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Systematic decomposition of sequence
determinants governing CRISPR/Cas9 specificity
Rongjie Fu1,8, Wei He1,8, Jinzhuang Dou1, Oscar D. Villarreal1, Ella Bedford1, Helen Wang1, Connie Hou1,
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Han Xu 1,3,7✉

The specificity of CRISPR/Cas9 genome editing is largely determined by the sequences of

guide RNA (gRNA) and the targeted DNA, yet the sequence-dependent rules underlying off-

target effects are not fully understood. To systematically explore the sequence determinants

governing CRISPR/Cas9 specificity, here we describe a dual-target system to measure the

relative cleavage rate between off- and on-target sequences (off-on ratios) of 1902 gRNAs on

13,314 synthetic target sequences, and reveal a set of sequence rules involving 2 factors in

off-targeting: 1) a guide-intrinsic mismatch tolerance (GMT) independent of the mismatch

context; 2) an “epistasis-like” combinatorial effect of multiple mismatches, which are asso-

ciated with the free-energy landscape in R-loop formation and are explainable by a multi-

state kinetic model. These sequence rules lead to the development of MOFF, a model-based

predictor of Cas9-mediated off-target effects. Moreover, the “epistasis-like” combinatorial

effect suggests a strategy of allele-specific genome editing using mismatched guides. With

the aid of MOFF prediction, this strategy significantly improves the selectivity and expands

the application domain of Cas9-based allele-specific editing, as tested in a high-throughput

allele-editing screen on 18 cancer hotspot mutations.
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CRISPR/Cas9 technology has been widely used for genome
editing and is currently being tested as a therapeutic in
clinical trials1–3. However, the risk of Cas9 cleaving

sequences with high similarity to the targeted DNA has raised
critical concerns in its scientific and clinical applications4–8. Thus,
it is crucial to diminish off-target effects in CRISPR/Cas9 genome
editing.

A number of experimental techniques, including high-throughput
screens9–11 and various genome-wide detection approaches12–19,
have been developed to quantitatively assess the off-target effects.
These approaches have facilitated the exploration of rules governing
the specificity of CRISPR/Cas9, and it is widely accepted that the
off-target cleavage by Cas9 is dependent on the positions and
nucleotide contexts of mismatches between crRNA and targeted
protospacer9,11,20. Nevertheless, these mismatch-dependent rules
only partially account for the observed off-target effects. For
example, recent studies revealed a guide-intrinsic mismatch toler-
ance (GMT) in addition to the impact of specific mismatches21,22.
While the observations of GMT suggest the possibility to identify
the highly specific gRNA regardless of genetic context, the sequence
determinants underlying GMT is unclear. Over 95% of the detected
genomic off-target sites harbor two or more mismatches with
respect to the crRNA sequences23, but the combinatorial effect of
multiple mismatches is not well understood due to the lack
of adequate experimental data that allow for quantitative separation
of the combinatorial effect from that of individual mismatches.

Although experimental techniques are capable of quantifying
Cas9 off-target activities, in silico prediction of the off-target
effects remains the most efficient and cost-effective method for
designing and optimizing CRISPR-based applications. The
advancement of machine learning approaches has fueled the
progressive improvement of off-target prediction over the past
several years24–29. Moreover, biophysical modeling has provided
new insights into the prediction of off-targeting from a bottom-
up perspective30–32. Notwithstanding this progress, the power for
computational prediction of CRISPR/Cas9 off-target effects
remains limited as large-scale training datasets covering more
gRNAs and an enhanced understanding of sequence-dependent
rules are needed.

In the present study, we devise a high-throughput synthetic
system with a dual-target design to measure the relative cleavage
rate between off- and on-target sequences (off-on ratios) of
~2,000 gRNAs. This system shows lower variance among
experimental replicates and better assessment of the genomic off-
targets compared to the previous single-target system. The large
number of gRNAs and customized library design facilitate the
mining of a more comprehensive set of rules underlying CRISPR/
Cas9 specificity, which lead to the development of an improved
off-target prediction tool and an optimized strategy for allele-
specific genome editing.

Results
High-throughput assessment of off-on ratios using a synthetic
dual-target system. Recently, paired gRNA-target systems have
been developed for the high-throughput assessment of CRISPR/
Cas9 genome editing outcomes33–35. These systems include a gRNA
expression cassette together with a target sequence flanked by
barcodes that are uniquely mapped to the gRNA sequence (Fig. 1a).
Combined with high-throughput oligonucleotide synthesis and
lentiviral delivery, the variable context of target sequences allows
flexible design of the experiments to detect Cas9-mediated editing
events associated with a large number of gRNAs. To facilitate a
direct comparison of the off- and on-target effects, we modified the
paired gRNA-target system by introducing a dual-target sequence
that contains two 23-bp PAM-endowed target sequences arranged

in tandem, corresponding to an off-target (left) and an on-target
(right). These two targets are separated by an optimized 15-nt linker
sequence and are surrounded by a 10-nt barcode 1 at the 5′ end and
a 15-nt barcode 2 at the 3′ end (Fig. 1b). Since the off- and on-
targets are integrated to the same genomic locus and are PCR-
amplified together, the on-target cleavage rate acts as an internal
control for the normalization against confounding factors in the
experiment. Compared to the single-target design without the use of
internal normalizations, the dual-target design is expected to reduce
the experimental variations and biases for accurate measurement of
off-on ratios.

To explore the editing outcomes mediated by different cleavage
events at almost identical tandem targets, we designed control
dual-target sequences to represent four combinations of cleavage
events (no cleavage, left, right, and both), where the cleavage can
be turned off at a specific target by the replacement of the “NGG”
PAM sequences with “NTT” (Fig. 1c). We first tested two gRNAs
associated with distinct repair mechanisms upon double-strand
breaks (Fig. 1d and Supplementary Fig. 1). In addition to
anticipated small indels, large deletions (>30-nt) are enriched
when cleavage occurs at both targets (NGG+NGG) or the left
target alone (NGG+NTT). The latter is likely due to the
similarity of the two target sequences that induces long-range
resection via microhomology-mediated end joining (MMEJ).
These observations are consistent between the two gRNAs,
suggesting a general cleavage-editing model as demonstrated in
Fig. 1e. We further extended the analysis on 276 control gRNA-
target pairs using a high-throughput pooled screen. Computa-
tional analysis of the Cas9-mediated mutational profiles at the
control sequences rendered a matrix that represents the
probability of editing outcomes conditional on cleavage types,
as well as the background noise rates measured from the “no
cleavage” sequences (Fig. 1f). This matrix enabled subsequent
inference of the cleavage frequency and off-on ratio from
the observation of editing outcomes (see Methods section
for details).

To evaluate the dual-target approach, we designed a library
that includes 35 benchmark gRNAs collected from previous
in vitro or in vivo studies, corresponding to 296 reported
off-target sites (positive controls) and 295 similar genomic
sequences that are never detected to be off-targets (negative
controls)1,12,17,36. Additionally, the library includes 328 random
gRNAs corresponding to 2261 off-targets harboring 1–3
mismatches (Supplementary Data 1). For a systematic compar-
ison, we also generated a single-target library (Fig. 1a and
Supplementary Data 2) that includes the same sets of off-
and on-targets. Both lentiviral libraries were transduced
to HEK293T cells expressing doxycycline-inducible Cas9
(HEK293T-iCas9) for the assessment of off-on ratios, following
almost identical experimental configurations (Supplementary
Fig. 2). As expected, the dual-target system significantly
improved the correlations of the measured off-on ratios between
biological replicates or different barcode sets (Fig. 1g and
Supplementary Fig. 3). Comparison of the positive and negative
control targets suggests a dynamic range of ~0.02–1.0 in the
measurement of off-on ratios for the dual-target system
(Fig. 1h). On the positive controls, the off-on ratios detected
by the dual-target system showed higher consistency with the
measures from in vitro GUIDE-seq12 (Fig. 1i and Supplemen-
tary Fig. 4a) and an in vivo study on mouse embryos using
whole-genome sequencing (WGS)36 (Fig. 1j and Supplementary
Fig. 4b) as compared to the single-target system. Overall, these
head-to-head comparisons confirmed the rationale and advan-
tage of the dual-target system that improves the accuracy of off-
on ratio measurements via internal normalization using on-
target controls.
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With the proven robustness of our system, we measured the off-
on ratios of 1902 gRNAs on 13,314 synthetic target sequences
(Supplementary Data 1). We designed 7 off-target sequences for
each gRNA, including 3 targets with 1 mismatch (1-MM), 3 with 2
mismatches (2-MM), and 1 with 3 mismatches (3-MM). The
mismatches in the 2-MM and 3-MM sequences are the combina-
tions of the mismatches in 1-MM sequences, as exemplified in
Fig. 1k. These settings allow systematic decomposition of the
estimated off-on ratios into single-mismatch effect, combinatorial
effect, and GMT.

