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Abstract 

As an important classification of photodetectors, broad spectral photodiodes are ubiquitous in the fields of industry 
and scientific research. Here, we reported a type of broad spectral organic–inorganic hybrid photodiodes (OIHPDs) 
based on planar-bulk heterojunction, which composed of 3,4,9,10-perylenetertracarboxylic dianhydride (PTCDA), 
copper phthalocyanine (CuPc) and fullerene (C60). In our research, the dark current of the OIHPD with 10 nm C60 film 
(10 nm-C60 OIHPD) was as low as 25.6 μA, which is about 63 times smaller than the dark current of the OIHPD without 
C60 film (C60-free OIHPD). It is considered that the significantly enhanced performance of 10 nm-C60 OIHPD is attrib-
uted to the introduction of the C60 film, which act as hole-blocking layer to reduce the dark current. And through the 
schematic energy level model combined with experimental measurements, the reason for the dark current change 
was well explained. Furthermore, the specific detectivity of 10 nm-C60 OIHPD was almost one order of magnitude 
larger than it of C60-free OIHPD, and a notable enhancement of over 1011 cm Hz1/2/W was obtained due to the fiercely 
reduced dark current. These results provide insights on how to improve the performance of organic photodiodes.
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Introduction
In optical information transmission and processing, pho-
todetectors, which convert optical signals into electri-
cal signals, are critical devices, especially in optical fiber 
communication [1], night vision [2], infrared remote 
sensing [3], imaging [4, 5], biomedical [6] and spectrom-
eter [7]. At present, conventional inorganic photodetec-
tors based on Gallium nitride (GaN), silicon (Si) and 
indium gallium arsenide (InGaAs) were well developed 
for detecting different sub-bands within the ultraviolet 
to near infrared range [8–10]. However, the flexibility of 
inorganic semiconductor materials is not satisfactory. 
Furthermore, some photodetectors based on inorganic 

semiconductor materials must be cooled during opera-
tion [11], which greatly restrict its further development 
and practical application. Thus, organic semiconduc-
tor materials have attracted widespread attention from 
researchers due to their good compatibility and spe-
cial physical properties [12–15]. The development of 
organic–inorganic hybrid structures and the optimiza-
tion of multicomponent organic heterojunctions are 
always good ideas for achieving broad spectral response 
through the complementarity of absorption spectra 
between different materials [16, 17]. For example, Yang 
et  al. fabricated an organic photodetector with broad 
spectral photo-response from 200 to 1000 nm by adopt-
ing thick polymer bulk heterojunction composed of 1, 
1-bis ((di-4-tolylamino) phenyl) cyclohexane (TAPC) 
and C70, and achieved an external quantum efficiency 
(EQE) over 1000%, a specific detectivity (D*) over 1011 
Jones (cm Hz1/2/W) [18]. Wang et  al. reported a mixed 
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tin–lead perovskites (MASn1−xPbxI3) photodetec-
tors by using low-bandgap (FASnI3)0.6(MAPbI3)0.4 per-
ovskite (FA = formamidinium) as the active layer, and 
achieved an EQE larger than 65% under − 0.2  V bias, a 
D* of 1011 ~ 1012 Jones in the wavelength range of 350–
900  nm [19]. Han et  al. developed a polymer photode-
tector by inserting cathode and anode interlayers, and 
achieved a D* over 1012 Jones in the wavelength range of 
300–1700  nm [20]. Ma et  al. utilized a ZnO/In2O3 het-
erojunction to improve sensing performance [21]. Zhang 
et al. fabricated a asymmetric supercapacitors with high 
energy density by using 3D hierarchical CoWO4/Co3O4 
nanowire arrays [22]. And core–shell heterostruc-
tures were also used in nano structures [23]. Recently, 
our group has also demonstrated some broad spectral 
organic photodetectors based on planar heterojunction 
or hybrid planar-bulk heterojunction [24–26]. In addi-
tion, organic photodetectors have the advantages of low 
cost, high flexibility and large-area scalability, which 
make organic photodetectors have special research value 
and broad application prospects in the traditional opto-
electronic field [27–30].

