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In Europe, Borrelia garinii OspA serotype 4 has been isolated from the cerebrospinal fluid of patients but,
up to now, has never been identified among culture isolates from Ixodes ricinus ticks. This information raises
the question of whether OspA serotype 4 is transmitted by I. ricinus in nature. In the present study, I. ricinus
nymphs collected in an area of endemicity in southern Germany were allowed to feed on mice. Cultivation of
ear biopsy specimens showed that six of seven B. garinii-infected mice were infected by OspA serotype 4. In
contrast, very few B. garinii OspA serotype 4 organisms were isolated directly from the ticks which infected the
mice; most isolates were B. afzelii. The infected mice transmitted mainly OspA serotype 4 to xenodiagnostic

ticks, preferentially in combination with B. afzelii.

Borrelia burgdorferi sensu lato is the agent that causes Lyme
borreliosis, a multisystemic disorder involving the skin, heart,
joints, and nervous system in humans (23). Among B. burgdor-
feri isolates from different biological sources, 10 genospecies
have been described (1, 2, 4, 13-16, 19, 25). Among them,
three species—B. burgdorferi sensu stricto, B. afzelii, and B.
garinii—are recognized as being pathogenic for humans. In
Europe, the tick Ixodes ricinus is the main vector of these
pathogens to animals and humans (11).

Wilske et al. (27) defined seven outer surface protein A
(OspA) serotypes of B. burgdorferi sensu lato. These serotypes
correlated well with the three delineated most frequent geno-
species: serotype 1 corresponds to B. burgdorferi sensu stricto,
serotype 2 corresponds to B. afzelii, and serotypes 3 to 7 cor-
respond to B. garinii. This considerable heterogeneity among
B. garinii isolates was confirmed on a genetic basis (26). Strik-
ingly, B. garinii serotype 4 isolates have been cultivated from
cerebrospinal fluid (CSF) from patients in Germany, The
Netherlands, Denmark, and Slovenia and even have been cul-
tivated from CSF more frequently than other serotypes but
have never been isolated from ticks (24, 27, 28). Therefore, we
determined whether I ricinus can transmit B. garinii OspA
serotype 4 to mice and whether mice can infect I. ricinus with
this serotype.

1. ricinus nymphs were collected by flagging vegetation in the
Munich area (Germany). One portion of these ticks was used
to evaluate the B. burgdorferi infection rate. Each nymph was
cut into two pieces. One half was examined by immunofluores-
cence (IF) using a fluorescein isothiocyanate-conjugated poly-
clonal antibody which was prepared from a pool of Lyme
borreliosis patient sera and which detects all Borrelia species
(6); the other half was used for Borrelia isolation (6). The other
portion of the field-collected nymphs was used to challenge 8-
week-old female BALB/c mice. Challenge nymphs (14 nymphs/
mouse) were placed in a capsule on the back of the mice and
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collected 5 to 6 days later, after natural detachment. Each
derived adult tick was placed into a tube containing BSK II
medium (22), incubated at 34°C, and examined by dark-field
microscopy for 2 months. B. burgdorferi infection in mice was
monitored by spirochete isolation from ear biopsy specimens 1
month after the infectious tick bite and by xenodiagnosis (5).
For xenodiagnosis, infection-free I ricinus larvae from our
laboratory colony (8) were placed on the head of each mouse.
Derived unfed nymphs were prepared for B. burgdorferi isola-
tion and IF (6).

PCR and restriction fragment length polymorphism (RFLP)
analyses were used for the identification of Borrelia species
(18). The pellet from 1 ml of initial culture containing tick or
ear biopsy specimen was used for PCR. The variable intergenic
spacer between tandemly repeated 23S (r77)-5S (r7f) ribosomal
genes of B. burgdorferi sensu lato was used as a template for
amplification. The PCR products were analyzed by the RFLP
technique using the Msel restriction endonuclease to identify
the genospecies of B. burgdorferi sensu lato. Sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and Western blot
analysis were performed (9). Monoclonal antibodies were used
for B. garinii serotyping (27). In addition, restriction analysis of
ospA amplicons was applied to isolates which were not sero-
type 4 (K. Trebesius, C. Teufel, V. Fingerle, and B. Wilske,
Abstr. Microbiology 2000, poster 15.P.14.15, p. 162, 2000).

