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Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality. The 
tumor immune microenvironment plays an important role in promoting cancer 
development and supports GC progression. Accumulating evidence shows that 
GC cells can exert versatile mechanisms to remodel the tumor immune microen-
vironment and induce immune evasion. In this review, we systematically 
summarize the intricate crosstalk between GC cells and immune cells, including 
tumor-associated macrophages, neutrophils, myeloid-derived suppressor cells, 
natural killer cells, effector T cells, regulatory T cells, and B cells. We focus on how 
GC cells alter these immune cells to create an immunosuppressive microenvir-
onment that protects GC cells from immune attack. We conclude by compiling the 
latest progression of immune checkpoint inhibitor-based immunotherapies, both 
alone and in combination with conventional therapies. Anti-cytotoxic T-
lymphocyte-associated protein 4 and anti-programmed cell death protein 
1/programmed death-ligand 1 therapy alone does not provide substantial clinical 
benefit for GC treatment. However, the combination of immune checkpoint 
inhibitors with chemotherapy or targeted therapy has promising survival 
advantages in refractory and advanced GC patients. This review provides a 
comprehensive understanding of the immune evasion mechanisms of GC, and 
highlights promising immunotherapeutic strategies.
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Core Tip: Gastric cancer (GC) is one of the most common malignancies with high 
incidence and mortality. GC can exert versatile mechanisms to induce immune evasion. 
Here, we systematically summarized the intricate crosstalk among GC cells and 
various immune cells and mainly focused on how GC cells educate immune cells to 
create an immunosuppressive microenvironment and facilitate GC cells from attack of 
the immune system. In addition, we retrieved the latest progression of immune 
checkpoint inhibitor-based immunotherapies and their combination with conventional 
therapies. This review provides a comprehensive understanding of the immune evasion 
mechanism and immunotherapeutic strategies in GC.
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INTRODUCTION
Gastric cancer (GC) is the fifth most common malignancy worldwide and causes the 
third most cancer-related deaths. Traditional treatment strategies, including 
gastrectomy, neoadjuvant chemotherapy, and targeted therapy, have made great 
progress in recent decades, all of which has markedly improved the prognosis of GC
[1]. Recently, immune checkpoint inhibitors, such as programmed cell death protein 1 
(PD-1) and programmed death-ligand 1 (PD-L1) antibodies, have been approved for 
the treatment of refractory and metastatic GC patients[2,3]. However, only a small 
fraction of GC patients may benefit from immune checkpoint inhibitor treatment[4]. 
The overall and progression-free survival of GC remain disappointing. The median 
survival of refractory and advanced patients is usually less than 2 years[5]. Therefore, 
it is necessary to further explore the underlying mechanisms of GC development and 
to understand how GC cells escape from the antitumor immune response in order to 
identify novel biomarkers and develop effective therapeutic strategies for treating GC.

Accumulating evidence shows that the tumor microenvironment (TME) plays an 
important role in cancer development[6]. The TME is highly heterogeneous and 
includes a mix of stromal cells, macrophages, neutrophils, natural killer (NK) cells, T 
and B cells, and some negative regulatory cells. Intricate crosstalk between the cancer 
cells and immune cells can promote cancer progression, including in GC[7]. Theoret-
ically, tumor cells have potential immunogenicity and should be recognized and 
eliminated by the host immune system. However, antitumor immunity is usually 
subverted by cancer cells[7]. It has been widely reported that GC cells can exert 
numerous mechanisms to evade immune attacks[8]. For instance, GC cells can release 
cytokines, chemokines, and growth factors to create an immunosuppressive microen-
vironment, recruit negative regulatory immune cells, or inhibit the antitumor activity 
of effector lymphocytes[8]. After exposure to GC cells, immune cells may lose their 
antitumor function and instead facilitate GC cell proliferation, metastasis, 
angiogenesis, and immune evasion. Successful cancer treatment should therefore both 
restore antitumor activity and block immunosuppression.

In the present review, we summarize the multiple mechanisms of immune evasion 
mediated by different immune cells and highlight the latest achievements in immuno-
therapy for treating GC. This systematic summary will provide a comprehensive 
understanding of cancer immunity and current immunotherapeutic strategies in GC.