Sequence determinants of guide-intrinsic mismatch tolerance.
To confirm the existence of the GMT effect, we first estimated the
indel rates of 6 gRNAs at synthetic targets harboring 0 to 6
mismatches (Supplementary Data 3). While the on-target indel
rates are largely consistent for all the gRNAs, we found that 4
gRNAs were associated with high indel rates at the 1-MM
sequences and the other 2 showed obvious mismatch intolerance
(Fig. 2a and Supplementary Fig. 5). This guide-intrinsic effect was
also observed at the 2-MM and 3-MM sequences regardless of
various mismatch contexts (Fig. 2b). To quantitatively estimate

Fig. 1 Assessment of off-on ratios using a synthetic dual-target system. a, b A schematic representation of paired gRNA-target design using a single-
target or b dual-target sequence. c The design of control dual-target sequences corresponding to 4 cleavage types, where the left and right protospacers
are identical and the cleavage events are turned on or off by “NGG” or “NTT” PAM sequences, respectively. d Bar charts showing the fractions of five types
of editing outcomes in relation to the 4 cleavage types. Left: a gRNA associated with dominating non-homologous end joining (NHEJ); right: a gRNA
associated with dominating microhomology-mediated end joining (MMEJ), where the microhomology sequences are highlighted in red rectangles. e A
demonstration of the cleavage-editing model of the dual-target system. f A heatmap showing the cleavage-editing transition matrix computed from
mutational profiles of 276 control dual-target sequences. g Scatter plots showing the correlations of off-on ratios between biological replicates using single-
or dual-target systems. h A box plot showing the distributions of the off-on ratios estimated by the dual-target system, corresponding to the 32 filtered
benchmark gRNAs and 480 target sequences. Positive: reported off-target sequences; Negative: unreported genomic sequences with <5 mismatches
relative to crRNA. The data represent n= 204 positive, 213 negative (in vitro), and n= 66 positive, 52 negative (in vivo) gRNA-target pairs. The box plot
displays a median line, interquartile range boxes and min to max whiskers. The p-values were calculated using two-tailed Manny–Whitney U test.
i, j Scatter plots showing the correlations between the off-on ratios estimated from the dual-target system and i GUIDE-seq or j WGS, at the reported
genomic off-target sequences. The p-values were calculated using Pearson correlation test. The shadow represents the 95% confidence interval. k A
demonstration of the off-target sequence design in the high-throughput experiments using the dual-target synthetic system, where the mismatches in the
2-MM and 3-MM sequences are the combinations of the mismatches in the 1-MM sequences. Source data for Fig. 1d, g–j are provided in the Source
Data file.
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the GMT effects of the gRNAs in the large-scale dataset, we used
a gradient descent algorithm to decompose the off-on ratios at the
1-MM sequences into (i) mismatch-dependent effects determined
by the position and nucleotide context of the mismatches, and (ii)
the GMT effects independent of the mismatch contexts (see
Methods section for details and Supplementary Data 4). The
estimated mismatch-dependent effect, as demonstrated by a

matrix in Fig. 2c, is highly consistent with a previous report based
on CRISPR/Cas9 functional screens9 (r= 0.86, Supplementary
Fig. 6), supporting the robustness of the decomposition.

Comparing the nucleotide frequency of the protospacer
sequences associated with high or low GMT effect, we observed
an enrichment of guanine and depletion of thymine in the high-
GMT protospacers (Fig. 2d). Unlike the on-target activity that is

Fig. 2 The guide-intrinsic mismatch tolerance (GMT) and its underlying biophysical mechanism. a The mutation rates at 1-mismatch target sequences of
two example gRNAs that are associated with high GMT (left) and low GMT (right). Each dot corresponds to a specific mismatched target. The red dashed
line represents the mutation rate at perfectly matched target. b A box plot showing the distributions of off-on ratios of 6 gRNAs at synthetic single targets
harboring 1-, 2-, or 3-mismatches. The data represent n= 66 1-MM, 2,079 2-MM, and 100 3-MM gRNA-target pairs for each gRNA. The box plot displays
a median line, interquartile range boxes and min to max whiskers. c A heatmap showing the mismatch-dependent effect conditioned on the position and
nucleotide context of the mismatch. rX:dY represents a mismatch where a nucleotide X in crRNA is paired with a nucleotide Y in the complementary target
DNA. d A sequence logo demonstrating the log-odds ratios of nucleotide frequency between gRNAs with high GMT (top 25%) and low GMT (bottom
25%). e Performance comparison of the mononucleotide and dinucleotide models in the prediction of GMT, with various numbers of convolutional kernels.
Each dot represents an iteration of 10-fold cross-validation. *p<0.05, **p < 0.01, ***p < 0.001. The p-values were calculated using two-tailed t-test. Data
(n= 10) are presented as mean values ±SD. The exact p-values from left to right are: 1.8e-04, 9.6e-03, 0.011, 0.017, 0.027. f A dot plot showing the
specificity of the gRNAs predicted to be of high GMT (top 25%, n= 15) or low GMT (bottom 25%, n= 15), across a panel of Cas9 variants. The gRNA
specificity is measured as the ratio of genome-wide off-target read counts to on-target read counts in TTISS experiments18. **p < 0.01, ***p < 0.001. The
p-values were calculated using two-tailed Manny-Whitney U test. The exact p-values from left to right are: 4.72e-05,1.68e-05, 3.32e-05, 1.22e-04, 9.75e-
05, 6.93e-04, 6.93e-04, 0.019, 0.08. g The average free-energy landscapes of the gRNAs are associated with high GMT (top 25%) or low GMT (bottom
25%). The shadows represent standard error for 95% confidence interval. h A scatter plot showing the correlation between the fitted dinucleotide
parameters in the prediction model and the differences of base-stacking energy between DNA-DNA and RNA-DNA hybridizations31. The dinucleotide
parameters reflect the contributions of dinucleotides to GMT prediction. To avoid confounded interpretation, the parameters shown in the plot were fitted
using a single kernel model. The p-value was calculated using Pearson correlation test. i A schematic plot illustrating the kinetic transition of the states
during Cas9-mediated target editing. j An illustration of the free-energy landscapes of a high-GMT gRNA (red) and a low-GMT gRNA (green) at an on-
target (top panel) or a 1-MM off-target (bottom panel) sites. The mismatch introduces an energy barrier (ΔGm) during R-loop formation. The probability of
overcoming the energy barrier is determined by its size relative to the barrier to unbinding, ΔGmax. The stop symbol represents the repressed direction of
the reaction. The arrow represents the direction of the reaction. Source data for Fig. 2c–h are provided in the Source Data file.
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mainly dependent on the context of the nucleotides proximal to
PAM37, the GMT effect relies on the sequences in both the seed
and non-seed regions. Further analysis showed only a moderate
correlation between the on-target activity and the GMT effect
(r= 0.44, Supplementary Fig. 7), suggesting that it is possible to
select gRNAs that are associated with both high on-target activity
and low GMT. To predict GMT from a sequence, we tested two
convolutional neural network (CNN) regression models corre-
sponding to mono- and di-nucleotide kernels (Supplementary
Fig. 8). Cross-validation showed that the dinucleotide model
achieved the optimal performance (Fig. 2e). Tested on indepen-
dent TTISS18 and CHANGE-seq19 datasets, the predicted GMT
score is significantly associated with the specificity of the gRNAs
on the vast majority of Cas9 variants (Fig. 2f and Supplementary
Fig. 9).

Several studies have confirmed that R-loop formation is
required for CRISPR/Cas9-mediated DNA cleavage38,39. In
principle, the progression of R-loop formation can be driven by
free-energy transactions involved in substituting DNA-DNA
duplex interactions for RNA-DNA hybrid interactions in the
context of the Cas9 protein. The sequence dependence of this free
energy should be largely set by the base-pairing energies,
particularly by the base-stacking energy30–32. Comparing the
GMT effect with the difference of cumulative base-stacking
energy between DNA-DNA and RNA-DNA hybridization, we
found that the high-GMT and low-GMT gRNAs are associated
with distinct free-energy landscapes (Fig. 2g). Moreover, we
observed a strong correlation between the dinucleotide-specific
base-stacking energy and the weights of dinucleotides that
contribute to GMT prediction (Fig. 2h), suggesting that the
free-energy change accounts for a majority of sequence-
dependent GMT effect. Next, we asked why those high-GMT
gRNAs are mismatch tolerant. We considered a recent kinetic
model in which the process of Cas9-mediated cleavage is a
sequential transition among the states of unbinding, PAM
recognition, R-loop formation, and cleavage40 (Fig. 2i). A
mismatch causes an energy barrier that could halt R-loop
progression, and the probability of unbinding before cleavage is
determined by the relative height (4Gmax) of the kinetic barriers.
If 4Gmax< 0, the free-energy barrier to cleavage is lower than that
to unbinding, and cleavage is the most likely outcome; if
4Gmax> 0, the free-energy barrier to cleavage is higher than that
to unbinding, the R-loop formation is kinetically blocked, and
unbinding is the most likely outcome. As illustrated in Fig. 2j, the
difference of free-energy landscapes intrinsic to high-GMT or
low-GMT gRNAs leads to different levels of 4Gmax, thus
resulting in a high or low probability of reaching the final
cleavage state, respectively.

Combinatorial effect of multiple mismatches. In a simplified
theoretical model, the combinatorial effect of two or more mis-
matches is assumed to be “marginally independent”9. That is, the
tolerance to a combination of mismatches, in terms of off-on
ratio, is taken to equal the multiplied tolerances for the individual
mismatches. To test this model, we compared the observed off-on
ratios of 2-MM targets to the expected off-on ratios computed
from 1-MM targets. The marginally independent model provides
an upper bound of the combinatorial effects, but many combi-
nations are associated with much lower off-on ratios (Fig. 3a),
suggesting an “epistasis-like” effect. Consistently, the CFD score9,
a benchmark method based on the marginal independence
model, overestimates the off-target effects at genomic targets
harboring multiple mismatches (Fig. 3b). The “epistasis-like”
combinatorial effect is explainable by the above-mentioned
kinetic model40, where the combination of two tolerated

mismatches results in a higher energy barrier that blocks R-loop
progression (Fig. 3c).

