article; m: months.

senescent cells and cell debris (through a process called ‘effero-
cytosis’) [48], as well as neutrophil extracellular traps (NETs) [49].
Intriguingly, two distinct populations of mouse macrophages
have been shown to be defective in efferocytosis with aging
[50,51]. The impact of decreased efferocytotic capacity occurs
in normal tissue homeostasis, but also in the ability to resolve
inflammation. For instance, in a peritonitis mouse model, effero-
cytosis of apoptotic neutrophils by peritoneal macrophages was
shown to decrease with age, leading to an improper resolution
of inflammation [50]. Importantly, a decreased ability to clear
senescent cells through efferocytosis could also indirectly drive
increased inflammation due to an increasing burden of cells
producing SASP factors [52,53]. Thus, overall age-related loss of
phagocytic and efferocytic capacity of macrophages may lead
to increased susceptibility to infections and/or defects in tissue
homeostasis [54–56], ultimately leading to immune dysfunction
and increased inflammation.

When macrophages are exposed to specific stimuli in
vitro, they are thought to adopt specific genomic programs
by ‘polarization’ towards so-called M1 or M2 phenotype,
which secrete different cytokines/chemokines [57–59]. The

picture is more complex in vivo, where macrophage activation
phenotypes are more spread along a spectrum [60]. Although
this dichotomy corresponds to a more nuanced spectrum in
vivo, it has been used to determine whether macrophages
are more pro-inflammatory or pro-tissue remodeling. With
aging, macrophages can become skewed towards one end
of the polarization spectrum, and this skewing will create a
microenvironment that can be detrimental to surrounding cell
types. In the liver and adipose tissue, macrophages tend to
skew towards an M1 phenotype, while bone marrow, spleen,
lymph nodes, lung and muscle seem to skew more towards
an M2 phenotype [61]. For example, mouse Kupffer cells and
adipose tissue macrophages were reported to skew towards a
Cd38+ M1 phenotype with aging, leading to increased inflam-
mation and consumption of nicotinamide adenine dinucleotide
[NAD], with detrimental impact on tissue homeostasis [62].
Typically, monocytes recruited to a site of infection tend to be
M1-like, while tissue-resident macrophages tend to be more
M2-like [63]. However, aging has been associated to increased
skewing of both resident and non-resident macrophages to
M1-like phenotypes [64,65]. Differential skewing of macrophages
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with aging may underlie the recurrent upregulation of pro-
inflammatory cytokine-related pathways, which have also been
observed at the transcriptional level (Table 1).

Toll-like receptors [TLR] are important for recognition of
PAMPs, and thus to trigger cellular activation in response to
TLR-associated signals [66]. Studies have shown aging leads to
a dysfunctional response to PAMP stimuli, notably resulting in
misregulation of cytokine production [67–73]. Macrophages also
have the ability to present antigens to lymphocytes, and antigen
presentation capacity by macrophages has been reported to
decline with age [74]. However, the mechanisms behind this
decrease are unclear, as different macrophage populations show
opposite trends in regulation of antigen-presenting complex
genes (e.g. MHC I and MHC II) and proteins. For instance, MHCII
mRNA levels increase with age in rat microglia and mouse bone
marrow macrophages [51,75]. In contrast, BMDMs from young
and old mice showed decreased expression of MHC class II
protein and mRNA [76]. Whether due to increased or decreased
production of MHC, dysfunction in the antigen presentation
machinery is likely to impact the resolution of inflammation
and promote a more inflammatory state.

Similar to transcriptional differences, age-related functional
changes in macrophage function are not homogeneous in the lit-
erature. There are a few possible explanations behind the appar-
ent inconsistencies One of the possibilities that could explain
the differences observed is that the innate immune system
can be modulated in response to sex-steroids, including estro-
gens [77]. Although this has not yet been studied systematically
throughout aging, populations of macrophages (e.g. microglia,
have been shown to be extremely sex-dimorphic in young ani-
mals [78–80]). Since most studies have thus far been conducted
in only one sex (Tables 1 and 2), it is likely that differences
between studies may partially result from differences in the bio-
logical sex of the used animals. Furthermore, contrasting results
on phagocytic capacity may also be due to differences in the
cargo used to perform the assay, including differential impacts
of aging on ‘neutral’ cargo phagocytosis (e.g. latex beads), TLR-
mediated phagocytosis (e.g. Zymosan, bacteria), or opsonic ver-
sus non-opsonic phagocytosis (Table 2). Finally, another variable
that can contribute to the differences observed between the dif-
ferent tissue-resident macrophages is the impact of their niche
microenvironment, which shapes many of their phenotypes
[38,39], and may be itself driving differences in aging trajectories.
Therefore, experimental design choices and differences between
studies will greatly impact the final observations.