Generally speaking, the broad spectral photodetectors 
can be classified into three categories: phototransistors, 
photodiodes and photoconductors, and the structures 
include planar structure, bulk heterostructure and hybrid 
structure [31–33]. With further research, a series of 
methods have been adopted to improve the performance 
of organic photodetectors, such as developing new mate-
rials, optimizing device structure, doping quantum dots 
and inserting the inducing layers [34–38]. In this paper, 
we reported the broad spectral organic–inorganic hybrid 
photodiodes (OIHPDs) based on planar-bulk heterojunc-
tion of Si/C60/3,4,9,10-perylenetertracarboxylic dian-
hydride: copper phthalocyanine (PTCDA:CuPc) /Au. 
C60 presents numerous exciting chemical and physical 
properties and has been widely employed as an efficient 
trapping material in various optoelectronic applications. 
It is worth mentioning that the C60 film was introduced 
as a hole-blocking layer to enhance the barrier height 
for blocking hole transport. Thereby, the dark current 
was significantly reduced, and the spectral response 
was covered from visible light to near-infrared using 
PTCDA:CuPc as a light absorbing layer. The resulting 
organic photodetectors showed a specific detectivity over 
1011 Jones in the spectral range of 405–655 nm.

Methods
Fabrication of Devices
The device configuration of the OIHPDs is depicted in 
Fig. 1, in which P-type silicon was used as the substrates, 
C60 films as buffer layers, organic bulk heterojunction as 
photosensitive layers and gold films as the top electrodes. 

Furthermore, the molecular structures of the organic 
materials are also inserted into Fig. 1 to understand the 
principle of the devices. For device fabrication, the p-type 
silicon substrates were successively cleaned by acetone, 
alcohol and deionized water for 10  min each, and then 
dried with floating N2 gas and baked in a vacuum oven 
at 60 °C for 20 min. Through a quartz crystal oscillator, it 
can monitor the different thickness of the films, and con-
trol the baffle and shadow masks, different thicknesses 
C60 (δ = 0, 5, 10, 20 and 30  nm, δ is the C60 thickness) 
films were deposited on the cleaned p-type silicon sub-
strates by vacuum thermal evaporation. Following that, 
30  nm-thick PTCDA:CuPc (weight ratio 1: 1, both pur-
chased from Aladdin Biochemical Technology Co., Ltd.) 
bulk heterojunction films were vacuum evaporated on 
the top of C60 films. Next, the gold top electrodes were 
deposited on the organic films by shadow masks. During 
the deposition process, the chamber pressure was main-
tained below 3 × 10–4  Pa and the evaporation rate was 
kept at 0.1–0.2 Å/s. The effective area of each photode-
tector is 0.06 cm2.

Characterization of Devices
The absorption spectra of films were measured by using 
TU-1901 spectrometer. All measurements were per-
formed using a semiconductor characterization system 
in a dark chamber at room temperature. Laser diodes 
with wavelengths of 405  nm, 450  nm, 532  nm, 655  nm 
and 808 nm were used as the light source, and the differ-
ent optical powers were realized by using neutral density 
filters.

Results and Discussion
Figure 2a depict the optical absorption spectra of 30 nm-
thick PTCDA:CuPc films on different thicknesses C60 
films and C60 single layer. Here, the PTCDA:CuPc films 

Fig. 1  The schematic structure of devices based on hybrid 
planar-bulk heterojunction. The insets are molecular structures of 
PTCDA, CuPc and C60
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show strong light absorption in the spectrum range 
of 200–400  nm and a uniform light absorption in the 
spectrum range of 450–700  nm. It is worth noting that 
a remarkably enhanced absorption was found from 
200 to 500  nm when different thickness C60 films were 
inserted between the interface of the quartz glasses and 
PTCDA:CuPc films, which could be attributed to the 
absorption of C60 film dominates in the spectrum range 
of 200–500  nm. Figure  2b–d shows the XRD and AFM 
images of PTCDA:CuPc on 10  nm C60 film and single 
PTCDA:CuPc film. The double layer show an additional 
peak at 31.9°. As shown in the AFM images, the surface 

of the PTCDA:CuPc film is similar with or without the 
C60 layer. However, the roughness of the photosensitive 
film on the C60 layer is slightly higher. This shows that 
the addition of C60 does not significantly improve the 
performance of the device optically, or even not at all. 
Therefore, we believe that the improvement of device 
performance comes from the hole blocking effect of C60.