MECHANISMS OF IMMUNE EVASION IN GC
The TME plays an important role in cancer development and progression. There is 
intricate crosstalk between cancer cells and the TME. Cancer cells can exert 
mechanisms that remodel the TME, thus triggering immune evasion and promoting 
the malignant progression of cancer. Several studies have delineated the interplay 
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between GC cells and specific immune cell types, which will be discussed in detail 
below.

Tumor-associated macrophages induce immunosuppression in GC
Macrophages are a major component of tumor-infiltrating lymphocytes. Tumor-
associated macrophages (TAMs) play a crucial role in angiogenesis, metastasis, and 
immunosuppression. TAMs can be classified into two subtypes: M1 or classically 
activated macrophages, and M2 or alternatively activated macrophages. M1s have 
antitumor activity, whereas M2s support cancer development. M2-TAMs are 
remarkably enriched in GC samples and are closely associated with invasion, 
metastasis, peritoneal dissemination, and unfavorable prognosis[9,10]. TAMs can 
induce GC invasion through activating epidermal growth factor receptor, c-Src, 
Erk1/2, Akt, and small GTPase activity in GC cells[11]. Wang et al[9] showed that 
TAM-derived CCL5 bound to its receptor CCR5, resulting in signal transducer and 
activator of transcription 3 (STAT3) activation and increased DNMT1 expression, 
which epigenetically silenced the tumor suppressor GSN in GC. TAMs can also secrete 
CXCL1 and CXCL5 to trigger the CXCR2/STAT3 signaling cascade and increase 
tumor necrosis factor (TNF)-α release from GC cells[12]. Reciprocally, TNF-α can 
enhance CXCL1 and CXCL5 release from TAMs. The positive feedback loop between 
GC cells and TAMs promotes cancer metastasis[12].

Exosomes play a crucial role in mediating the crosstalk between GC and TAMs. GC-
derived exosomes induced PD1+ TAM generation, which inhibited the function of 
CD8+ T cells and aggravated GC progression[13]. TAM-derived exosomes could 
transmit functional ApoE into GC cells, thereby activating the PI3K/Akt pathway to 
remodel the cytoskeleton and promote migration of GC cells[14]. In addition to 
inducing malignant features of GC cells, TAMs can also affect the antitumor function 
of immune cells. Peng et al[15] reported that TAMs impaired NK cell function through 
transforming growth factor (TGF)-β1 in GC, which decreased the expression of 
effectors including interferon (IFN)-γ, TNF-α, and Ki-67. TAM-derived CXCL8 
abolished proliferation and infiltration of CD8+ T cells via autonomous PD-L1 
expression in GC[16].

Although the immunosuppressive role of TAMs is widely substantiated, there 
remains a lack of effective approaches to target TAMs for cancer therapy. The 
underlying mechanisms and therapeutic implications of targeting TAMs still need to 
be explored.

Neutrophils mediate immune evasion in GC
Neutrophils are the predominant leukocytes in humans. The role of neutrophils in 
different cancer types is controversial because they can exert either tumor-promoting 
or tumor-suppressing effects depending on the cancer type. Neutrophils are abundant 
in peripheral blood and solid tumors, including in GC. Enriched neutrophils were 
significantly associated with larger tumor size, advanced TNM stage, and poor 
survival for patients with GC[17,18]. GC cells and the TME can exert multiple 
regulatory roles to remodel neutrophils and promote cancer development. GC cell-
derived GM-CSF could activate and increase PD-L1 expression in neutrophils via 
activating the JAK/STAT3 signaling pathway. As a result, the PD-L1+ neutrophils 
inhibited proliferation and decreased IFN-γ expression in T cells, thereby inducing 
immunosuppression in GC[19]. Another study showed that the interleukin 17 (IL-17)+ 
neutrophil subpopulation was more abundant in the invasive margins of GC samples. 
This type of neutrophil can release IL-17 to recruit more neutrophils to the invasive 
frontier by CXC chemokines, which can in turn secrete matrix metallopeptidase 9 into 
the reprogrammed extracellular matrix and promote angiogenesis in GC[20].

