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Abstract

Ultrasound computed tomography (USCT) is an emerging imaging modality for breast imaging 

that can produce quantitative images that depict the acoustic properties of tissues. Computer-

simulation studies, also known as virtual imaging trials, provide researchers with an economical 

and convenient route to systematically explore imaging system designs and image reconstruction 

methods. When simulating an imaging technology intended for clinical use, it is essential to 

employ realistic numerical phantoms that can facilitate the objective, or task-based, assessment 

of image quality (IQ). Moreover, when computing objective IQ measures, an ensemble of 

such phantoms should be employed, which displays the variability in anatomy and object 

properties that are representative of the to-be-imaged patient cohort. Such stochastic phantoms 

for clinically relevant applications of USCT are currently lacking. In this work, a methodology 

for producing realistic 3-D numerical breast phantoms for enabling clinically relevant computer-

simulationstudies of USCT breast imaging is presented. By extending and adapting an existing 

stochastic 3-D breast phantom for use with USCT, methods for creating ensembles of numerical 

acoustic breast phantoms are established. These breast phantoms will possess clinically relevant 

variations in breast size, composition, acoustic properties, tumor locations, and tissue textures. To 

demonstrate the use of the phantoms in virtual USCT studies, two brief case studies are presented, 

which addresses the development and assessment of image reconstruction procedures. Examples 
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of breast phantoms produced by use of the proposed methods and a collection of 52 sets of 

simulated USCT measurement data have been made open source for use in image reconstruction 

development.
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Image reconstruction; numerical breast phantoms (NBPs); ultrasound computed tomography 
(USCT); virtual imaging trials (VITs)

I. INTRODUCTION

ULTRASOUND computed tomography (USCT) is an imaging technique that utilizes 

tomographic principles to obtain quantitative estimates of acoustic properties, such as speed-

of-sound (SOS), density, and acoustic attenuation (AA) [1]–[5]. Because it can produce 

high-resolution and high contrast images of tissue properties, the development of USCT as a 

breast imaging modality has received significant attention [5]–[10]. It has several advantages 

over other breast imaging modalities, such as mammography, including low cost and being 

radiation- and breast-compression-free [11], [12]. While commercial systems for breast 

USCT are being actively developed, USCT remains an emerging technology and a topic of 

active research [13]–[16].

When developing new breast USCT technologies, it is important to assess their clinical 

utility by use of objective measures of image quality (IQ). Given the large number of system 

parameters that can impact IQ and variability in the cohort of subjects to-be-imaged, a 

comprehensive assessment and refinement of modern imaging technologies, such as breast 

USCT via clinical trials, often is impossible. Furthermore, obvious ethical concerns preclude 

certain experimental designs that otherwise would be of great benefit toward optimizing 

imaging systems for diagnostic tasks, such as tumor detection and characterization. As a 

surrogate for clinical trials, computer-simulation studies of medical imaging technologies, 

also known as virtual imaging trials (VITs), have been advocated for assessing and 

optimizing system and algorithm designs [17]–[20]. VITs provide a convenient, safe and 

cost-effective way to explore system and algorithm designs in the early stages of technology 

development [21], [22].

For use in computing objective, or task-based, measures of IQ that serve as figures of merit 

(FOMs) for breast USCT designs, it is critical that VITs employ numerical breast phantoms 

(NBPs) that accurately convey the anatomical and acoustic properties of the female breast. 

Moreover, it is known that object variability (i.e., patient-to-patient differences in the breast 

anatomy and properties) can be viewed as a source of randomness present in image data 

that limit the performance of human or numerical observers on detection or estimation tasks 

[23]–[25]. It is therefore important to have the capability of producing ensembles of NBPs 

that possess prescribed statistical properties associated with a specified to-be-imaged subject 

cohort; these NBPs can each be virtually imaged and, subsequently, ensemble-averaged 

objective IQ measures can be computed for use in assessing and refining USCT imaging 

technologies. However, existing NBPs do not satisfy these requirements and are limited by 

factors that include oversimplified anatomical structures [2], [26]–[29] or are representative 
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of healthy subjects only [30], [31]. NBPs derived from clinical magnetic resonance images 

are available [30] but are severely limited in number; as such, they do not accurately depict 

variability in breast anatomy or acoustic properties that will be present in a prescribed 

patient cohort. Other tools for generating NBPs [28], [29] rely on digital templates or 

segmented clinical images with simplified anatomical structures and consider only a limited 

number of tissue types. In summary, there remains an important need for developing NBPs 

for use in VITs of breast USCT that comprise realistic structures and acoustic properties, 

include lesions and/or other pathologies, and are representative of the stochastic variability 

in breast size, shape, composition, anatomy, and tissue properties observed in a specified 

cohort of to-be-imaged subjects.