The crystallite size (D) can be calculated by

where k is a constant, equal to 0.89, λ is X-ray wavelength 
of 0.15405 nm, β is full width at half maxima (FWHM) of 

(1)D = k�/(β cos θ),

Fig. 2  a Optical absorption spectra of C60 single layer (30 nm) and PTCDA:CuPc (30 nm) films deposited on C60 film of different thicknesses. All films 
were deposited on quartz glasses. b XRD spectrum of PTCDA:CuPc films with and without C60 film. And AFM images of c C60/PTCDA:CuPc and d 
PTCDA:CuPc films
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diffraction peak, θ is diffraction angle. The FWHM of the 
peak at 2θ = 31.9 is 0.1617°. The calculated crystallite size 
is about 50 nm, which is consistent with the AFM image.

Figure  3a shows the typical I–V characteristics of the 
OIHPDs based on bulk heterojunction without C60 in the 
dark and under illumination of 532  nm laser. It is clear 
that the dark current is a bit large at a reverse bias voltage 
of − 10 V, which is as high as 1615.9 μA. The dependences 
of photocurrent on the reverse bias voltage are shown in 
Fig.  3b. It is seen that the photocurrent increases obvi-
ously with the incident optical power and gradually 
becomes saturated with reverse bias voltage increasing, 
which exhibits standard photodiode characteristics.

As an important parameter of photodetectors, the pho-
toresponsivity (R) is defined as the value of the photocur-
rent (Iph) which generated in the external circuit under 
illumination of unit incident optical power (Pin), that is 
[39]

Another important parameter characterizing photo-
detectors is the specific detectivity (D*). Here we ignore 
the power spectral density of other noise sources such as 
flicker or thermal noise, it can be described as [40]

where q is the elementary electric charge, Jdark is the dark 
current density.

Figure  4a shows the dependence of photoresponsivity 
R on the wavelength at a reverse bias voltage of − 10 V 
and an incident optical power of ~ 0.1 mW. In the broad 

(2)R =
Iph

Pin
.

(3)D∗ =
R

√
2qJdark

,

spectral response range from 405 to 808 nm, the respon-
sivities of the OIHPD without C60 film (C60-free OIHPD) 
are all greater than 0.68 A/W. Especially, at the wave-
length of 655 nm, the highest responsivity value is as high 
as 2.57 A/W. In addition, photoresponsivity generally fol-
lows the absorption spectrum of heterojunction films. 
As shown in Fig. 4b, under different wavelengths of light, 
the photoresponsivity decreased linearly with the inci-
dent light power increased in the logarithmic coordinate. 
Moreover, the maximal photoresponsivity is 8.13 A/W 
under 655 nm wavelength illumination with an incident 
optical power of 0.003 mW, and the minimal photore-
sponsivity is 0.32 A/W under 808 nm wavelength illumi-
nation with an incident optical power of 3.29 mW.

Figure 5 shows the I–V characteristics of the OIHPDs 
with different thicknesses C60 films (C60-OIHPDs) in the 
dark and under 532 nm laser illumination. All measure-
ments were conducted in the same reverse bias voltage 
range with different incident optical power. It is observed 
that the dark currents were 92.1 μA (Fig.  5a), 25.6 μA 
(Fig. 5b), 149.0 μA (Fig. 5c) and 179.8 μA (Fig. 5d), which 
corresponded to the C60 thickness of 5 nm, 10 nm, 20 nm, 
30 nm, respectively. Additionally, the C60-OIHPDs exhib-
ited much lower dark current (Fig. 3a vs Fig. 5), and the 
minimum dark current of C60-OIHPDs was 25.6 μA 
when the C60 film thickness is 10 nm, which is about 63 
times smaller than it of the C60-free OIHPD. Moreover, it 
is interesting to find that the dark current decreased first 
and then increased with increasing C60 thickness. Con-
sidering the energy level, a mechanism explanation as 
shown in Fig. 6 is proposed to support the phenomenon 
of the above OIHPDs. It is noteworthy that the energy 
levels of valence band (Ev) (5.24 eV) of p-type silicon, the 
highest occupied molecular orbital (HOMO) (5.3 eV) of 