Reciprocally, neutrophils can facilitate the acquisition of malignant phenotypes by 
cancer cells. The GC environment has high levels of CXCL5, which can stimulate the 
ERK pathway in GC cells to induce epithelial-mesenchymal transition. Conversely, 
CXCL5 also influences neutrophils to activate the ERK/P38 cascade and increase IL-6 
and IL-23 expression, which in turn stimulates the invasion and metastasis of GC cells
[21]. Recent studies have discovered that neutrophil extracellular traps (NETs) play an 
important role in cancer progression and may trap and protect cancer cells to facilitate 
distant metastasis. The DNA component of NETs can function as a chemotactic factor 
to attract cancer cells through its receptor CCDC25 on cancer cells and activate the 
ILK-β-parvin pathway to enhance cell migration[22]. NET levels were increased and 
linked to advanced tumor stage in GC. However, the mechanisms of NET formation 
and regulation remain unclear in GC and should be further investigated.
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Myeloid-derived suppressor cells regulate immunosuppression in GC
Myeloid-derived suppressor cells (MDSCs) are rapidly becoming a hotspot in the field 
of cancer immunity. MDSCs act as immunosuppressive cells to stimulate tumor 
growth and metastasis and modulate immune evasion. MDSCs are attracted to the 
tumor parenchyma by the interaction between CCL5 and CCR5 in GC[23]. Anti-CCR5 
could effectively block the recruitment of MDSCs, and enhance the efficacy of anti-PD-
L1 treatment in mice[23]. Some other chemokines, including CXCL12, CXCL5, and 
CCL2, are also responsible for the recruitment of MDSCs in GC[24]. Tumor-derived 
exosomes can affect MDSCs and thus exert a tumorigenic role. For example, GC-
derived exosome miR-107 is taken up by MDSCs where it silences the expression of its 
targets PTEN and DICER and activates the PI3K/AKT pathway, leading to MDSC 
expansion[25].

There are various MDSC subsets in GC. A subset of MDSCs with CD45+CD33low

CD11bdim was specifically enriched in GC, which could effectively suppress CD8+ T 
cell proliferation and IFN-γ and granzyme B expression. Mechanistically, GC patient 
serum-derived IL-6 and IL-8 activated the PI3K/AKT signaling pathway in this MDSC 
subtype to increase AGRI expression and mediate T cell suppression. The presence of 
CD45+CD33lowCD11bdim cells, as well as IL-6, IL-8, and ARG I serum levels were 
positively correlated with GC progression and were negatively linked to overall 
patient survival[26].

In a mouse model of GC, Hsu et al[27] found that silencing STK24 expression could 
accelerate orthotopic tumor growth and induce MDSC infiltration into the tumor. 
Chemotherapeutic treatment could reduce MDSC enrichment in spontaneous gastric 
tumors in mice and improve the effects of anti-PD-1 therapy. Combining PD-1/PD-L1 
blockade with MDSC targeting may be a promising strategy to prevent the progre-
ssion and development of GC[28].

NK cells and GC development
NK cells, as important effectors of host immunity, induce cancer cell apoptosis by 
secreting IFN-γ[29], TNF-α[30], or by forming the complexes Fas/FasL and TRAIL/ 
TRAILR[31]. NKG2D is an essential receptor for NK activation, and MICA and MICB 
are the well-known suppressive ligands of NKG2D that inhibit NK function[32,33]. 
Several studies have found that GC cells could reduce NKG2D expression and inhibit 
NK cell function through the release of soluble MICA and MICB. For example, 
Midkine could increase CHOP expression and form complexes with transcriptional 
factor AP-1, thereby increasing MICA/B expression and inhibiting NK cytotoxicity
[34]. STA21 increased MICB expression and secretion by inhibiting the STAT3 
pathway, which in turn repressed NKG2D expression and impaired NK function[35]. 
Matrix metallopeptidase inhibition could upregulate NKG2D ligand expression and 
increase NK activity in GC[36].

Cytokines, including IL-10, TGF-βl, and PGE2, could abolish the antitumor function 
of NK cells in GC[37]. There is mounting evidence that NK cells preferentially target 
cancer stem cells[38]. Recent research has found that the vital cancer stem cell marker 
CD133 can effectively activate NK cells in an NKG2D-dependent manner[39]. 
However, DKK3 inhibits CD133-induced NK cell activation by suppressing the ERK 
pathway and immune synapse formation[39]. Another recent study found that 
vinculin could induce epithelial-mesenchymal transition in GC cells and affect NK cell 
infiltration, which potentially predicts inferior prognosis and distant metastasis of GC
[40]. It is critical to restore NK cell function and cytotoxicity to effectively treat GC, 
which should be carefully considered in combinatory treatment strategies.