Neutrophils
Neutrophils or ‘polymorphonuclear cells’ are the most abundant
leukocyte among human blood cells, composing 50–70% of white
blood cells throughout life [81]. Neutrophils are short-lived cells,
with an estimated cellular lifespan ranging from only hours to
days upon terminal differentiation, in a process that has been
dubbed ‘Neutrophil aging,’ distinct from organismal aging [82–
84]. Thus, they are continually generated in the bone marrow and
released into circulation to contribute to overall immune surveil-
lance [83,85]. Key processes that neutrophils can undergo upon
activation by microbial signals include secretion of antimicrobial
granules and release of ‘NETs’ [83,86]. Although neutrophils are
essential for immune surveillance as a ‘first line-of-defense,’
they can also contribute to and aggravate inflammatory disease
[83,85]. Indeed, emerging evidence suggests that neutrophils play
important roles in chronic inflammation [87].

Aging transcriptomic landscape

Although changes in gene expression regulation throughout
lifespan have been reported across many tissues and cell types
[33,34], how organismal aging (rather than ‘daily’ cellular aging)
affects neutrophils is still largely unknown. However, despite
their continued turnover, the transcriptional landscape of pri-
mary mouse bone-marrow neutrophils seems to be influenced
by organismal aging [88], although age-related transcriptional
changes are dwarfed by large sex-differences. Differentially
expressed genes of neutrophils showed an upregulation of genes
associated with immune signaling and autophagy accompanied
by the downregulation of chromatin-associated genes [88]. Thus,
the upregulated of autoimmunity as well as downregulation
of chromatin genes could lead to the mis-regulation of NETs
upon microbial signals. Interestingly, a single-cell atlas of rat
aging organs showed increased infiltration of neutrophils in
adipose tissue, liver and kidney [89]. In addition, neutrophils
showed large gene expression differences with aging across
tissues in that dataset, although the functional analysis of
these differentially expressed genes was not discussed [89].
Although the broader relevance of these findings to other
populations of neutrophils, to neutrophils from humans or to
neutrophils exposed to priming signals will be required, changes
in neutrophil transcriptomes could lead to functional defects
with aging.

Age-related functional decline

Although they have yet not been studied as extensively as
macrophages, evidence suggests that neutrophils from aged
organisms are dysfunctional on many levels [90–95]. Thus,
age-related neutrophil dysfunction likely contributes to overall
immune dysfunction, with changes in ‘primed’ NETosis [91,92],
chemotaxis [93], intracellular granule secretion [93,96], phago-
cytosis [94,97] and pathogen killing [91,94,95]. Interestingly,
neutrophils can be primed by TNFa for increased NETosis
[92], and circulating TNFa levels are known to increase with
aging [18]. Notably, NETosis capacity with aging has only been
reported in a primed state (i.e. TNFa pre-incubation of human
circulating blood monocytes [92] or thioglycolate-elicitation of
mouse peritoneal neutrophils [91], which is known to mimic
TNFa priming [98]), and the ‘naïve’ unprimed state has not yet
been investigated. It will be important to determine whether
aged naïve neutrophils have increased NETosis capacity, as the
aged milieu may itself prime them for unscheduled activation
and promote further acceleration of the inflammatory response.

Importantly, age-related dysfunction of macrophages may
itself lead to modulation of the pool of neutrophils, by allow-
ing them to survive longer in an impaired state. Indeed, bone-
marrow macrophages are responsible for clearing senescent
neutrophils by efferocytosis [99], and this process is defective
in the bone marrows of aged animals [51]. Since senescent
neutrophils are functionally distinct from fresh neutrophils in
terms of anti-microbial properties and inflammatory recruit-
ment [100], changes in the efficiency and timing of senescent
neutrophil clearing may drive aspects of observed defects in
neutrophils from aged organisms.