Recently, the Virtual Imaging Clinical Trials for Regulatory Evaluation (VICTRE) project 

[17], [18] of the Food and Drug Administration (FDA) has validated and released software 

tools to generate realistic NBPs, as part of an end-to-end simulation framework for virtual 

mammography imaging studies. The breast size, shape, location, density, and extent of 

different tissues are tunable parameters, based on which stochastic and physically realistic 

3-D numerical phantoms of tissue structures can be generated. The tool also allows to embed 

a variety of lesions (e.g., circumscribed or spiculated) at physiologically plausible locations.

In this work, a methodology for producing realistic 3-D numerical acoustic breast phantoms 

for enabling clinically relevant VITs of USCT breast imaging is presented. This will be 

accomplished by extending the VICTRE NBPs for use in USCT, which will permit virtually 

imaging of ensembles of NBPs whose physical and statistical properties are representative 

of clinical cohorts. Modifications to the VICTRE NBPs include the determination of 

breast shape parameters consistent with a prone imaging position [32], [33], the stochastic 

assignment of tissue-specific acoustic properties (density, SOS, and AA), as well as the 

modeling of acoustic heterogeneity within fatty and glandular tissues.

To demonstrate the usefulness of the proposed computational framework, two case studies 

are presented. Case study 1 assesses the reconstructed SOS IQ using different compensation 

techniques to account for unknown AA. Case study 2 demonstrates the utility of the 

proposed framework for generating large-scale ensembles of NBPs for the training of deep 

learning-based USCT reconstruction methods. To accompany this work, a python library 

implementing the proposed approach for the generation of 3-D acoustic phantoms has been 

made publicly available under GPL-2.0 [34]. Furthermore, two datasets have been publicly 

released under CC-0: the first consists of 52 2-D breast phantom slices and corresponding 

USCT measurement data [35] and the second contains 4 3-D realizations of NBPs [36].

The remainder of this article is organized as follows. In Section II, the background on USCT 

breast imaging and the FDA VICTRE project are provided. The stochastic generation of 3-D 

anatomically and physiologically realistic NBPs for USCT VITs is introduced in Section 

III. Several examples of NBPs generated with the proposed tool are presented in Section 

IV. Section V contains the case studies that illustrate possible applications of the proposed 

phantoms to inform image reconstruction development. Finally, in Section VI, a discussion 

of the wide range of applications enabled by the proposed framework is provided.
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II. BACKGROUND

A. USCT Breast Imaging

In recent decades, a number of research groups have been developing USCT imaging 

technologies for breast imaging applications [3], [5], [37], [38]. In a typical breast USCT 

system, the patient lies prone on the imaging table and the breast to be imaged is submerged 

in water. An array of ultrasound transducers surrounds the breast. Each transducer emits 

an acoustic pulse one by one until the breast is insonified from all directions. During each 

shot, all other transducers act as receivers, recording the transmitted, scattered, and reflected 

wavefield data.

Three types of USCT images are conventionally produced: reflectivity, SOS, and AA [6]. 

Reflectivity images can be reconstructed by use of integral geometry-based approaches 

that are similar to the delay-and-sum methods widely employed in conventional B-mode 

imaging. The majority of the SOS and AA reconstruction methods investigated to date are 

generally based on two categories: approximated wave equation methods [16], [26], [39] 

and full-waveform inversion (FWI) methods [1], [2], [15], [27]. Because FWI methods 

take high-order refraction and diffraction effects into account, they can produce images 

that possess higher spatial resolution images than those produced by use of linearized 

or approximate methods [1], [2], [40]. However, FWI is computationally expensive 

and memory burdensome, especially for 3-D problems, thus hampering the widespread 

application of FWI to USCT breast imaging. Moreover, FWI suffers from the so-called 

cycle skipping phenomenon [41], thus requiring an accurate initial estimate of the SOS 

map to ensure convergence to a useful solution. As a result, there is still an imperative 

need to systematically investigate and optimize USCT reconstruction methods by means of 

computer-simulation studies.