To quantitatively model the combinatorial effect, we intro-
duced a parameter δij to represent the ratio of the observed and
expected effects when two mismatches occur at the ith and the jth
nucleotide with respect to the PAM. A smaller value of δij
indicates a stronger “epistasis-like” effect. The maximum like-
lihood estimates of δij are shown in a heatmap in Fig. 3d.
Additionally, we computed a relative co-occurrence score (RCS)
that represents the observed frequency of two mismatches relative
to random expectation, based on 96,555 genomic off-target sites
detected by CHANGE-seq19 (Fig. 3e). Cross-referencing δij and
RCS, we derived three reproducible rules of the combinatorial
effect. First, the combinatorial factor δij is smaller when
both mismatches occur in the seed region (<10-nt from PAM)
and is greater when one of the mismatches occurs at the PAM-
distal 19th or 20th nucleotide. Second, the “epistasis-like” effect is
dependent on the distance between the two mismatches,
where a minimal δij is observed when the distance is between 1
and 6 (Fig. 3f). Third, a greater δij is associated with adjacent
mismatches (distance= 0) that correspond to a 2-nt bubble in
RNA-DNA hybridization, as compared to two separated
proximal bubbles of 1-nt in size. Of note, all three revealed rules
can be recapitulated using the kinetic model, suggesting an
underlying biophysical mechanism (Fig. 3g). In extension to the
third rule, we further asked if the number of bubbles is associated
with the combinatorial effect given a fixed number of mis-
matches. We examined the genomic sequences harboring 4–6
mismatches with respect to 109 gRNAs in the CHANGE-seq
dataset19 and found that the sequences with a smaller number of
bubbles are more likely to be detected as off-target sites (Fig. 3h
and Supplementary Fig. 10). Consistently, those sequences with
fewer bubbles are associated with lower energy barriers computed
from the cumulative dinucleotide base-stacking energy changes,
providing a biophysical explanation of the “bubble rule” (Fig. 3i).

Predicting off-target effect and guide specificity with MOFF.
With the observations of GMT and the combinatorial effect of
multiple mismatches, we sought to combine these sequence-
dependent rules for in silico CRISPR/Cas9 off-target evaluation.
We developed MOFF, a model-based off-target predictor that
includes three components corresponding to the multiplication of
individual mismatch effect (IME), the combinatorial effect (CE),
and the GMT effect (Fig. 4a). Given a gRNA and an off-target
sequence, we defined a MOFF-target score to be the logarithm of
the expected off-on ratio as follows:

SMOFF ¼ ∑
k

i¼1
log si

� �þ 2
k
∑
k

i¼1
∑
i

j¼1
log δij

� �
þ k log ðsGMTÞ

where k is the number of mismatches, si is the effect of the ith
mismatch computed from the matrix in Fig. 2c, δij is the pairwise
combinatorial effect with respect to the positions of the ith and
jth mismatches as demonstrated in Fig. 3d, and sGMT is the GMT
effect estimated from the dinucleotide CNN regression model (see
Methods section for a detailed explanation of MOFF-target
score). To facilitate the genome-wide assessment of the specificity
of a given gRNA, we also defined a MOFF-aggregate score which
is the logarithm of the sum of predicted off-on ratios for all
genomic sequences harboring up to six mismatches.

We evaluated the performance of MOFF-target and MOFF-
aggregate using three independent datasets generated by the
platforms of GUIDE-seq12, TTISS18, and CHANGE-seq19. We
reasoned that the classification of off-target and untargeted sites is
highly dependent on the sensitivity of each platform, where the
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off-target effects take continuous values that may differ by several
orders of magnitude. Thus, we adopted the Spearman correlation
in log-scale for quantitative evaluations. We compared the
performance of MOFF-target and MOFF-aggregate to 5 off-
target prediction methods, including the benchmark CFD score9

and its improved version Elevation24, two recent deep learning-

based methods CNN_std27 and CRISPR-Net29, and an energy-
based model CRISPRoff31 (Fig. 4b-c). Among them, three
machine learning-based methods (Elevation, CNN_std, and
CRISPR-Net) achieved good predictive power on their training
dataset generated by GUIDE-seq, but the performances degraded
when tested on datasets from the other two platforms, suggesting

Fig. 3 The combinatorial effect of multiple mismatches. a A scatter plot showing the “epistasis-like” combinatorial effect of two mismatches. Each dot
corresponds to a 2-MM target sequence. X-axis: the expected off-on ratio of the 2-MM target based on the marginal independence model. Y-axis: the
observed off-on ratio at the 2-MM target. The red dashed line represents X= Y. b A box plot comparing the distributions of observed off-on ratios and
predicted off-on ratios by CFD. Data were retrieved from published CHANGE-seq dataset on 109 gRNAs and 96,555 off-target sites19. ***p < 0.001.
The data represent n= 1948 <4-MM, 11,893 4-MM, 34,709 5-MM, and 71,774 6-MM gRNA-target pairs in CHANGE-seq dataset. The p-values were
calculated using two-tailed Manny–Whitney U test. All the p-values are <1.0e-06. The box plot displays a median line, interquartile range boxes, and min to
max whiskers. c An illustration of the free-energy landscapes at target sequences with tolerated single mismatches: mA and mB (upper and middle panels),
as compared to the landscape at the sequence with the combination of these two mismatches (bottom panel). The red stop symbol represents the
repressed direction of the reaction. The arrow represents the direction of the reaction. d, e Heatmaps showing d the position-dependent combinatorial
effect (δij) of two mismatches, and e relative co-occurrence score (RCS) that represents the observed frequency of two mismatches relative to random
expectation at off-target sites detected by CHANGE-seq. f A box plot showing the distributions of combinatorial effects conditioned on the distance
between two mismatches. A distance of zero corresponds to adjacent mismatches that form a bubble of 2-nt in size. The data represent n= 19, 18, 17, 16,
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, and 1 situations where the distance between two mismatches is from 0 to 18. The box plot displays a median line,
interquartile range boxes, and min to max whiskers. g A heatmap showing the expected combinatorial effect derived from the multi-state kinetic model40.
For illustration we here show the case where the gain in energy due to PAM binding is taken to be 5 kBT, the gain per correctly matched hybrid base pair
is 0.25 kBT, and the cost of a mismatch is 4 kBT if it is isolated, but only 3 kBT if it is added to an existing bubble. h A bar chart showing the percentage of
off-target sites detected by CHANGE-seq. The off-target sequences are associated with six mismatches and are categorized based on the number of
bubbles in DNA-RNA hybridization. i A box plot showing the distributions of cumulative energy barriers corresponding to 6-MM target sequences
categorized based on the number of bubbles. The distributions were estimated from 1,000,000 random gRNA-target pairs, n= 91, 4894, 50,342, 171,587,
208,612, and 76,779 gRNA-target pairs that harbor 1–6 bubbles. The energy barriers were computed based on dinucleotide stacking energy parameters31.
The box plot displays a median line, interquartile range boxes and min to max whiskers. Source data for Fig. 3a, b, d–h are provided in the Source Data file.
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Fig. 4 Prediction of off-target effect and gRNA specificity with MOFF. a A schematic representation of the workflow of MOFF-target. b, c Comparison of
the performance of b MOFF-target and c MOFF-aggregate to other methods in the prediction of b off-target effect at a specific genomic locus, or
c genome-wide gRNA specificity defined as the total read counts at the off-target sites relative to the on-target read counts. The performance is measured
by the Spearman correlation between the predicted and observed values at a log scale. See Methods section for details of method comparison. *: methods
trained on the GUIDE-seq dataset. d 2408 gRNAs targeting non-essential genes70 in the Avana library were grouped based on MOFF-aggregate scores.
The box plot shows the distributions of average gRNA depletion (log-fold change, LFC) in viability screens across 342 cancer cell lines with respect to each
group of gRNAs, n= 59, 103, 234, 484, 686, 543, 209, and 90 gRNAs within each score interval from left to right. The viability screening data were
retrieved from the web portal of DepMap project43. The p-value was calculated using the two-tailed Mann–Whitney U test comparing the LFC of gRNAs
with MOFF-aggregate scores smaller and larger than 1. The box plot displays a median line, interquartile range boxes, and min to max whiskers. e A scatter
plot showing the categorization of 8021 gRNAs targeting core essential genes or non-essential genes in the Avana library, based on gRNA activity (DeepHF
score44, x-axis) and gRNA specificity (MOFF-aggregate score, y-axis). The red dashed lines used for gRNA categorization represent MOFF-aggregate
score= 1 (horizontal) and DeepHF score= 0.6 (vertical), respectively. f A box plot comparing the distributions of the depletion of gRNAs targeting
essential or non-essential genes in the DepMap viability screens. The data represent n= 969 essential, and 665 non-essential gRNAs in “low efficiency”
group, n= 945 essential, and 842 non-essential gRNAs in “high efficiency high off-target” group, and n= 3038 essential, and 1566 non-essential gRNAs in
“high efficiency low off-target” group. Strictly standardized mean difference (SSMD) scores are computed as the measure of effect size in the screens. The
box plot displays a median line, interquartile range boxes, and min to max whiskers. Source data for Fig. 4b–f are provided in the Source Data file.
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overfitting. Alternatively, MOFF-target and MOFF-aggregate, which
are based on explicit sequence-dependent rules, achieved consis-
tently superior performance in all three independent datasets.
Furthermore, feature importance analyses suggest higher weights of
IME and CE in MOFF-target. In contrast, the GMT effect
significantly contributes to genome-wide specificity in MOFF-
aggregate because it impacts the cleavage rates at all the off-target
sites regardless of various contexts of mismatches (Supplementary
Fig. 11).