Dendritic cells
DCs represent the primary antigen-presenting cells of the innate
immune system, and are notably responsible for initiating a
primary T-lymphocyte response to non-self antigens [101]. They
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play a major role among innate immune cells as the major link
between the innate immune and adaptive immune responses
[101]. DCs are, in other words, the surveillance cells of innate
immunity, monitoring the presence of antigens, from pathogens
or tumors [101]. Generally, DCs can be divided into conventional
DCs (cDCs) and plasmacytoid DCs (pDCs) [102]. They are found
across tissues, and play key roles in the communication with
cells from the adaptive arm of the immune system (e.g. in the
thymus or lymphoid organs).

Aging transcriptomic landscape

Upon age-associated thymic involution, gene set-enrichment
analysis revealed that mouse thymic DCs show a moderate
but significant increase in proinflammatory gene expression
programs [103]. However, for both splenic and thymic DCs in
mice, transcriptomic studies identified relatively few age-related
transcriptional differences in mice [103,104].

A recent study of human peripheral blood cells captured
‘omic’ changes in circulating DCs with human aging, including
at the single cell RNA-seq level [105]. DCs from aged individuals
showed upregulation of interferon-stimulated genes and pro-
inflammatory cytokine, consistent with an increased inflamma-
tory phenotype of DCs with human aging [105]. Overrepresented
functional categories linked to upregulation with aging included
apoptosis and interferon gamma signaling [105]. Interestingly,
genes involved in DC antigen presentation (e.g. CLEC12A,
TXNIP), or self-tolerance (e.g. MALAT1, AHR) significantly
decreased with aging in circulating DCs [105], consistent with
decreased antigen-presenting ability. However, with age, MHCII
and costimulatory molecules were downregulated across DCs
subtypes [106]. Thus, based on transcriptional profiles, aged
human DCs seem to acquire a pro-inflammatory phenotype
while losing antigen-presenting ability.

Age-related functional decline

While the numbers and phenotype of DC subsets are broadly
unaffected in older subjects, their abilities to migrate and
process antigens are thought to be significantly compromised
[107]. Accumulating studies have shown age-related changes in
cDC and pDC function and often compare the two types. Aged
cDCs have a phenotype similar to those from younger subjects,
while pDCs seem to acquire decreased TLR 7 and 9 expression
[107–109]. Furthermore, cytokine secretion in aged-cDCs shows
systematically higher TNF-α and IL-6 secretion and lower
activation by PAMPs (e.g. Pam3Cys, flagellin, poly IC, lipoteioic
acid) [107]. In contrast, pDCs generally show an age-related
decrease in IFN-α production [107,110,111]. The mechanisms
delineating cDC–pDC interactions in the aging process will
deserve further exploration. DCs have been reported to have
a decreased ability to prime CD4+ T cells in older subjects [112].
However, whether or not the issue is due to dysfunctions in (i)
antigen presentation, (ii) antigen presentation response or (iii)
both remains unclear [112]. Tissue-specific responses may also
play a role in shaping DC phenotypes with aging. For instance,
while the population of cDC in the lymph nodes and spleen of
aged mice remained stable, lung DCs increased in numbers with
age [104]. Additionally, reconstitution of cDCs by bone marrow
precursors was higher in aged mice compared to young mice
[104]. In vitro experiments found that both young and aged
DC in general were similarly capable of both direct and cross
presentation of antigens [104].

Natural killer cells
Natural killer (NK) cells are cytotoxic innate lymphocytes that
also play a crucial part in the innate immune system. They are
activated by interferons or cytokines to defend against viruses
and potentially tumors [113]. Upon activation, they can then
specifically target infected or oncogenic cells for death.

Aging transcriptomic landscape

Although NK cells have not been as extensively studied
with organism aging, emerging evidence suggests that they
undergo significant changes which are consistent with immune
dysfunction [105,114]. Through a study of peripheral blood cells
in humans throughout aging, Zheng et al. [105] captured ‘omic’
changes in NK cells with human aging at the single cell level.
Indeed, they observed age-associated increases in circulating
NK cells, together with a reprogrammed immune landscape
with age [105]. For example, scRNA-seq analysis of NK cell-
status allowed them to distinguish circulating NKs in three
distinct immune states: the CD16low CD56bright subset [NK1],
the CD16high CD56dim CD57− low-cytotoxic subset [NK2] and the
CD16high CD56dim CD57+ late subset [NK3] [105]. Aged healthy
adults (>60 years) had decreased numbers of NK1 but expanded
NK2 and NK3 compartments compared to their young adult
counterparts, suggesting genomic reprogramming of these cells
with aging [105]. Interestingly, aged healthy adults exhibited
higher expression genes related to apoptotic responses to
lipopolysaccharide, apoptotic signaling and lower virus defense
responses [105]. Together, with aging, NK cells seem to exhibit
a heightened inflammatory state and show impediments in
antiviral response and activity [105]. However, further studies of
purified NK cells with aging will be needed to understand the
factors driving observed dysfunction.