B. Description of VICTRE

The VICTRE project of the FDA has recently released a series of software tools to provide 

a complete simulated imaging chain for mammography and digital breast tomosynthesis 

[17]. The VICTRE software includes open-source tools to generate the 3-D random 

anthropomorphic voxelized phantoms of the human female breast [42]. Using this tool, 

large ensembles of anthropomorphic NBPs with realistic anatomical structures can be 

generated by specifying different virtual-patient characteristics that include breast type, 

shape, granularity, density, and size. By appropriate selection of physical attributes and 

material coefficients, the VICTRE NBPs can be customized for particular imaging tasks.

The VICTRE software generates NBPs corresponding to the four different levels of breast 

density defined according to the American College of Radiology’s (ACR) Breast Imaging 

Reporting and Data System (BI-RADS) [43]: A) breast is almost entirely fat; B) breast 

has scattered areas of fibroglandular density; C) breast is heterogeneously dense; and D) 

breast is extremely dense. Each NBP is a 3-D voxelized map consisting of ten tissue types: 

fat, skin, glandular, nipple, ligament (connective tissue), muscle, terminal duct lobular unit, 

duct, artery, and vein. Large ensembles of stochastic NBPs with realistic variability in breast 
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volume, shape, fraction of glandular tissue, ligament orientation, and tissue anatomy can be 

generated by controlling input parameters and selecting the random seed number.

In addition, the VICTRE projects include tools to generate 3-D numerical lesion phantoms 

(NLPs), which can be inserted into the NBPs at clinically plausible locations [44]. Two types 

of lesions, microcalcification clusters and spiculated masses, can be generated. The size and 

shape of the lesions can be customized. An example of anatomically realistic NBP and NLP 

generated using the VICTRE tools is shown in Fig. 1.

There exist several challenges that must be addressed in order to extend the VICTRE project 

to produce NBPs for use in VITs of USCT technologies. These include determination of 

breast shape parameters consistent with a prone imaging position, the stochastic assignment 

of tissue-specific acoustic properties (density, SOS, and AA), and the modeling of acoustic 

heterogeneity within fatty and glandular tissues.

III. METHODS

Several adaptations and customizations of the VICTRE tools were developed that will 

enable the generation of large ensembles of acoustic NBPs that display clinically relevant 

variability in both anatomical structures and acoustic properties. The specific procedures for 

accomplishing this are described in the following.

A. Generation of Anatomically Realistic Realizations of NBPs and Lesion(s) Insertion

The goal of this step is to generate large ensembles of anatomically realistic NBPs 

representing four different types of breast (extremely dense, heterogeneously dense, 

scattered fibroglandular, and fatty). Section III-A1 describes how shape and deformation 

parameters in the VICTRE NBPs can be set to generate virtual patients with variable breast 

sizes that are representative of a clinical population and shapes that are consistent with 

USCT imaging protocols. Section III-A2 describes adaptations to the internal anatomical 

structures of the NBP to exclude tissues that are not relevant for USCT applications. Finally, 

Section III-A3 describes how one or more lesions are optionally inserted into the NBPs.

1) Breast Shape and Deformation Parameters: Appropriate distributions of breast 

size parameters were determined for each breast type based on clinical data [45]. In the 

VICTRE software, the shape of the breast is created by applying a series of transformations 

to a base superquadratic surface. A detailed description of the breast shape model was 

presented in [46]. Here, the main parameters affecting size and shape of the breast are 

discussed. As shown in Fig. 2, the parameters a1b, a1t , a2r , and a2l adjust the breast 

volume in the top, bottom, left, and right hemispheres, respectively. The parameter a3 adjusts 

the length of the breast. Fig. 3 shows how other parameters affect the final shape of the 

breast. The parameter z1 is the quadric shape exponent along the polar angle. The ptosis 

deformation parameters B0 and B1 model the sagging that affects a breast as a subject age. 

Finally, the turn-pop deformation parameters H0 and H1 change the shape of the top half of 

the breast laterally. This deformation allows the top part of the virtual breast to point toward 

the shoulder. The probability distributions assigned to these parameters are summarized in 

Table I and were set to be consistent with the patient lying prone on the examination table. 
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Here—among all possible distributions with a specified mean, variance, and having support 

in a bounded interval—a truncated Gaussian distribution TN  is chosen since it represents 

the maximum entropy distribution that satisfies such constraints.