Previous studies suggested that unintended off-target cleavages
lead to decreased cell proliferation through induction of a G2 cell
cycle arrest41,42. To test if MOFF could select gRNAs to minimize
the confounding off-target effect in the high-throughput CRISPR/
Cas9 screens, we analyzed 7,403 gRNAs targeting 758 non-essential
genes in the Avana and GeCKO-v2 libraries used in the large-scale
DepMap project43. As expected, the MOFF-aggregate score is
correlated with a cell depletion phenotype in viability screens
(Fig. 4d and Supplementary Fig. 12). Further analysis showed that
the combination of MOFF-aggregate and DeepHF44, a gRNA
efficiency prediction tool, optimizes gRNA selection to achieve
greater effect size in CRISPR/Cas9 screens (Fig. 4e, f and
Supplementary Fig. 13). Moreover, the gRNA selection based on
MOFF and DeepHF leads to improved cross-library reproducibility
on cell-specific essential genes (Supplementary Fig. 14). Collectively,
these lines of evidence support the future application of MOFF for
the rational design of customized CRISPR/Cas9 libraries.

Improving allele-specific genome editing with mismatched
gRNA. Cas9-mediated allele-specific genome editing holds great
potential for functional elucidation of disease-associated hetero-
zygous mutations45–49. However, the selectivity of allele-specific
targeting remains a significant challenge due to the sequence
similarity between the mutant and wild-type alleles, which
differ by only 1-bp for most point mutations46,48,50,51. The
existing strategies are limited to the mutations that occur in the
PAM or the seed regions45,52. Truncated 17-19 nt crRNAs
improved the selectivity to a moderate degree but failed in some
applications46,48,50.

Given the observation of the “epistasis-like” combinatorial
effect of two mismatches, we hypothesized that the selectivity of
allele-specific targeting could be improved using a mismatched
gRNA that differs by 1-nt from the mutant and 2-nt from the
wildtype allele (Fig. 5a). To test this hypothesis, we used the dual-
target synthetic system to perform a high-throughput allele-
editing screen on 18 cancer hotspot mutations (Fig. 5b and
Supplementary Data 5). In library design, the mutant and the
wildtype sequences are encompassed in the dual-target site, and
the gRNAs are of variable contexts corresponding to perfect
match, truncated forms, and all possible single mismatches
relative to the mutant. Among 2445 screened gRNAs, 574 (23.5%)
showed high mutant-editing efficiency (>75% indel frequency at
the mutant allele relative to perfectly matched gRNA) and high
selectivity (<20% indel frequency at the wildtype allele relative
to perfectly matched gRNA). 16 of the 18 cancer hotspot
mutations are selectively targetable by mismatched gRNA,
with the exception of 2 mutations lacking efficient mutant-
editing potential. Using the same criteria, 4 and 9 cancer hotspot
mutations are targetable by gRNAs of perfect match and in a
truncated form, respectively (Table 1). The improvement made
by mismatched gRNA was confirmed by experimental validations
based on 6 selected cancer hotspot mutations, as shown in Fig. 5c.
Importantly, the mismatched gRNAs achieve satisfactory selec-
tivity for the mutations that occur in both seed and non-seed
regions of the corresponding protospacers.

To test if the effective mismatched gRNAs can be predicted
computationally, we applied MOFF-target to determine a subset
of 364 mismatched gRNAs that are expected to be efficient at the
mutant sequences and selective against the wildtype sequences
(see Methods section for details). We found that the predicted
gRNAs maintained a high level of mutant-editing efficiency
comparable to the perfectly matched gRNAs, and significantly
improved the selectivity when compared to the truncated 17-18
nt forms (Fig. 5d, e). Among the predicted mismatched gRNAs,
191 (52.5%) are effective in the high-throughput screen,
confirming the feasibility of allele-specific editing using the
computer-aided design of mismatched gRNAs. To address the
needs of guide design in allele-specific editing, we implemented a
module in the MOFF package, named MOFF-allele, that allows
the users to select the optimal mismatched gRNA for their study.

Discussion
In this study, we devised a high-throughput dual-target synthetic
system to explore the sequence features associated with CRISPR/
Cas9 off-target effect. We determined the rules underlying a GMT
and the combinatorial effect of multiple mismatches. The
sequence-dependent rules are significantly associated with the
free-energy landscape during R-loop formation and support a
recent multi-state kinetic model40. Of note, R-loop formation is
not only required for the DNA cleavage mediated by Cas9 and its
variants, but also for other CRISPR techniques based on dCas9
and Cas12a53,54. Therefore, we anticipate that these sequence-
dependent rules and the kinetic model are generally applicable to
a wide spectrum of CRISPR applications such as dCas9-mediated
transcriptional repression and activation, base editing, and prime
editing55–60, at least to a significant extent. In addition to R-loop
formation, the interaction between Cas9 and unwound target
DNA strand, the conformational change of Cas9-gRNA structure,
as well as the folding stability of gRNAs, collectively contribute to
the sequence-dependent free-energy landscape. Therefore, the
kinetic model can be further improved by taking these factors
into consideration, which will lead to a better explanation of off-
target effect from a biophysical perspective.

A simple combination of our rule sets led to the development
of MOFF, a model-based off-target prediction method that out-
performs previous methods including complex deep learning
frameworks. We ascribe the improvement to two factors. First,
the previous methods were developed on datasets with a limited
number of gRNAs that are insufficient for modeling on a large
feature space spanned by 20-nt nucleotides. Second, complex
models are sensitive to platform-specific biases and are prone to
overfitting, whereas rule-based approaches such as MOFF are
more robust against the variation of platforms. The second point
is supported by our additional evaluation results as shown in
Supplementary Fig. 15, in which MOFF outperforms traditional
machine learning methods (Gradient Boosted Tree, Random
Forest Regressor, and Support Vector Machine) when trained on
our dual-target dataset and tested on public datasets. Meanwhile,
we acknowledge that complex machine learning models are
advantageous in extracting subtle features that are indiscernible
by simple rule mining if the platform-specific biases are minimal.
We envision that MOFF can be further improved by: (i) sup-
plying advanced machine learning techniques with known rules
and biophysical laws, followed by training the model on a com-
pendium of independent datasets; (ii) considering DNA/RNA
bulges, which account for ~10% of genomic off-targeting
events61; (iii) accounting the mismatches in the PAM sequence,
as some alternative PAM sequences, such as NAG, also lead to
active Cas9/gRNA editing9; and (iv) incorporating sequence-
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independent features such as chromatin structure and epigenetic
markers, as reported previously19,62.

Current strategies for allele-specific editing using discriminat-
ing gRNAs are mainly focused on the mutations in the PAM or
the seed region. Although several successful applications have
been reported using Cas9 and its orthologs/variants45,46,49, the
selectivity of allele-specific editing remains a significant challenge.

Based on the “epistasis-like” combinatorial effect of dual mis-
matches that we reported, we propose to use mismatched gRNAs
to improve the selectivity of allele-specific genome editing, where
the intended allele harbors a single tolerable mismatch relative to
the gRNA and the unintended allele harbors two intolerable
mismatches. The high-throughput allele-editing screen confirmed
that a vast majority of cancer hotspot mutations located either in
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the seed region or non-seed region are selectively targetable
through the computer-aided design of mismatched gRNAs. This
improvement expands the application domain of allele-specific
editing as a time-saving and cost-effective approach for the per-
turbation of endogenous mutant alleles, thus benefiting functional
studies of disease- or trait-associated heterozygous point muta-
tions in a variety of species. Besides allele-specific editing, mis-
matched gRNAs can be applied to selectively edit one of the
paralogous genes that share high degrees of sequence homology,
which will facilitate the elucidation of genetic interactions and
functional crosstalk between paralogs. Moreover, while our vali-
dations are focused on cancer hotspot mutations, the strategy of
computer-aided design of mismatched gRNAs holds the clinical
potential to correct dominant-negative mutations that drive
mendelian disorders, which will be addressed in future work.

Methods
Oligonucleotide library design. In this study, we designed 11 high-throughput
libraries for systematically decomposing sequence determinants that govern
CRISPR/Cas9 specificity. Each library consists of ~12,000 oligonucleotides. These
11 libraries are summarized as follows and more details are provided in Supple-
mentary Data 6.

Library T1, T2, and T3: paired gRNA and dual-target design (Fig. 1b) for
method evaluation and rule mining. The T1 library includes control gRNAs,
benchmark gRNAs and random gRNAs for method evaluation. The T2 and T3

libraries, together with the fraction of random gRNAs in T1, are used to
uncover the rules underlying off-targeting.
Library S1: paired gRNA and single-target design (Fig. 1a) for method
evaluation. We designed this library following a previously described high-
throughput library design protocol34. For a systematic comparison, Library S1
contains the same sets of gRNA and corresponding target combination as
Library T1.
Library Allele: paired gRNA and dual-target design (Fig. 1b) for the allele-
editing screen. We designed this allele-editing library to leverage the
mismatched gRNAs to target 18 cancer hotspot mutations, which were curated
from Memorial Sloan Kettering Cancer Center (MSKCC) Cancer Hotspots
(https://www.cancerhotspots.org) and cBioportal for Cancer Genomics (https://
www.cbioportal.org) with reported gain-of-function or dominant-negative
effects. For dual-target design, the wildtype sequence is placed at the off-
target position and the mutant sequence at the on-target position (Fig. 5b).
Library sg1, sg2, sg3, sg4, sg5, and sg6: target-only design (no gRNA pooling)
for GMT exploration (Fig. 2a, b). Two gRNAs, sg2 and sg6, have the crystal
structure with Cas9 and their targets (PDBs: 4OO8 and 4UN3). Target
sequences in each library include the on-target, all the possible 1 mismatch (1-
MM, 66 sequences) and 2 mismatches (2-MM, 2,079 sequences) targets, and
randomly selected 3 mismatches (3-MM, 100 sequences), 4 mismatches (4-MM,
100 sequences), 5 mismatches (5-MM, 100 sequences), and 6 mismatches (6-
MM, 47 sequences) targets.