T cell immunity in GC
T cell immunity is the most important component in the immune response to cancer. 
There are many subtypes of T cells, such as CD4, CD8, helper T (Th) 17, Th22, memory 
T, and regulatory T cells (Tregs). Each of the T cell subsets has its specific function, 
which include antitumor activity and immune evasion. CD8+ T cells and Tregs are two 
currently well-established lymphocytes that are involved in cancer immunity.

Metabolic reprogramming plays an important role in T cell-mediated immunity 
against cancer. CD155 on the surface of GC cells can bind to the immune checkpoint 
molecule TIGIT on the surface of T cells, which prevents T cells from metabolizing 
glucose, decreases IFN-γ production, and abolishes the cytotoxicity activity of CD8+ T 
cells[41]. Recently, it was determined that cancer cells can compete with T cells for 
nutrients, rendering T cells inactive. Lin et al[42] found that the infiltration of tissue-
resident memory T cells (Trm) was markedly associated with a favorable prognosis in 
GC. Trm cells mainly rely on fatty acid oxidation, rather than glucose, for their energy 
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supply. However, GC cells make use of a more efficient pathway to metabolize fatty 
acids than Trm cells, which results in Trm starvation and death[42].

Tregs are well-known immunoregulatory cells that can suppress the proliferation 
and cytokine secretion of T effector cells. However, the correlation between Treg infilt-
ration and GC prognosis remains unclear, and there have been many contradictory 
results because of different Treg markers, location distances, and intracellular 
interactions. GC cells can release cytokines to recruit Tregs, including CCL17, CCL22, 
and CCL28. GC cells can also induce CD4+ naïve T cells to differentiate into Tregs via 
TGF-β and induced immunosuppression[43-45]. Tregs can exert mechanisms to 
abolish the cytotoxicity of T cells. Recently, Shi et al[46] reported that Tregs and the 
A2aR+/CD8+ T cell subpopulations were enriched in GC samples. Tregs can 
hydrolyze ATP into adenosine, which was taken up by CD8+ T cells through the 
adenosine A2aR pathway, inhibiting CD8+ T cell proliferation and inducing apoptosis
[46]. An investigation on GC resistance to checkpoint blockade found that these 
patients frequently had an RHOA mutation. RHOA mutations activate the PI3K-AKT-
mTOR signaling cascade, producing free fatty acids, which Tregs could consume more 
efficiently than effector T cells. This metabolic advantage of Tregs enabled them to 
accumulate within GC tissue and generate an immunosuppressive TME, thus limiting 
the efficacy of immune checkpoint blockade[47].

Understanding the regulatory mechanisms of T cell immunity is of critical 
importance to the goal of eliminating cancer cells, and there are still many unknown 
factors in this complex biological network.

B cells induce immune evasion in GC 
B cells have a dual role in the immune system and can participate in antibody 
production and antigen presentation. CD20+ B cell infiltration is associated with better 
tumor prognosis[48]. A recent study found that the protective effect of CD20+ B cells 
may be related to the production of antibodies by sulfated glycosaminoglycan-induced 
functional B cells, which strongly inhibit the growth of GC[49]. In addition to the 
elimination of GC cells, a subpopulation of B cells with an inhibitory phenotype, 
known as Bregs, have recently come to the attention of researchers. Bregs can produce 
several inhibitory cytokines, including IL-10, TGF-β, and IL-35[50]. Furthermore, Bregs 
can express inhibitory molecules, such as FasL and PD-L1[51,52]. Bregs in GC can 
enhance IL-10 production by CD4+ and CD8+ T cells to accelerate tumor growth[53]. 
A different study showed that Bregs have no impact on the proliferation of CD3+ T 
cells or CD4+ Th cells but instead inhibit the secretion of IFN-γ and TNF-α by CD4+ Th 
cells and convert CD4+CD25 effector T cells to CD4+FoxP3+ Tregs via TGF-β1[54]. 
These findings demonstrate that Bregs can exert immunosuppressive effects in GC 
development, the detailed mechanisms of which require urgent clarification.

With the progression of high-throughput sequencing technology and multi-omics 
platforms, widespread cellular remodeling events have been identified in GC and the 
TME, including genomic alteration, transcriptional states, epigenetic reprogramming, 
intercellular interactions, and metabolic reprogramming. These new insights provide 
valuable knowledge that will explain cancer immune evasion and facilitate the 
development of novel immunotherapies.

Collectively, there exists complex interplay between GC cells and various immune 
cells as described in Figure 1.

