Table 9.
Comparison of models based on respective evaluation metrics for CIC IDS 2018.
Model | Accuracy | Precision | Recall | F1 | ROC-AUC Score | Training loss | validation loss | Testing loss |
---|---|---|---|---|---|---|---|---|
ImmuneNet | 99.78 | 99.77 | 99.78 | 99.7 | 99.786 | 0.0036 | 0.0023 | 0.0025 |
XGB | 99.00 | 99.03 | 99.00 | 99.01 | 98.98 | 0.0141 | 0.0366 | 0.0389 |
Random forest | 98.81 | 98.82 | 98.81 | 98.81 | 98.31 | 0.0989 | 0.0782 | 0.0801 |
Decision trees | 98.69 | 93.41 | 98.79 | 96.03 | 98.731 | 0.1054 | 0.1031 | 0.1053 |
Logistic regression | 87.96 | 90.8 | 87.96 | 88.99 | 81.537 | 0.3520 | 0.2877 | 0.2798 |