Age-related functional decline

Much of NK cell activity relies on DC activation, as both types of
innate cells work in reciprocity across both innate and adaptive
immunity in virus control and tumor immunology [115]. Defects
of DCs in aged C57BL/6 mice cascades into failure to properly
activate NK cells with aging, thus leading to decreased ability to
clear tumor cells [115]. NK cells have been shown to demonstrate
tissue-specific immune responses associated with age-related
changes. For example, in older adults, the cytotoxicity of the
CD56low NK population significantly decreases, which is thought
to result from age-related defects in perforin mobilization to
the immune synapse [116–118]. It is interesting to note however,
that the CD56low NK cell population expands as the CD56hi NK
cell population [responsible for cytokine production] dwindles
during the aging process [118]. To note, these phenomena have
been mostly studied with aging in the periodontal region [119].
Overall, the impact of aging on functional phenotypes of NK
cells is only starting to be understood and will require further
investigation.

Conclusions and perspectives
Accumulating evidence has shown that innate immune cells
exhibit remodeling of their transcriptional programs, which is
likely to drive aspects of age-related dysfunction in many of their
key phenotypes (Figure 1). Immune modulation is a leading can-
didate in understanding the aging process. Interestingly, naked
mole rats, an extremely long-lived rodent model (∼30 years com-
pared to ∼3 years for laboratory mice) have a unique immune
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system that is distinct from the mice model [120]. Naked mole
rats seem to have a greater emphasis on innate immunity than
laboratory mice [120], consistent with the notion that the tuning
of innate immunity is key for healthy longevity. Although general
themes of age-related changes in innate immune cells ‘omic’
landscapes are consistent with the notion of inflamm-aging,
studies have shown relatively little overlap thus far (Tables 1 and
2), which warrants a systematic study including all necessary
covariates to understand the impact of aging on the innate
immune system.

Accumulating studies have shown that specific interventions
(e.g. exercise, dietary restriction, etc.) can exert pro-health and
pro-longevity effects. A key question is thus how these pro-
longevity interventions might modulate inflamm-aging pheno-
types. Interestingly, a recent study which profiled organs at the
single cell level in aging rats and in response to dietary restric-
tion [DR] found that DR can rescue dysfunction in macrophage
polarization and reverse immune cell infiltration in various
organs [89]. Furthermore, DR was associated to downregulation
of pathways related to immune response, inflammation and
response to stimuli (e.g. LPS, interleukins), and to upregulation
of pathways related to regeneration, response to growth fac-
tors and extracellular matrix [89]. Whereas aging tends to lead
to a pro-inflammatory ‘M1’-like phenotype of adipose tissue
macrophages [121,122], a recent study showed that exercise is
able to reverse this age-related pro-inflammatory skewing [123].
To note, exercise may both suppress the infiltration of M1-
like macrophages and promote reprogramming to a more ‘M2’
phenotype [124]. Both exercise and DR can modulate transduc-
tion from nutrient signaling pathways, thus promoting healthy
longevity. It will be key to understand how they may influ-
ence the development of inflamm-aging and immunosenes-
cence phenotypes.

Finally, although discussed studies have reported age-related
changes in innate immune cell processes, there is still little
known about how these changes are influenced by biological
sex. Indeed, both the adult mammalian immune system [80,125]
and the aging process [126] are sex-dimorphic, suggesting that
the study of inflamm-aging should be stratified as a function
of sex. Indeed, a pioneer study has revealed that peripheral
immune cells are differentially regulated with aging in men and
women [125]. Thus, to understand the impact of immune decline
on aging and to permit the development of broadly applicable
therapeutic strategies, it will be key to systematically include
sex a biological variable of interest in future functional genomic
studies of inflamm-aging.

Key Points
• Immune decline is a hallmark of aging.
• Aging associates with a state of chronic sterile inflam-

mation.
• Innate immune cells undergo widespread molecular

and functional remodeling with aging.
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