Fig. 3  a The I–V characteristics of the device Si/PTCDA:CuPc (30 nm)/Au in the dark and under 532 nm laser illumination with different optical 
power. b The dependences of photocurrent on the reverse bias voltage under 532 nm laser illumination with different optical power
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Fig. 4  a The dependence of photoresponsivity R on the wavelength. b The logarithmic dependences of R on the incident optical power Pin. All 
results were obtained at a reverse bias voltage of − 10 V and an incident optical power of ~ 0.1 mW

Fig. 5  The I–V characteristics of the device Si/C60/PTCDA:CuPc (30 nm)/Au in the dark and under 532 nm laser illumination with different optical 
power. The thicknesses of C60 films are a 5 nm, b 10 nm, c 20 nm and d 30 nm, respectively
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CuPc and the work function of the gold electrode (5.1 eV) 
match well for hole transport in the absence of the C60 
layer. Therefore, the holes can reach p-type silicon easily 
under a very low voltage bias, which causes a large dark 
current in the C60-free OIHPD. Fortunately, the HOMO 
(6.4  eV) of C60 is higher than the HOMO (5.3  eV) of 
CuPc, which means it will match better (Δ = 1.1 eV) for 
blocking hole transport. This is consistent with the exper-
imental results that a high dark current of 1615.9 μA in 
the C60-free OIHPD and a low current of 25.6 μA in the 
C60-OIHPD. However, as an excellent electron transport 
material with high electron mobility (> 1.3 cm2  V−1  s−1) 
[41], a small amount of electrons can still easily reach 
the lowest occupied molecular orbital LUMO (4.2  eV) 
of C60 from the guide band Ec (4.05  eV) of p-type sili-
con. Thus, as the thickness of C60 film increasing, we 
infer that the injection of electrons is enhanced. In this 
regard, it has been reported that the strain relaxation in 
the multilayer film is related to the film thickness [42, 43]. 

Consequently, it is reasonable to assume that a thicker 
C60 film can provide broader space for the multilayer 
film, thereby more effectively alleviating the interplanar 
stress. In addition, the promotion of electron transport 
by the C60 film has become the dominant factor affect-
ing dark current, which may be due to the increase of the 
dark current when the thickness of the C60 film exceeds 
10 nm.

In order to better understand the effects of C60 thick-
ness on device performance, the relationship curves 
about the dependences of photoresponsivity R on the 
thickness of C60 films is plotted in Fig.  7a. Under the 
wavelength of 405–532 nm, there is an overall trend that 
R firstly increased and then decreased with C60 thickness 
increasing, and the maximum value of R was reached 
with 10  nm thick C60 film. It is indicated that C60 film 
does enhance optional absorption from 200 to 500  nm, 
which is consistent with the absorption spectrum of C60 
single layer (Fig. 2). But the thicker C60 film will also lead 
to smaller photocurrent and smaller R, this is probably 
because C60 film hinders the transmission of portion of 
the photogenerated carriers. As for the wavelength of 
450–532  nm, R significantly decreased when the thick-
ness of C60 increasing from 0 to 5 nm, we speculate that 
the inhibitory effect of the C60 film on the photocurrent 
is greater than the enhancement effect at this time. Under 
the wavelength of 655–808 nm, R decreased continuously 
as the thickness of C60 increasing, since the C60 film has 
no significant enhancement effect at the wavelength of 
655–808 nm. Figure 7b shows the dependences of D* on 
the thickness for different wavelengths. The D* of device 
under different wavelengths illumination firstly increased 
with C60 thickness increasing and reach a maximum 