The gRNAs in these 11 libraries are categorized into 5 types: control gRNAs,
benchmark gRNAs, randomly generated gRNAs, allele-editing gRNAs, and
truncated gRNAs. Every control gRNA was designed with 4 types of dual-target
sequences by the replacement of “NGG” with “NTT” sequence at the PAM to
represent 4 combinations of cleavage events (no cleavage, left, right, and both)
(Fig. 1c). The benchmark gRNAs with reported genomic off-target sites were

Fig. 5 Improvement of allele-specific genome editing with mismatched gRNA. a A conceptual illustration of improving the selectivity of allele-specific
editing using mismatched gRNA exemplified by KRAS G12D sequence. Nucleotides highlighted in colors represent the original mutation (red) and the
introduced mismatch (blue). PAM sequence was indicated by an underline. b A schematic representation of experimental design of the allele-editing
library using the dual-target system. c Experimental validations of the selectivity of allele-specific editing on 6 selected cancer hotspot mutations. The
scatter plot of each mutation on the left shows the result of the high-throughput allele-editing screen. Relative indel frequency to wildtype or mutant allele
was normalized by the indel frequency of perfect gRNA on the mutant allele. The bar chart on the right displays the validation results of indel frequency on
wildtype and mutant alleles using one perfect, two truncated, and three effective mismatched gRNAs in HEK293T cells integrated with wildtype or mutant
allele-target sequence. There are 2 biological replicates for each genomic sample. d Comparison of relative mutant-editing rate on MOFF predicted hits to
perfect gRNA and MOFF predicted non-hits. e Comparison of the selectivity using wildtype to mutant-editing ratio on MOFF predicted hits to 17-18 nt
truncated gRNAs and MOFF predicted non-hits. d, e **p < 0.01, ***p < 0.001, N.S.: not significant. The data represent n= 29 (tru17), 32 (tru18), 35 (tru19),
35 (perfect), 349 (hits), and 1,659 (non-hits) gRNA-targets pairs in the screen. The box plots display a median line, interquartile range boxes and min to
max whiskers. The exact p-values from left to right are: d p= 0.55, p= 4.78e-41, and e p= 1.88e-04, p= 5.02e-03. The p-values were calculated using
two-tailed Manny–Whitney U test. Source data for Fig. 5c–e are provided in the Source Data file.

Table 1 Summary of the selectivity of allele-specific editing on 18 cancer hotspot mutations using perfect, truncated, and
mismatched gRNAs.

Gene Protein change Nucleotide change Targetability

Perfect gRNA Truncated gRNA Mismatched gRNA

ERBB2 L755S c.2264T>C Yes Yes Yes
IDH1 R132H c.395G>A Yes Yes Yes
PIK3CA H1047R c.3140A>G Yes Yes Yes
VHL R200W c.598C>T Yes Yes Yes
BRAF V600E c.1799T>A No Yes Yes
EGFR L858R c.2573T>G No Yes Yes
EGFR T790M c.2369C>T No Yes Yes
GNAS R201C c.601C>T No Yes Yes
KRAS Q61H c.183A>C No Yes Yes
CTNNB1 T41A c.121A>G No No Yes
ERBB2 S310F c.929C>T No No Yes
FBXW7 R465C c.1393C>T No No Yes
FGFR3 Y373C c.1118A>G No No Yes
KRAS G12D c.35G>A No No Yes
NRAS G12D c.35G>A No No Yes
TP53 R248W c.742C>T No No Yes
PIK3CA E542K c.1624G>A No No No*

RAC1 P29S c.85C>T No No No*

*Mutants lacking efficient gRNA for targeting.
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curated from different methods detecting genome-wide off-targets induced by Cas9
editing in vitro or in vivo and used to evaluate the dual-target approach1,12,17,36.
Unreported genomic off-target sites with <5 mismatches relative to corresponding
benchmark gRNAs were generated by CRISPRitz63 (Fig. 1h–j). Except for the
gRNAs in Libraries sg1-6, each randomly generated gRNA was designed with 7
types of off-target sequences to systematically decompose the estimated off-on
ratios into single-mismatch effect, combinatorial effect, and GMT. These seven
sequence types include three targets with 1-MM, 3 with 2-MM, and 1 with 3-MM.
The mismatches in the 2-MM and 3-MM targets are the combinations of the
mismatches in 1-MM targets (Fig. 1k). Frequencies of four nucleotide types (A, G,
C, and T) at each position for randomly designed gRNAs are roughly evenly
distributed (Supplementary Fig. 16). Allele-editing gRNAs were designed to test the
selectivity for allele-specific targeting on 18 cancer hotspot mutations (Fig. 5b).
Truncated 17–19 nt gRNAs were designed to compare to mismatched gRNAs for
allele-editing assessment (Fig. 5d, e).

In the paired gRNA and dual-target libraries (Library T1, T2, T3, and Allele),
each 190-bp oligonucleotide consists of an 18-bp left primer sequence, a 10-bp
barcode 1, a 23-bp corresponding off-target sequence containing a PAM, a 15-bp
linker to segregate two targets, a 23-bp corresponding on-target sequence containing
a PAM, a 15-bp barcode 2, a 45-bp cloning linker sequence containing a vector
homology sequence, an SspI enzyme recognition site and an hU6 homology
sequence, a 21-bp guide sequence beginning with “g” (gN20), and a 20-bp right
primer sequence. In the paired gRNA and single-target library (Library S1), each
157-bp oligonucleotide consists of a longer 20-bp barcode 2 but lacks the 15-bp
linker and the second 23-bp target. All other sequence components are identical
between the single- and dual-target design. In the target-only libraries (Library sg1,
sg2, sg3, sg4, sg5, and sg6), each 109-bp oligonucleotide consists of a 25-bp left
primer sequence, a 10-bp barcode 1, a 27-bp corresponding target sequence
containing a PAM, a 20-bp barcode 2, and a 27-bp right primer sequence
(Supplementary Note). All the oligonucleotides in these libraries passed the filters of
having no thymine homopolymers more than three nucleotides long in gRNA
sequences, carrying no more than one SspI enzyme recognition site, one left primer
site, and one right primer site, and no sites besides the target sequence being cut by
gRNAs in the constructed plasmids.

Plasmid cloning. gRNA I and D associated with distinct repair mechanisms upon
double-strand breaks were selected from a previous single-target library predicting
mutations generated by CRISPR/Cas9. Dual-target I and D were designed with four
types of dual-targets by the replacement of “NGG” with “NTT” sequence at the
PAM as described above. For gRNA I/D and corresponding dual-target I/D pairs
cloning, the 152-bp single-strand Ultramer™ DNA oligonucleotides with 4 types of
dual-target I and D were synthesized (IDT) and amplified with Q5 High-Fidelity
DNA polymerase (NEB #M0492). Meanwhile, gRNA I and D oligonucleotides
(Sigma) were annealed and ligated to the BsmBI (NEB #R0739)-linearized
LentiGuide-BSD-PacI plasmid. The LentiGuide-BSD-PacI plasmid was derived
from the LentiGuide-BSD plasmid by inserting a PacI recognition site to 33-bp
downstream of the scaffold sequence using Q5 site-directed mutagenesis (NEB
#E0552). The resulting plasmids were then linearized by PacI (NEB #R0547), and
undergone Gibson assembly (NEBuilder HiFi DNA Assembly Master Mix, NEB
#E2621) with the amplified four types of dual-target I and D fragments. Assembled
products were then transformed to homemade Stbl3 competent cells, and the
plasmids were extracted using QIAprep Spin Miniprep Kit (QIAGEN) and con-
firmed by Sanger sequencing.

For plasmid library cloning, the oligonucleotide libraries with paired gRNA and
dual-target design were synthesized by Twist Bioscience, and libraries with paired
gRNA and single-target design or target-only design were ordered from
CustomArray. The plasmid library containing pooling gRNAs and corresponding
single- or dual-target pairs was prepared by undergoing an intermediate
circulation, SspI enzyme linearization, and Gibson assembly into a lentiviral
plasmid LentiGuide-BSD-Δscaffold. This multistep cloning procedure was adapted
and modified from previously described protocols33,34. Briefly, the oligonucleotide
pools were amplified with Q5 High-Fidelity DNA polymerase for extension of the
oligonucleotide sequences with overhangs complementary to a donor G-block.
Gibson assembly was performed to ligate the amplified pools to the 125-nt donor
gBlock fragment (IDT) encoding the gRNA scaffold at a molar ratio of 1:3 at 50 °C
for 1 h, and the resulting products were incubated with Plasmid Safe ATP-
Dependent DNase (Lucigen #E3101K) at 37 °C for 1 h to remove the linear
fragments. The assembled circular DNA was purified with QIAquick PCR
Purification Kit (QIAGEN), followed by linearization with SspI enzyme (NEB
#R3132) at 37 °C for 4 h, and purification with QIAquick PCR Purification Kit.
Next, the purified products were performed the second amplification with Q5
High-Fidelity DNA polymerase for the addition of overhangs complementary to
gRNA-expressing plasmid LentiGuide-BSD-Δscaffold, and the PCR products were
then purified with QIAquick Gel Extraction Kit (QIAGEN). This LentiGuide-BSD-
Δscaffold plasmid lacking the scaffold sequence was generated by removing the
gRNA scaffold from LentiGuide-BSD plasmid using Q5 site-directed mutagenesis.
Gibson Assembly was then employed to fuse the second amplified oligonucleotide
pools to BsmBI-linearized LentiGuide-BSD-Δscaffold at a molar ratio of 3:1 at
50 °C for 1 h. The resulting products were then purified by isopropanol
precipitation with GlycoBlueTM Coprecipitant (Thermo Fisher Scientific

#AM9516), dissolved in TE buffer (pH 8.0) to a final concentration of 100 ng/μl at
55 °C for 10 min, and transformed into Endura electrocompetent cells (Lucigen
#60242). The plasmid library was extracted by NucleoBond Xtra Maxi Kit
(MACHEREY-NAGEL). The construction of the plasmid library containing single
gRNA and corresponding targets followed the cloning processes of gRNA I/D and
dual-target I/D pairs as mentioned above. In brief, oligonucleotides of each gRNA
were annealed and inserted into BsmBI-linearized LentiGuide-BSD-PacI, and the
constructs then were verified by Sanger sequencing. In the meantime, the target-
only library was amplified with Q5 High-Fidelity DNA polymerase and purified
with gel purification. Gibson Assembly was applied to ligate the amplified target-
only oligonucleotide pools to their corresponding PacI-linearized single gRNA-
expressing plasmids LentiGuide-BSD-PacI at a molar ratio of 6.5:1 at 50 °C for 1 h.
The assembled products were purified by isopropanol precipitation and
transformed into electrocompetent cells, followed by plasmid extraction as
described above.