2) Relabeling of Tissue Types Invisible to USCT: The generated NBPs are high-

resolution volumes with a voxel size as small as 50 μm. Each voxel is assigned a label 

corresponding to one of the ten tissue types (fat, skin, glandular, nipple, ligament, muscle, 

terminal duct lobular unit, duct, artery, and vein). Of these tissues, only four are typically 

visible in USCT imaging: fatty, glandular, skin, and ligament. Voxels corresponding to tissue 

types for which there is not enough clinical evidence that they can be well resolved in USCT 

imaging are relabeled as fatty or glandular based on the type of the neighboring voxels. An 

ad hoc inpainting algorithm was designed to ensure consistent anatomical structures when 

relabeling voxels. The first step in the algorithm marks all voxels to be relabeled. Marked 

voxels are assigned to regions based on connectivity (two voxels are connected if they share 

a face) and process each connected region independently. For each region, the algorithm 

selects voxels near the boundary of the region (i.e., all voxels that share at least one face 

with unmarked voxels), reassigns their labels to the most occurring label among those of 

neighboring (unmarked) voxels, and unmarks them. This step is repeated until all voxels in 

all regions have been relabeled. An example of the result of replacement of USCT-invisible 

tissues is shown in Fig. 4.

3) Lesion Insertion: To generate NBPs that contain tumors, synthetic lesions can be 

inserted in the healthy NBPs as follows. First, an ensemble of numerical tumor phantoms 

(NTPs) with various sizes and irregular (spiculated) shapes can be generated by the use of 

the VICTRE tool. One or more NTPs can then be inserted in each NBP at locations among 

those suggested by the VICTRE phantom tools as candidate tumor locations. Additional 

location constraints are included to ensure that tumors do not overlap each other or skin 

layer and are not inserted too close to the chest or nipple.

B. Assignment of Acoustic Properties

By use of the anatomical breast maps generated in Section III-A, 3-D acoustic NBPs can 

be established via stochastic assignment of acoustic properties. The acoustic properties 

considered are the SOS c (m/s), density ρ (kg/m3), and AA coefficient α0 (Np/m/MHzy) 

with power-law exponent y. The 3-D acoustic property maps are constructed as follows. 

First, acoustic properties values are stochastically assigned to each phantom voxel based on 

the tissue type label as described in Section III-B1. Next, to model variations in the acoustic 

properties across voxels of the same tissue type, SOS and density maps are perturbed by 

additive colored noise with a prescribed correlation structure as described in Section III-B2. 

Finally, the choice of the power-law exponent y is presented in Section III-B3.

1) Stochastic Assignment of Acoustic Properties to Each Tissue 
Type: Acoustic properties (SOS, AA, and density) are assigned to each voxel of the 

anatomical NBPs generated in Section III-A as follows. For each tissue type, values of 

SOS, AA, and density are sampled from a predefined probability distribution and assigned 

to all voxels of that tissue type. Table II shows the probability distributions of the acoustic 
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parameters assigned to each tissue type. These were chosen based on a comprehensive 

literature survey to represent anatomically realistic values. The SOS values of healthy breast 

tissues were based on the clinical studies reported in [10] and [49]. The distributions 

of density and AA in healthy breast tissues were set according to [48], a database 

providing comprehensive estimates of material properties of several human tissues, as well 

as statistical information about the spread of those properties. This information was based 

on a meta-analysis of over 150 references. The variance of AA values for each tissue type 

was set to 10% of the respective mean values. Finally, tumor acoustic properties were also 

chosen from clinical literature of breast pathology [4], [50], [51].

Upon completion of this step, piecewise constant acoustic maps are constructed that present 

variability both in their values, which are randomly sampled, and spatial distribution, which 

is dictated by the NBP stochastic anatomical structure. Fig. 5(a) shows an example of a slice 

through a piecewise constant 3-D SOS phantom generated by the described procedure.

2) Modeling Spatial Heterogeneity Within Fatty and Glandular 
Tissues: Acoustic scattering in breast tissues arises not only from jumps in acoustic 

impedance across tissue types but also from spatial heterogeneity within each tissue [52]. 