Twenty-one field-collected nymphs were examined: Two
nymphs were found infected by both IF and cultivation, and
two additional ticks were found infected either by IF or by
cultivation (infection rate: 4 of 21, or 19%). Three isolates
were obtained from these four infected ticks. All three Borrelia
isolates were identified as B. afzelii.

B. burgdorferi isolates were obtained from 19 out of 22 mice
challenged by field-collected nymphs. These mice were found
to be infected by B. burgdorferi sensu stricto (n = 2), B. afzelii
(n =9), and B. garinii (n = 7). One isolate could not be iden-
tified by RFLP analysis. Characterization of isolates from B.
garinii-infected mice showed that mice 1 through 6 were in-
fected by serotype 4, whereas mouse 7 was infected by a mix-
ture of serotypes 5 and 6. A total of 22 isolates (including 1
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TABLE 1. Determination of Borrelia isolates from ticks which fed on mice infected by B. garinii
Challenge ticks Xenodiagnostic ticks
Mouse Isréf_(:';;lgf No. of: No. of isolates of?: No. of IF-positive No. of: No. of isolates of:
Isolates Tubes* Bg Ba Bg + Ba ticks* Isolates Tubes? Bg® Ba Bg + Ba
1 4 4 14 0 4 0 8 2 3 1 1 0
2 4 1 11 0 1 0 5 5 5 3 0 2
3 4 3 12 1 2 0 8 1 1 0 1 0
4 4 5 9 0 5 0 9 2 2 1 1 0
5 4 8 13 0 8 0 6 4 4 4 0 0
6 4 1 13 0 0 1 3 5 6 5 0 0
7 5+6 6 9 6 0 0 0 0 1

¢ Each culture tube was inoculated with one challenge tick.

> Bg, B. garinii; Ba, B. afzelii.

¢ Ten ticks were tested.

@ Each culture tube was inoculated with five xenodiagnostic ticks.

¢ Results shown in bold indicate that the isolates reacted with L32 1G3, a monoclonal antibody against B. garinii OspA serotype 4.

/1dentified by RFLP analysis in one culture tube with nonmotile spirochetes.

isolate with nonmotile spirochetes) were recovered from chal-
lenge ticks which fed on the six B. garinii serotype 4-infected
mice. B. afzelii clearly dominated among these isolates,
whereas B. garinii was rare (Table 1). In contrast, six B. garinii
isolates were obtained from challenge ticks which fed on
mouse 7: three were serotype 5, two were serotype 6, and one
was not analyzed. Some of the challenge ticks did not molt.

All mice infected with B. garinii serotype 4 transmitted spi-
rochetes to xenodiagnostic ticks, as observed by IF (Table 1).
However, no isolate was recovered from 60 xenodiagnostic
ticks which fed on B. garinii serotype 4-infected mice when the
ticks were incubated individually in tubes. This result was sur-
prising, since between 30 and 90% of these ticks were found by
IF to be infected (Table 1). Therefore, we repeated the isola-
tion using the rest of the xenodiagnostic ticks, but we inocu-
lated each tube with five ticks instead of one. Here, isolates
were obtained from ticks which fed on all B. garinii serotype 4-
infected mice. B. garinii, B. afzelii, and a mixture of both species
were observed (Table 1). All B. garinii isolates were serotype 4.
Mouse 7 did not transmit spirochetes to xenodiagnostic ticks,
as observed by IF, and no isolate could be obtained from these
ticks when they were incubated individually in BSK II medium
or when five ticks were incubated in a tube.