To validate the results of the high-throughput allele-editing screen, 6 genes with
cancer hotspot mutations were selected. For allele-editing validation plasmid
cloning, oligonucleotides containing cancer hotspot mutation-derived wildtype and
mutant target sites, also referred to as wildtype and mutant target, were synthesized
(IDT) and annealed, followed by insertion into BsmBI-linearized plasmid
LentiEGFP-P2A-Puro. Meanwhile, 6 gRNAs were designed to target each selected
cancer hotspot mutation, including one perfectly matched, two truncated, and
three effective mismatched gRNAs based on the screen results. LentiCRISPR-V2-
BSD (Addgene plasmid #83480) was employed to insert each gRNA according to
the protocol from Feng Zhang’s lab. The ligated products were extracted using
QIAprep Spin Miniprep Kit and confirmed by Sanger sequencing.

All the primers, gRNA, and fragments used for plasmid construction are listed
in Supplementary Data 7.

Cell culture. HEK293T cell line was purchased from ATCC (CRL-3216) and
cultured in DMEM medium (Gibco) supplemented with 10% FBS (Sigma) and 1%
penicillin-streptomycin (Gibco) at 37 °C with 5% CO2. A monoclonal HEK293T
cell line expressing doxycycline-inducible Cas9 (HEK293T-iCas9) was generated by
infecting parental cells with pCW-Cas9 (Addgene plasmid #50661) lentivirus. All
the cell lines were routinely tested for being free of mycoplasma contamination
using MycoAlert™ Mycoplasma Detection Kit (Lonza #LT07-218).

Lentivirus production. HEK293T cells (5 × 106) were seeded in a 10-cm tissue
culture dish 1 day before transfection. On the day of transfection, 4 μg of lentiviral
plasmid, 4 μg of psPAX2 (Addgene plasmid #12260), and 2 μg of pMD2.G
(Addgene plasmid #12259) in 500 μl Opti-MEM (Gibco) were mixed with 25 μl
X-tremeGene HP DNA transfection reagent (Roche #06366236001) and then
added to the pre-seeded HEK293T cells. The culture medium was changed with the
addition of 20 μM HEPES buffer 6 h after transfection. Lentiviral supernatant was
harvested and filtered through a 0.45-μM syringe filter (Millipore) 48 h after
transfection. Aliquots were frozen at −80 °C for later use.

CRISPR screen and deep sequencing. HEK293T-iCas9 cells were seeded in
eighteen 10 cm tissue culture dishes (4 × 106 cells per dish) with three independent
biological replicates 1 day before transduction. On the day of transduction, the
lentiviral plasmid library was transduced into the cells at an MOI of 0.3 in the
presence of 8 μg/ml polybrene (Millipore). The infected cells were passaged to
15 cm tissue culture dishes 48 h after infection, selected with 20 μg/ml blasticidin
(InvivoGen #ant-bl-1) for 3 days, and then incubated with doxycycline (Sigma
#D9891) to induce Cas9 expression. Cells were passed every 2–3 days with at least
2 × 107 cells for each passage to maintain the library diversity and harvested
(2 × 107 cells per replicate) on days 0, 3, 5, and 9 after Cas9 induction. Cell pellets
were frozen at −80 °C for later genomic extraction using Blood & Cell Culture
DNA Midi Kit (QIAGEN).

For the transduction of lentiviral plasmids with gRNA I/D and corresponding
dual-target I/D, HEK293T-iCas9 cells were seeded in six-well plates (5 × 104 cells
per well) with two biological replicates following the same procedure as described
above. In all, 2 × 106 cells were harvested on day 9 after Cas9 induction for genomic
extraction using QIAamp® DNA Mini Kit (QIAGEN).

After genomic extraction, the integrated target sequences were PCR amplified
using NEBNext® Ultra™ II Q5® Master Mix (NEB #M0544) and prepared for deep
sequencing by 2 rounds of PCR as described previously64. The 1st round PCR (16
cycles) was performed with 40 μg genomic DNA divided into eight 100 μl-PCR
reactions to achieve 500-fold coverage over the library. To attach the Illumina
adaptor and barcode sequences, the 2nd round PCR (12 cycles) was conducted with
5 μl of the 1st purified PCR product. The gel-purified samples were pooled and
sequenced on Illumina Miseq, Hiseq 3000 or Nextseq 500 by 75-bp paired-end
sequencing at MDACC-Smithville Next Generation Sequencing Core. All the
primers applied for sequencing library preparation are provided in Supplementary
Data 7.

Allele-specific editing validation. To validate the allele-editing results from the
high-throughput screen, 2 rounds of transduction were performed. HEK293T cells
were seeded in six-well plates (1 × 105 cells per well) and infected with lentivirus of
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LentiEGFP-P2A-Puro harboring the wildtype or mutant target sequence related to
the 6 selected cancer hotspot mutations. On day 4 after puromycin (InvivoGen
#ant-pr-1) selection, the resulting HEK293T cells were re-seeded in six-well plates
(1 × 105 cells per well), followed by infection with lentivirus of LentiCRISPR-V2-
BSD expressing perfectly matched, truncated or mismatched gRNAs. The infected
cells from 2 biological replicates were passaged every 2–3 days and harvested
(2 × 106 cells) on day 9 after blasticidin selection for genomic extraction.

Genomic DNA was isolated from cell pellets with QIAamp® DNA Mini Kit
(QIAGEN) according to the manufacturer’s protocol. In total, 2 μg genomic DNA
of each sample was used to amplify the integrated wildtype or mutant target
sequence with Q5 High-Fidelity DNA polymerase. PCR products were purified by
gel purification and undergone Sanger sequencing at MDACC-Smithville
Molecular Biology Core. The wildtype and mutant allele-editing frequencies by
perfectly matched, truncated, and mismatched gRNAs were analyzed through a
Sanger sequencing-based CRISPR analysis online tool Inference of CRISPR Edits
(ICE, https://ice.synthego.com).

Sequencing data analysis. A computational pipeline was developed to process the
generated sequencing data. We first combined the partially overlapped, paired-end
reads into a single sequence using FLASH v1.2.1165 with the options “-m 20, -M
150, -x 0.1, -allow-outies” (a minimum overlap of 20 bp, a maximum overlap of
150 bp, a maximum mismatch density of 0.1 and allow outie pairs). Next, we
extracted the unique barcode 1 and 2 pairs from the merged reads and compared
them to the barcodes of the designed constructs in the library. Sequencing reads
were assigned to a specific construct if their barcodes were perfectly matched to the
10-nt of barcode 1 and last 10 bp of 15-nt of barcode 2 of the construct. The
sequences between the two barcodes were then aligned to the designed sequences
for indel calling using the Smith-Waterman algorithm66 with gap open penalty of
8, mismatch penalty of 1, match score of 2, and mismatch score of −2. Finally, the
sequencing reads were assigned to one of five different indel types, i.e., wt + wt,
indel + wt, wt + indel, indel + indel and large deletion, based on the alignment
results. Specifically, if a deletion larger than 32-bp was identified in the alignments,
the read was assigned to the large deletion category. Otherwise, we adopted a 10-bp
window around the cutting site to capture the potential CRISPR-induced editing at
on-target and off-target sequence. We can then easily assign the reads into four
other categories: indel+wt (indels detected at on-target site only), wt + indel
(indels detected at off-target site only), indel+ indel (indels detected at both on-
and off-target sites), and wt+wt (indels detected at neither on- nor off-target
sites). Of note, we only observed rare cases (~0.005%) where two cleavage sites are
inverted in our dual-target design67. This is consistent with previous report where
inversion rate of small DNA fragments with size <100 bp is much lower compared
to that of larger fragments of hundreds to thousands bps68. Thus, here we did not
include this inversion type in the classification of indel types. Distributions of the
number of sequenced reads per gRNA-target pair to indicate the sequencing depths
of the experiments with dual-target design are shown in Supplementary Fig. 17.