Fig. 6  The energy level diagram and charge generation kinetics and 
transport mechanisms

Fig. 7  The dependences of a photoresponsivity R on the different C60 thicknesses, b specific detectivity D* on the thickness for different 
wavelengths. All results were obtained at a reverse bias voltage of − 10 V and an incident optical power of ~ 0.1 mW
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value at 10 nm, then decreased. The results above mani-
fest that the optimized C60 thickness is 10  nm, which 
makes the D* reach the maximum. For the OIHPD with 
10  nm C60 film (10  nm-C60 OIHPD), the D* over 1011 
Jones in the wavelength range of 405–655  nm, and the 
highest D* value is 1.96 × 1011 under the illumination of 
450  nm wavelength. Compared with C60-free OIHPD, 
the D* of 10 nm-C60 OIHPD is almost one order of mag-
nitude larger in the wavelength range of 405–808  nm 
(details in Table 1).

Figure  8a shows the dependence of photoresponsiv-
ity R on the wavelength for an incident optical power 
of ~ 0.1 mW at − 10  V. It is worth mentioning that the 
peak value of responsivity of 10 nm-C60 OIHPD changes 
to around 450  nm from 655  nm of C60-free OIHPD 
(Fig. 8a vs Fig. 4a) due to the addition of C60 film, which 
enhanced the absorption spectrum from 200 and 500 nm 
(Fig.  2). Furthermore, significantly reduced responsiv-
ity values are obtained at the wavelength of 655 nm and 
808  nm (Fig.  8a vs Fig.  4a) due to C60 film which hin-
ders the transmission of portion of the photo-generated 

carriers. As shown in Fig. 8b, it is seen that the 10 nm-C60 
OIHPD has the best responsivity under the illumination 
of 450 nm because of the influence of C60 film. And the 
maximal responsivity is 4.53 A/W at an incident optical 
power of 0.004 mW of 450 nm, the minimal responsivity 
is 0.30 A/W at an incident optical power of 3.29 mW of 
808 nm, respectively.

Conclusion
In summary, the photodiodes based on hybrid planar-
bulk heterojunction with different thicknesses C60 films 
were fabricated and characterized. The broad spectral 
region response from visible to near-infrared demon-
strated that using C60 films as hole-blocking layer can 
effectively enhance the performance of broad spec-
tral OIHPDs. Specifically, the OIHPD with 10  nm-C60 
film exhibited the optimized performance with a 
much lower dark current of 25.6 μA, which is about 
63 times smaller than that of C60-free OIHPD. A sche-
matic energy level model combined with experimental 
measurements is well capable of explaining the origin 

Table 1  Comparison of the photosensitive performance of broad spectral OIHPDs with different C60 thicknesses

a All results were obtained at a reverse bias voltage of − 10 V and an incident optical power of ~ 0.1 mW

Device

C60 thickness R (AW−1)a D* (× 1011 Jones)a Idark (μA)a

Wavelength (nm) 405 450 532 655 808 405 450 532 655 808

0-nm 0.94 1.64 1.79 2.57 0.68 0.10 0.18 0.19 0.28 0.07 1615.0

5-nm 1.11 1.56 1.15 1.96 0.41 0.50 0.70 0.52 0.88 0.19 92.1

10-nm 1.34 2.30 1.97 1.41 0.34 1.15 1.96 1.69 1.21 0.29 25.6

20-nm 0.91 1.55 1.27 0.62 0.27 0.32 0.55 0.45 0.22 0.10 149.0

30-nm 0.44 0.87 0.86 0.41 0.16 0.14 0.28 0.28 0.13 0.05 179.8

Fig. 8  a The dependence of photoresponsivity R on the wavelength. b The logarithmic dependences of R on the incident optical power Pin. All 
results were obtained at a reverse bias voltage of − 10 V and an incident optical power of ~ 0.1 mW
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of decreased dark current. Furthermore, the D* of the 
10  nm-C60 OIHPD was almost one order of magni-
tude larger than the C60-free photodiode, and a nota-
ble enhancement of over 1011 Jones was obtained due to 
the fiercely reduced dark current.
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