In Europe, B. burgdorferi sensu stricto (13), B. garinii (1), and
B. afzelii (2) have been frequently isolated from ticks and
reservoir hosts and are associated with Lyme borreliosis. In the
present study, these three genospecies were transmitted to
mice by nymphs. Characterization of the isolates from B. gari-
nii-infected mice demonstrated that six out of seven mice were
infected by serotype 4, meaning that serotype 4 was the main
B. garinii-associated serotype transmitted to mice by field-col-
lected nymphs. This result is interesting, since serotype 4 had
never been cultured directly from I ricinus ticks before (27,
28), although sequences of OspA serotype 4 had been identi-
fied in field-collected ticks (3). One explanation for the fact
that this serotype had never been isolated from ticks before is
that spirochetes of B. garinii serotype 4 may be present in low
numbers in ticks. In fact, the success of isolation may depend
on the number of spirochetes present in ticks (6). This notion
may explain why we did not isolate B. garinii serotype 4 when
we incubated challenge and xenodiagnostic ticks individually in
BSK II medium, whereas successful isolation occurred when

more than one tick was incubated in a tube. The other expla-
nation is that serotype 4 may be present in mixed infections in
ticks in nature and is overgrown in cultures by other serotypes,
possibly those of B. afzelii, which can be isolated easily from
ticks (6).

Interestingly, in the present study, in xenodiagnostic ticks
which fed on serotype 4-infected mice, B. garinii serotype 4 was
frequently associated with B. afzelii. In contrast, B. garinii se-
rotype 4 was never associated with B. afzelii in specimens ob-
tained from mouse tissue. In order to see if this phenomenon
could be reproduced, we used xenodiagnostic ticks which fed
on mice 1 to 5 and placed them after molting on 10 mice (two
mice for each group). Ear biopsy cultivation allowed Borrelia
isolation from 5 out of 10 mice. Only B. garinii serotype 4 was
isolated from the mice, although B. afzelii was present in some
of the xenodiagnostic ticks used to challenge these mice. This
result may indicate that serotype 4 is very invasive in verte-
brates, as has been shown recently for some B. burgdorferi
sensu stricto clones (21), and/or that the greater serum resis-
tance of serotype 4 may facilitate dissemination of this Borrelia
serotype into mice (24). OspA serotype 4 strains are nearly
identical in their OspC phenotype and ospC sequences as well
as their plasmid profiles. Also, the otherwise very heteroge-
neous upstream homology box RFLP pattern is highly similar
(12, 17, 28). This information is an indication that OspA
serotype 4 is a recently emerged clone with potentially higher
virulence than that of other serotypes. Interestingly, we have
found a double infection of the salivary glands of a tick re-
moved from a child who developed multiple erythema migrans
(V. Fingerle and B. Wilske, unpublished results). A CSF
isolate from a patient with neuroborreliosis contained both
B. afzelii and B. garinii OspA serotype 4 (28). These are
indications that B. garinii OspA serotype 4 may be prefer-
entially cotransmitted with B. afzelii not only to mice but also
to humans.

In nature, specific maintenance cycles have been described
for B. afzelii and small mammals (10). However, nonspecific
maintenance cycles involving small mammals and B. garinii
have been described in Russia (7) and eastern parts of Europe
(20; G. Khanakah et al., Abstr. VI Int. Conf. Lyme Borreliosis,
abstr. PO77W., 1994). In view of our results showing that
B. garinii serotype 4 easily infects mice and xenodiagnostic
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ticks, it is possible that serotype 4 is the serotype of B. garinii
circulating among small mammals and ticks in Russia and
eastern parts of Europe.

Two groups of B. garinii-infected mice could be distin-
guished: one group (mice 1 through 6), infected by serotype 4,
easily infected xenodiagnostic ticks (tick infection rate: 30 to
90%), and one group (mouse 7), infected by serotypes 5 and
6, did not transmit these serotypes to ticks. Interestingly, al-
though B. garinii-infected ticks are difficult to obtain from mice
infected in the laboratory (5), this does not appear to be the
case for B. garinii serotype 4.

In conclusion, we demonstrated that B. garinii serotype 4 can
be transmitted to mice through the bites of field-collected
I ricinus and that it is often associated with B. afzelii in ticks.
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