Estimation of off-on ratios. We developed a statistical method to infer the read
counts of different cleavage states from the observed editing types of the sequen-

cing data. Given a gRNA-target pair, we denote C ¼ c1; c2; c3; c4; c5
� �T

to represent
the observations of read counts, where c1 to c5 correspond to the editing types of
wt+wt, indel+wt, wt+ indel, indel+ indel, and large deletion, respectively. We

denote S ¼ s1; s2; s3; s4
� �T

to represent the numbers of reads in the four cleavage
states, where s1 to s4 correspond to the states of “no cleavage”, “cleavage at off-
target only”, “cleavage at on-target only”, and “both cleavage”, respectively. We
model the observation C to be:

C ¼ PTSþ ε ð1Þ

where P is a 4 ´ 5 stochastic matrix and ε is a vector of Gaussian noise. An entry pi;j
(i ¼ 1; 2; 3; 4; j ¼ 1; 2; ¼ ; 5) in the matrix P represents the conditional prob-
ability of observing the jth editing type given the ith cleavage state. The sum of each
row in P is 1, i.e., ∑5

j¼1pi;j ¼ 1, 8i. Given the model in Fig. 1e, P can be written as:

P ¼

p1;1 p1;2 p1;3
0 p2;2 0

0 0 p3;3

p1;4 p1;5
0 0

0 p3;5
0 0 0 p4;4 p4;5

2
66664

3
77775 ð2Þ

The parameters in P were estimated from the observations of read counts on the
control dual-target sequences. The first row, denoted P1, represents the background
noise and PCR artifacts, which were estimated based on the read distribution of the
NTT+NTT (no cleavage) controls. The second row, denoted P2, was estimated
based on the observations from the NGG+NTT controls. Depending on the
gRNA cutting efficiency, the reads derived from the NGG+NTT controls are
subject to a mixture of the “no cleavage” and “cleavage at off-target only” states.
Given the estimated P1 and the read counts of the five editing types on the
NGG+NTT controls, P2 can be explicitly estimated by solving linear equations.
Similarly, the parameters in the third and fourth rows in P were computed from the
observations on the NTT+NGG and NGG+NGG controls.

Given the stochastic matrix P, we adopted a maximum-likelihood estimation

(MLE) approach to compute S. This can be achieved by minimizing kPTS� Ck2,
under the constraint of si ≥ 0, 8i. With the estimated reads for the four cleavage
states, the off-on ratio of a gRNA-target pair was calculated as:

r ¼ s2 þ s4
s3 þ s4

ð3Þ

Where s2, s3 and s4 are the estimated read counts for “cleavage at off-target only”,
“cleavage at on-target only”, and “both cleavage”, respectively. Considering that the
calculation of off-on ratios is associated with large variation using a limited number
of reads in the denominator, we filtered out gRNA-target pairs with less than 100
total edited reads at on-target site, i.e., s3 þ s4<100, resulting in a total number of
10,460 gRNA-target pairs with the estimated off-on ratios (Supplementary Data 1).
When computing log off-on ratio, we added a small constant c to control the
variation, i.e., log r þ cð Þ. The constant c is chosen to be 0.01 because the dynamic
range of off-on ratio evaluation is approximately 0.02–1.

Estimation of GMT. We assume that the intrinsic sequence of the gRNA and the
mismatch context between gRNA and target sequence jointly contribute to the
overall off-target effects. To decompose these two factors, we collected the off-on
ratios of 3897 1-mismatch targets corresponding to 1438 gRNAs in our dataset
(Supplementary Data 4). There are 12 types of unmatched nucleotide pairs (A-C,
A-G, …, U-C), and 20 different positions of the mismatches, resulting in 240
mismatch types in total. Suppose rij represents the off-on ratio of the ith gRNA
with a mismatch of the jth type, we model rij to be the multiplication of mismatch-
dependent effect mj and gRNA-intrinsic mismatch tolerance gi . In a log scale, this
can be written as:

Logðrij þ cÞ ¼ logðmjÞ þ logðgiÞ þ ε ð4Þ
where ε is the Gaussian noise and c is the small constant for controlling the
variation of log off-on ratio. We then applied a gradient descent algorithm to
compute the MLE estimation of mj and gi , which represents the mismatch-
dependent effect and the gRNA-intrinsic mismatch tolerance, respectively. The
mismatch-dependent effects for single-mismatches are presented as a 12 ´ 20
matrix, namely M1 matrix, in which each entry represents the effects of a
nucleotide mismatch at a specific position of the target sequence. The estimated gj
was subsequently used to explore the sequence determinants of GMT.

Prediction of GMT. To predict GMT from a gRNA sequence, we took all the 1438
gRNAs with estimated GMT scores (gj) to train a CNN model. For each gRNA, we
tested two different encoding strategies, i.e., mononucleotide and dinucleotide, to
vectorize the gRNA sequence as inputs (Supplementary Fig. 8). For the mono-
nucleotide encoding, a 20-nt gRNA sequence was binarized into a 4 ´ 20 two-
dimension array, with 0 s and 1 s indicating the absence or presence of 4 different
nucleotides (A, T, C, G) at every single position. For the dinucleotide encoding, 20-
nt gRNA sequence was binarized into a 16 ´ 19 two-dimension array, with 0 s and
1 s indicating the absence or presence of 16 different dinucleotides (AT, AC, AG,
AA, TT, TA, TG, TC, CC, CA, CG, CT, GG, GA, GT, GC) at each of the con-
stitutive positions along the gRNA sequence. A CNN regression model was then
designed using Keras (https://keras.io/) with a TensorFlow backend engine, con-
sisting of one convolution layer and one dense layer, terminating in a single
neuron.

We compared two encoding methods for data vectorization with different
settings of parameters including the size, shape, and number of convolution kernels
using a five-fold cross-validation strategy. The performance was assessed by
computing Spearman’s correlation between the predicted and observed GMT
scores. Finally, we selected the dinucleotide inputs and CNN model with three
kernels in the convolutional layer. We further tested our model on two
independent datasets: the TTISS dataset, which includes 59 sgRNAs with genome-
wide off-targets detected by TTISS for nine different Cas9 variants18; the
CHANGE-seq dataset, which includes 110 gRNAs with genome-wide SpCas9 off-
targets detected by CHANGE-seq19. For each gRNA, an overall off-on ratio was
calculated as the sum of detected off-target reads divided by on-target reads. We
predicted the GMT scores for all the gRNAs and compared the overall off-on ratios
of gRNAs with high (top 25%) and low (bottom 25%) GMT scores. Statistical
significance was measured using Mann–Whitney U test.

Estimation of combinatorial effects. We denote δij as the position-dependent
combinatorial effect between two mismatches that occur at the ith and the jth
nucleotide relative to the PAM (i; j ¼ 0; 1; 2; ¼ ; 20). A value of δij close to
1 suggests “independence” of the combination, whereas δij close to 0 suggests a
strong “epistasis-like” combinatorial effect. We estimated δij from the off-on ratios
of 2-MM and individual 1-MM targets, as specified below.

To obtain a sufficient number of data points for a robust estimation of δij , we
consider the mismatches located in the ith and the jth nucleotide, as well as those
in the adjacent locations. Suppose there are Nij 2-MM targets with mismatches at

positions (i, j), (i, j-1), (i, j+1), (i-1, j), and (i+1, j), we denote xkij to be the off-on
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ratio of the kth 2-MM target in this group (k ¼ 0; 1; 2; ¼ ;Nij) and model xkij as:

xkij ¼ ykijz
k
ijδij þ ε ð5Þ

where ykij and zkij are the off-on ratios of the 1-MM targets corresponding to the
2-MM target in the library design, and ε is the Gaussian noise. The MLE estimate
of δij can be explicitly computed as:

δ̂ij ¼ ∑
Nij

k¼1
xkijy

k
ijz

k
ij

� ��
∑
Nij

k¼1
ykijz

k
ij

� �2 ð6Þ

The combinatorial effects for 2-position combinations were presented as a
20 × 20 matrix, namely M2 matrix, in which each entry represents the
combinatorial effects between two mismatched positions.

To cross-reference the combinatorial effects derived from our data, we also
calculated the relative co-occurrence score (RCS) that represents the observed
frequency of two mismatches relative to random expectation based on CHANGE-
seq dataset19. Assuming that there are n off-target sites detected in the genome, the
RCS is defined as:

RCS ¼ aij � n
bi � cj ð7Þ

Where aij is the number of off-target sites harboring mismatches at both positions i
and j, bi is the number of target sites harboring mismatches at position i, and cj is
the number of target sites harboring mismatches at position j. We computed the
RCS for all the gRNAs in the CHANGE-seq dataset and took the average RSC over
the gRNAs to obtain the matrix in Fig. 3e.

To explore the combinatorial effect from a biophysical point of view, we used a
previous kinetic model40 to perform simulation and to estimate δij from the
simulated data. In brief, the cleavage rate can be directly calculated given the free
energy gain of binding the PAM, the energy gain for extending the hybrid over a
match, the cost associated with extending the hybrid over an isolated mismatch, as
well as the cost of extending the hybrid over neighboring mismatches. As an
illustration, we plotted the combinatorial effect calculated for a specific choice of
these parameters with the gain in energy due to PAM binding of 5 kBT , the gain
per correctly matched hybrid base pair of 0.25 kBT , the cost of a mismatch of 4 kBT
if it is isolated and 3 kBT if it is added to an existing bubble (Fig. 3g).

Model-based off-target prediction with MOFF. In MOFF, we integrate three
factors including the individual mismatch effect (IME), the combinatorial effect
(CE), and the GMT effect.

To explain the MOFF model, we start with a gRNA g and a target with a
single mismatch m1. The expected off-on ratio, S(g, m1), is the multiply of IME and
GMT, i.e.,

S g; m1

� � ¼ s1sGMT ð8Þ
where s1 is the effect ofm1 computed from the M1 matrix as described in “Estimation
of GMT” section, and sGMT is the GMT effect estimated from the dinucleotide CNN
regression model as described in “Prediction of GMT” section.

Next, we consider two mismatches m1 and m2. The expected off-on ratio,
S(g, m1, m2), is the multiply of the effects of individual single mismatches and the
combinatorial effect:

S g; m1;m2

� � ¼ S g; m1

� �
S g; m2

� �
δ12 ¼ s1s2δ12ðsGMTÞ2 ð9Þ

where δ12 is the pairwise combinatorial effect with respect to the positions of m1
and m2, as computed from M2 matrix as described in “Estimation of
Combinatorial Effects” section.