PROGRESS OF CHECKPOINT INHIBITOR-BASED IMMUNOTHERAPY IN 
GC
Immunotherapy has achieved impressive success in cancer treatment to date. A series 
of clinical trials of immunotherapeutic agents have been carried out for the treatment 
of GC. In this section, we will introduce the effects of checkpoint inhibitor-based 
immunotherapy in GC and focus on methods for selecting patients who will benefit 
from such therapy.

The immune checkpoint is a class of signaling molecule that regulates antigen 
recognition of T cell receptors during the immune response. Immune checkpoints can 
be categorized into co-stimulatory and co-inhibitory subtypes. The most common 
immune checkpoint blockers, which target co-inhibitory receptors of T cells, are 
antibodies against CTLA4, PD-1, and PD-L1 that can reinvigorate the anti-tumor 
immune activity of T cells.
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Figure 1 Overview of interactions between gastric cancer cells and various immune cells. PD-L1: Programmed death-ligand 1; TGF: Transforming 
growth factor; IL: Interleukin; TNF: Tumor necrosis factor; MDSC: Myeloid-derived suppressor cell; GC: Gastric cancer; NK: Natural killer; TAMs: Tumor-associated 
macrophages; IFN: Interferon; GZM: Granzyme; Treg: Regulatory T cell; Breg: Regulatory B cell; MMP: Matrix metalloproteinase; EGF: Epidermal growth factor.

Anti-CTLA4 in GC treatment
The initial study of anti-CTLA-4 in GC was a small phase II trial with the antibody 
tremelimumab, which enrolled 18 patients with metastatic gastric and esophageal 
adenocarcinomas. Patients were treated with an intravenous infusion of 
tremelimumab. Although some patients showed stabilization or even remission, the 
objective response rate (ORR) for tremelimumab alone was unsatisfactory, as only in 1 
of 18 patients (5.5%) reached the primary endpoint[55]. Another study using anti-
CTLA-4 antibodies was a phase II trial of ipilimumab, which enrolled 57 patients with 
advanced/metastatic gastric or gastroesophageal junction cancer (GEJC). The clinical 
endpoints of the study were immune-related progression-free survival (PFS), PFS, 
overall survival (OS), and immune-related best overall response rate. The best 
supportive care group had an immune-related best overall response rate of 7.0% (n = 
4/57), the median immune-related PFS was 4.90 mo, and the 12-mo immune-related 
PFS was about 10% without any improvement. Based on these findings, targeting 
CTLA-4 alone is not considered to be an effective remedy for GC[56].

PD-1 and PD-L1 inhibitors in GC
Blockade of PD-1 and its ligand PD-L1 confers an encouraging survival advantage in 
several malignancies, including GC. KEYNOTE-012 was the first clinical trial of 
pembrolizumab, an antibody against PD-1, in 39 advanced GC patients. A sustained 
antitumor response was observed, and the median OS was 11.4 mo, which was better 
than the OS of 4-8 mo in the conventional chemotherapy group[57]. KEYNOTE-028 
was another pembrolizumab trial that included 23 eligible patients with squamous cell 
carcinoma or adenocarcinoma of the esophagus or gastroesophageal junction who had 
failed standard therapy and had PD-L1-positive tumors. The ORR was 30%, and the 
median OS was 7.0 mo. In addition, this study developed a novel scoring system 
containing six immunomodulation-related IFN-γ-related genes, which significantly 
correlated with both PFS and ORR. Using this novel system, GC patients with higher 
scores frequently had a better response to pembrolizumab treatment[58].
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Subsequently, a large-scale, randomized phase III trial, KEYNOTE-061, was carried 
out to compare the efficacy of pembrolizumab and paclitaxel in patients with 
advanced gastric or GEJC that progressed on first-line chemotherapy with platinum 
and fluoropyrimidine. In total, 196 patients were enrolled in the pembrolizumab 
cohort and 199 in the paclitaxel cohort. PD-L1 combined positive score (CPS) and 
microsatellite instability were two main criteria for subgroup analysis. As expected, 
the safety of pembrolizumab was superior to that of paclitaxel, and the OS in the CPS ≥ 
1 group was better than in the low CPS group. Pembrolizumab had survival benefits 
in the long-term, with 12-mo and 18-mo survival rates of approximately 40% and 26%, 
respectively. Subgroup analysis suggested that the pembrolizumab response was more 
pronounced in patients with higher PD-L1 expression and high microsatellite 
instability levels[59].