When three mismatches are considered, it is ideal to estimate the combinatorial
effect of all three. Unfortunately, the number of possible combinations increases
exponentially, which makes experimental estimation of parameters impractical.
Here, we consider a sequential model to add the 3rd mismatch, m3, to the model of
two mismatches S g;m1;m2

� �
:

S g; m1;m2;m3

� � ¼ S g; m1;m2

� �
S g; m3

� �
δ12;3 ð10Þ

where δ12;3 is the additional combinatorial effect and is modeled to be the
geometric mean of pairwise combinatorial effects of δ13 and δ23.

Combining Eqs. (8)–(10), and the above definition of δ12;3, we have:

S g; m1;m2;m3

� � ¼ s1s2s3δ12
ffiffiffiffiffiffiffiffiffiffiffiffi
δ13δ23

p
ðsGMT Þ3 ð11Þ

Note thatm1;m2;m3 are indeed unordered. With a different order in the sequential
model, S g;m1;m2;m3

� �
can also be computed as s1s2s3δ13

ffiffiffiffiffiffiffiffiffiffiffiffi
δ12δ23

p ðsGMT Þ3 or

s1s2s3δ23
ffiffiffiffiffiffiffiffiffiffiffiffi
δ12δ13

p ðsGMT Þ3. Therefore, we compute S g;m1;m2;m3

� �
to be the

geometric mean of the scores computed with all three possible orders in the sequential
model, simplified as follows:

S g; m1;m2;m3

� � ¼ s1s2s3ðδ12δ13δ23Þ2=3ðsGMT Þ3 ð12Þ
Finally, we extend the three-mismatch model to k mismatches using

mathematical induction approach, and define the MOFF score to be the logarithm

of predicted off-on ratio:

SMOFF ¼ ∑
k

i¼1
logðsiÞ þ

2
k
∑
k

i¼1
∑
i�1

j¼1
logðδijÞ þ k logðsGMT Þ ð13Þ

To assess the genome-wide specificity of a given gRNA, we first mapped the
gRNA to the genome to search for potential off-target sites harboring up to 6
mismatches using CRISPRitz, a software for rapid and high-throughput in silico
off-target site identification63. Next, we defined a MOFF-aggregate score, which is
the logarithm of the sum of the MOFF-target scores for all the potential off-target
sites. We note that, the current version of MOFF only considers genomic sites with
mismatches, but not indels, relative to the 20-nt crRNA sequence as the potential
off-targets.

Evaluation of the models and feature importance analysis. To evaluate the
performance of our model, we curated three independent testing datasets generated
by three different platforms, i.e., GUIDE-seq12, TTISS18, and CHANGE-seq19.
GUIDE-seq dataset includes 348 detected off-target sites for 9 gRNAs, TTISS
dataset contains 630 detected off-target sites across 59 gRNAs and CHANGE-seq
dataset consists of 96,555 detected off-target sites corresponding to 109 gRNAs. For
each gRNA-target pair, we measured the off-target effect as off-on ratio, which is
calculated as the detected off-target reads divided by on-target reads. For each
gRNA, we measured its genome-wide specificity as overall off-on ratio, which is
calculated as the total detected off-target reads across the genome divided by on-
target reads. We reasoned that the classification of off-target and untargeted sites is
highly dependent on the sensitivity of each platform, where the off-target effects
indeed take continuous values that may differ by several orders of magnitude.
Thus, we adopted the Spearman correlations between measured and predicted off-
on ratios for quantitative evaluations.

We further evaluated the importance of different features using Gini
importance, which was implemented through the Random Forest Regressor
module from the scikit-learn package in Python with default parameters. For
MOFF-target, we consider three features: IME, CE, and GMT. For MOFF-
aggregate, we consider two features: (1) the mismatch-dependent feature, which is
the sum of the predicted mismatch-dependent effects (IME + CE) without
considering GMT; (2) the GMT effect corresponding to each gRNA.

Comparison of off-target prediction methods. We compared the performance of
MOFF to five representative off-target prediction methods: (1) Cutting Frequency
Determination (CFD) score is the multiplication of single mismatch effects derived
from a cleavage dataset targeting the coding sequence of the human CD33 gene in
MOLM-13 cells9. For the implementation of CFD, we used the Supplementary
Table 19 of their original publication which includes all the single-mismatch
effects. (2) Elevation is a two-layer regression model where the first layer learns to
predict the effects of single-mismatch and the second layer learns how to combine
single-mismatch effects into a final score24. The source codes of Elevation were
downloaded from https://github.com/Microsoft/Elevation. (3) CNN_std is a deep
learning model to predict off-target effects using a standard convolutional neuron
network27 and the source codes to implement CNN_std were downloaded from
https://github.com/MichaelLinn/off_target_prediction. (4) CRISPR-Net is a more
recent deep learning method using a recurrent convolutional network, which shows
superior performance compared to other machine learning approaches29. The
source codes to implement CRISPR-Net were downloaded from https://
codeocean.com/capsule/9553651/tree/v1. And (5) CRISPRoff is an approximate
binding energy model for the Cas9-gRNA-DNA complex, which systematically
combines the energy parameters obtained for RNA-RNA, DNA-DNA, and RNA-
DNA duplexes31. The source codes for executing CRISPRoff were downloaded
from https://github.com/RTH-tools/crisproff.

We adopted the same strategy to evaluate the performance of different methods
as described in “Evaluation of the models and feature importance analysis” section.
We note that aggregation models for Elevation and CRISPR-Net assigned different
weights to off-targets sites occurring at genic or non-genic regions, which were
trained on cell viability screen data of gRNAs targeting non-essential genes;
however, cell viability is not a direct indication of DNA cleavage at off-target sites
and the genomic features used for training are not associated with the sequence
determinants for gRNA specificity. Therefore, the performance of their models
degraded when applied to the datasets that directly measure DNA cleavage at off-
target sites across the genome (Supplementary Fig. 18). For a fair comparison, we
used logarithm of the sum of individual scores for all potential off-target sites
identified by CRISPRitz63 to predict gRNA specificity for all these methods.

Application to gRNA design. We collected Avana, GeCKO-v2, and Sanger
CRISPR screen data43,69 from the Depmap portal at https://depmap.org/portal/
download. The efficiency of gRNAs was predicted using the DeepHF method44,
and the off-target effect of gRNAs was predicted using MOFF-aggregate. As the
analysis involves the computation on tens of thousands of gRNAs, we configured
the alignment input to allow up to five mismatches for computational efficiency.
All the gRNAs were then classified into three categories: Low efficiency (DeepHF
score < 0.6), High efficiency High off-target (DeepHF score > 0.6 and MOFF-
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aggregate > 1), and High efficiency Low off-target (DeepHF score > 0.6 and MOFF-
aggregate < 1).

To compare the effective size of gRNAs within different categories, we
compared the average log-fold change (LFC) of gRNAs targeting 1246 core
essential genes and 758 non-essential genes70 within each category using strictly
standardized mean difference (SSMD), which is widely used for quality control in
the high-throughput screen data. Higher SSMD values indicate that gRNAs can
better discriminate essential and non-essential genes, therefore achieving greater
effective size.

To test the cross-library reproducibility for different types of gRNAs, we
compared gRNAs targeting 529 cell-specific essential genes from Avana data and
Sanger data. Specifically, for gRNAs in different categories, we measured the
Pearson correlation between averaged LFC of gRNAs targeting the same genes in
Avana and Sanger data across different cell lines. Higher correlation indicates that
the effects of gRNAs are more reproducible among different libraries. The cell-
specific essential gene list was downloaded from the Depmap portal at https://
ndownloader.figshare.com/files/27902064.

gRNA selection for allele-specific editing. Given the local DNA sequences of the
wildtype and mutant alleles, we first searched for all the possible gRNAs followed
by a PAM (NGG) motif targeting the DNA sequence of the mutant allele that
harbors a single mutation compared to the wildtype allele. The selected gRNAs,
which we termed seed gRNAs, are perfectly matched to the mutant allele, and have
a single mismatch relative to the wildtype allele. Next, we introduced all possible
single mismatches to the seed gRNAs to generate the candidate gRNAs that differ
by 1-nt from the mutant and 2-nt from the wildtype allele. To select the best
gRNAs from these candidates, we predicted the MOFF-target scores between the
gRNAs and the targeted DNA sequence from the mutant and wildtype alleles,
which indicate the sensitivity and selectivity of the gRNAs, respectively. In practice,
we selected gRNAs that satisfy: (1) MOFF-target scores at mutant allele >0.5 to
ensure high knockout efficiency, (2) the ratio of MOFF-target scores between
wildtype allele and mutant allele <0.2, for high selectivity.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data of screens generated from this study are available under NCBI
Sequence Read Archive (SRA) (SRA code: PRJNA732904), which can be accessed at
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA732904. The raw and processed read
counts of the screens generated from this study are provided as Supplementary Data files.
Three datasets used in this study are available under NCBI SRA: GUIDE-seq (SRA code:
SRP050338), TTISS (SRA code: PRJNA602092), and CHANGE-seq (SRA code:
PRJNA625995). Data for Avana, GeCKO-v2 and Sanger CRISPR screens are obtained
from the Depmap portal at https://depmap.org/portal/download. Source data are
provided with this paper.

Code availability
The source codes for MOFF software can be accessed from https://github.com/MDhewei/
MOFF. To provide a permanent reference to the version of the code used in this study
and improve reproducibility, a DOI71 (https://doi.org/10.5281/zenodo.5792391) has been
obtained for this Github repository.
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