Unlike pembrolizumab, which is an engineered humanized IgG4 antibody, 
nivolumab is a fully human IgG4 anti-PD-1 antibody. ATTRACTION-02, a phase III 
clinical trial, was conducted to evaluate the efficacy and safety of nivolumab in 
advanced and refractory GC or GEJC patients. Nivolumab showed a beneficial efficacy 
in GC and GEJC patients regardless of PD-L1 expression[2].

The efficacy of the PD-L1 monoclonal antibody avelumab has been compared with 
that of chemotherapy in chemotherapy-refractory GC or GEJC patients in the 
JAVELIN Gastric 300 trial. Unfortunately, avelumab failed to improve OS and PFS in 
this trial[60]. Subsequently, a global phase III clinical trial, named JAVELIN Gastric 
100, was conducted to investigate the efficacy of avelumab after first-line induction 
chemotherapy for GC and GEJC. In line with previous results, avelumab alone seems 
to be slightly inferior in ORR, median PFS, and OS compared with chemotherapy[61]. 
A phase Ib clinical trial, named JAVELIN Solid Tumor trial, was conducted to 
investigate the antitumor activity and safety of avelumab as first-line switch-
maintenance (1 L-mn) or second-line (2 L) treatment in patients with advanced 
GC/GEJC previously treated with chemotherapy. In this clinical trial avelumab 
showed clinical activity and an acceptable safety profile in patients with GC/GEJC
[62]. However, avelumab was better tolerated, even in advanced-stage patients, than 
chemotherapy, suggesting that avelumab could be used as part of a combinatory 
therapy.

Combination of different immune checkpoint inhibitors in GC treatment 
To explore whether combinations of different immune checkpoint inhibitors could 
synergistically resist cancer development, the CheckMate-032 trial was conducted to 
evaluate the safety and efficacy of nivolumab and nivolumab plus ipilimumab in 
chemotherapy-refractory GEJC patients. Nivolumab alone or combined with 
ipilimumab displayed a durable antitumor response and long-term OS benefits. 
Although increased toxicity was observed in the combination subgroup, the safety 
profile was manageable[63]. Recently, a phase Ib/II randomized controlled trial was 
performed to assess durvalumab and tremelimumab in combination or as 
monotherapy for chemotherapy-refractory GEJC patients. The response rates were low 
for both monotherapy or combination therapies. However, the combination therapy 
could significantly prolong the median OS and 12-mo OS. The tolerance of 
combination therapy was at an acceptable level. Therefore, this combination strategy 
may be an alternative option to improve the prognosis of these difficult-to-treat GC 
patients[64].

Immune checkpoint inhibitors combined with chemotherapy in GC
The clinical trial KEYNOTE-059 was initiated to evaluate the efficacy and safety of 
pembrolizumab alone or pembrolizumab combined with chemotherapy in patients 
with recurrent or metastatic GC and GEJC. The PD-L1 CPS score was found to be an 
effective tool to select patients who benefit from anti-PD-L1 treatment. Pembrolizumab 
monotherapy and in combination with chemotherapy displayed favorable antitumor 
activity and manageable tolerance as a first-line treatment[65]. Recently, the 
DURIGAST trial was designed to explore the efficacy of chemotherapy plus 
durvalumab (anti-PD-L1) vs chemotherapy plus durvalumab and tremelimumab (anti-
CTLA-4) as second-line treatment of advanced GC and GEJC. At present, the safety 
profile is manageable, and further follow-up is ongoing. The trial results are eagerly 
anticipated[66].

Immune checkpoint inhibitors combined with anti-angiogenesis agents in GC
Ramucirumab is an antibody targeting angiogenesis factor VEGFR2 that has shown 
promising efficacy in GC treatment. Recently, ramucirumab was combined with 
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pembrolizumab in a Phase 1a/b JVDF Trial to treat naïve advanced GC and GEJC 
patients. PD-L1-positive patients acquired a better prognosis than PD-L1 negative 
patients; the median PFS was 8.6 mo vs 4.3 mo, and the median OS was 17.3 mo vs 11.3 
mo, respectively. The adverse effects of ramucirumab plus pembrolizumab did not 
accumulate, suggesting a good safety profile[67]. Immunotherapy combined with 
targeted medicine may therefore be a novel option for treatment of advanced GC 
patients.

Overall, cancer immunotherapy has opened an exciting new avenue for cancer 
treatment. A series of immunotherapy and combination strategies have been 
conducted for the treatment of GC over the past few years as summarized in Table 1. 
Some of the clinical trials have achieved promising efficacy, and some have failed to 
improve prognosis. At present, there is still a lack of effective biomarkers to identify 
the patients that could potentially benefit from specific therapies. Novel strategies are 
needed to enhance the overall response rates and improve the prognosis of GC.

As shown in Table 1, some of the immunotherapeutic effects are not statistically 
significant. To figure out which factor is critical for immunotherapeutic outcome, we 
performed an extensive analysis and found that PD-L1 CPS is an essential determinant 
because the prognosis of patients with PD-L1 CPS ≥ 1 was significantly better than 
patients with PD-L1 CPS < 1 and the ORR value in PD-L1 CPS ≥ 1 subgroup nearly 
reached to twice that compared with the PD-L1 CPS < 1 patients[3,65,67]. These 
findings suggest that it is necessary to carry out precise PD-L1 CPS and identify the 
potential GC patients who may benefit from immunotherapy.

Although immunotherapy may achieve a marvelous effect in some specific patients, 
the expensive cost has become an unneglectable financial burden for patient families 
and the whole society[68]. The term “financial toxicity” is referred to this particular 
side effect of drug therapy, which directly affects the prognosis of patients[69]. 
Financial toxicity may limit drug availability, result in poor qualities of life and care, 
account for lower obedience to treatment, and further lead to disease deterioration and 
poverty. The vicious circle formed by financial toxicity and malignant cancer 
ultimately aggravates the poorer prognostic outcomes and even higher mortality[69]. 
To objectively evaluate the effects of financial toxicity, de Souza et al[70] created the 
Comprehensive Score for Financial Toxicity, a quantitative measure of financial 
distress in cancer patients. The Comprehensive Score for Financial Toxicity associates 
with income, psychosocial stress, and health-related life quality[71]. Meeker et al[72] 
demonstrated that economic burden could cause grievous emotions such as worry, 
tension, and anxiety at the psychological level, which led to dismal life quality and 
poor prognosis in cancer patients.

Taken together, both the biological context of the immune criterion and the 
sociological context of the Comprehensive Score for Financial Toxicity should be fully 
considered to acquire better therapeutic effects for gastric cancer patients.

CONCLUSION
Our knowledge of cancer immunology has made great progress in recent years. 
Numerous novel and rational immunotherapeutic approaches have been designed and 
have achieved favorable clinical benefits in GC treatment. However, there are still 
some challenges that need to be conquered, such as identifying patients that could 
benefit from a specific therapy, improving the response rates, and decreasing adverse 
effects. These intractable challenges highlight the importance of systematically invest-
igating the intricate and dynamic crosstalk between immune cells and tumor cells. 
Consistent effort is required to overcome the gaps in our knowledge in the fields of 
cancer biology and immunology. In the near future, more precise personalized 
immunotherapeutic strategies will be developed, which will provide survival 
advantages for refractory and advanced GC patients.
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Table 1 The summary of major clinical trials in gastric cancer involving immune checkpoint inhibitors

Therapeutic 
strategy Trial identifier Drug name Stage Number Type of cancer Immune 

criterion
ORR 
(%)

Median 
PFS 
(mo)

Median 
OS 
(mo)

6-mo 
PFS 
(%)

1-
year 
PFS 
(%)

6-
mo 
OS 
(%)

1-
year 
OS 
(%)

A Phase II trial 
of 
Tremelimumab
[55]

Tremelimumab II 18 Metastatic gastric 
and esophageal 
adenocarcinomas

5.5 2.83 4.83 - - - 33Anti-CTLA-4

NCT01585987
[56]

Ipilimumab II 57 Advanced/metastatic 
gastric or 
gastroesophageal 
junction cancer

1.8 
(irBORR)

2.72; 
2.92 
(irPFS)

12.7 18.3; 
22.3 
(irPFS)

8.4; 
10.6 
(irPFS)

- -

KEYNOTE-012 
(NCT01848834)
[57]

Pembrolizumab Ib 39 PD-L1-positive 
adenocarcinoma of 
the stomach or 
gastroesophageal 
junction

22 1.9 11.4 26 - 66 42

KEYNOTE-028 
(NCT02054806)
[58]

Pembrolizumab Ib 23 Squamous cell 
carcinoma or 
adenocarcinoma of 
the esophagus or 
gastroesophageal 
junction in whom 
standard therapy 
failed and who had 
PD-L1–positive

30 1.8 7 30 22 60 40

KEYNOTE-061 
(NCT02370498)
[59]

Pembrolizumab III 296 Advanced gastric or 
gastroesophageal 
junction cancer

PD-L1 
CPS ≥ 1

16 1.5 9.1 - - - 40

JAVELIN solid 
tumor trial 
(NCT01772004) 
first-line 
switch-
maintenance
[62]

Avelumab Ib 90 Advanced gastric or 
gastroesophageal 
cancer

6.7 2.8 11.1 23 13 - 46.2

ATTRACTION-
2 
(NCT02267343)
[2]

Nivolumab III 330 Advanced gastric or 
gastroesophageal 
junction cancer 
refractory to, or 
intolerant of, at least 
two previous 
chemotherapy 
regimens

- - 5.26 - - 46.1 26.2

JAVELIN 
Gastric 100 
(NCT02625610)
[61]

Avelumab III 249 Locally advanced or 
metastatic gastric or 
gastroesophageal 
junction cancer

- 3.2 10.4 - - - -

Anti-PD-1 or 
Anti-PD-L1 
alone

JAVELIN 
Gastric 300 
(NCT02625623)
[60]

Avelumab III 185 Advanced gastric or 
gastroesophageal 
junction cancer

2.2 1.4 4.6 - - 41 -

Nivolumab 59 12 1.4 - - 8 - 39

Nivolumab 1 
mg/kg + 
ipilimumab 3 
mg/kg

49 24 1.4 - - 17 - 35

CheckMate-032 
(NCT01928394)
[63]

Nivolumab 3 
mg/kg + 
ipilimumab 1 
mg/kg

I/II

52

Locally advanced or 
metastatic 
chemotherapy-
refractory gastric, 
esophageal, or 
gastroesophageal 
junction cancer

8 1.6 - - 10 - 24

Durvalumab + 
Tremelimumab 
(second-line)

44 7.4 - 9.2 6.1 - - 37

Durvalumab 

Immune 
checkpoints 
combination 
(Anti-PD-L1 
and anti-
CTLA4)

NCT02340975
[64]

Ib/II

44

Chemotherapy-
refractory gastric 
cancer or 
gastroesophageal 
junction cancer 0 - 3.4 0 - - 4.6
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(second-line)

Tremelimumab 
(second-line)

22 8.3 - 7.7 20 - - 22.9

Durvalumab + 
Tremelimumab 
(third-line)

25 4 - 9.2 15 - - 38.8

11.6 2 5.6 14.1 - 46.5 23.4

PD-L1 
CPS ≥ 1

15.5 - - - - - -

Pembrolizumab 259 Previously treated 
gastric and 
gastroesophageal 
junction cancer

PD-L1 
CPS < 1

6.4 - - - - - -

60 6.6 13.8 68 - - 52

PD-L1 
CPS ≥ 1

68.8 - 11.1 - - - -

Pembrolizumab 
+ 
chemotherapy

25

PD-L1 
CPS < 1

37.5 - 19.8 - - - -

Immune 
checkpoint 
combined 
with 
chemotherapy

KEYNOTE-059 
(NCT02335411)
[3,65]

Pembrolizumab

II

31

Advanced gastric or 
gastroesophageal 
junction cancer

25.8 3.3 20.7 34.9 - - 63

25 5.6 14.6 - - - -

PD-L1 
CPS ≥ 1

32 8.6 17.3 - - - 66.7

Immune 
checkpoint 
combined 
with target 
angiogenesis

NCT02443324
[67]

Ramucirumab 
+ 
pembrolizumab

Ia/b 28 Advanced/metastatic 
gastric or 
gastroesophageal 
junction cancer

PD-L1 
CPS < 1

17 4.3 11.3 - - - 41.7

OS: Overall survival; PFS: Progression-free survival; ORR: Objective response rate; irPFS: Immune-related progression free survival; irBORR: Immune-related best 
overall response rate; PD-L1: Programmed death-ligand 1: PD-L1 CPS: Programmed death-ligand 1 combined positive score; PD-1: Programed cell death protein 1.
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