The latter is a predominant effect in fatty and glandular tissues. To account for the spatial 

heterogeneity within these tissues, random textures are introduced into the SOS and density 

maps. SOS and density textures in glandular tissue are modeled as a spatially correlated 

Gaussian random field with zero mean and Gaussian covariance function. SOS and density 

textures in fatty tissue are modeled as truncated (plus or minus 0.9 standard deviations) 

spatially correlated Gaussian random field with zero mean and Gaussian covariance function 

account for the lower acoustic scattering observed in fatty tissues [53]. The pointwise 

standard deviations σ and correlation lengths ℓ are shown in Table III and are based on 

reflectivity tomography studies [53]. SOS and density textures are sampled independently 

one from the other. Each voxel in the generated textures maps is added to the corresponding 

voxel in the piecewise constant property maps described in the preceding paragraph; this 

results in NBPs that display random heterogeneity with the glandular and fatty tissues. 

Fig. 5(b) shows an example of a slice through a 3-D SOS phantom that contains tissue 

texture generated by the described procedure. Note that acoustic heterogeneity is stronger in 

glandular tissue (gray regions) than in fatty tissue (black regions).

3) Power-Law Attenuation Model: To model frequency dependence in AA, a 

fractional power-law model [54] is assumed. Specifically, frequency-dependent AA α 
(Np/m) is defined as

α = α0fy (1)

where α0 (Np/m/MHz−1) is the AA coefficient, y is the fractional power-law exponent, 

and f (MHz) is the acoustic wave frequency. In general, the exponent y varies for different 

tissue types and estimates for several breast tissues can be found in the IT’IS database [48]. 

However, several widely employed time-domain wave propagation solvers [55], [56] assume 

a spatially homogeneous exponent y.
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To address this, a homogenization technique based on the solution of a nonlinear least 

squares problem is proposed. The proposed technique considers wave propagation in one 

spatial dimension for which an analytical model of AA can be constructed. Specifically, for 

a monochromatic wave with frequency f propagating through a heterogeneous medium with 

thickness L, the log amplitude ratio ℓ f  between the transmitted At and incident Ai wave is

At
Ai

= e−ℓ f with ℓ f =
L

α0 x fy x dx (2)

where y x  is the tissue-dependent fractional power-law exponent. Since attenuation in water 

is negligible and the volume of skin, tumor, and ligament tissues is small compared to the 

whole breast, a medium consisting of only fatty and glandular tissues is considered. Under 

this simplifying assumption, ℓ f  is determined as a function of the fatty tissue volume 

fraction only. The spatially homogeneous fractional power-law exponent y is then defined as

y = argmin
y k

ℓ fk − α0fk
y 2

(3)

where α0 is the average value of α0(x) and the frequencies fk (k = 1, . . . , K) are uniformly 

distributed over the range of frequencies typically employed in USCT imaging. Table IV 

reports the estimated power-law exponent y as a function of the fatty tissue volume fraction 

vfat when K = 22 frequencies evenly spaced between 0.2 and 2.3 MHz are used to evaluate 

(3).

IV. EXAMPLES OF GENERATED NBPS

Fig. 6 shows four 3-D visualization examples, one for each breast type, of 3-D acoustic 

NBPs produced by the proposed framework. The generation of the anatomical structures for 

these NBPs using the VICTRE tools took about 80 ~ 240 mins on a single node of the Golub 

cluster at the University of Illinois at Urbana–Champaign campus cluster (Two ten-core Intel 

E5–2670v2 CPUs and 64 GB of memory per node). Tissue relabeling, tumor insertion, and 

assignment of spatially varying acoustic properties took between 20 and 50 mins on the 

same machine. Time variations depended on the volume of phantoms. Paraview [57] was 

used for volume rendering to highlight internal structures. Note the variability in size, shape, 

internal structures, and values of acoustic properties among the four NBPs. Fig. 7 shows 

the examples of 2-D cross-sectional slices extracted from the phantoms, one for each breast 

type. Yellow rectangles indicate the location of the inset zoom region where a lesion was 

inserted. The diameters of the inserted lesions were sampled from a uniform distribution 

between 1.5 and 5 mm, to mimic small lesions in early breast cancer.

Fig. 8 compares the distributions of the breast diameter and depth in a virtual population 

of 1000 NBPs to that observed in a sample of 219 women with age ranging between 35 

and 82 years and median age of 54 years [45]. The proportion for each breast type in 

the virtual population was set to 10% for breast types A and D and 40% for breast types 

B and C [43]. The figure shows good qualitative agreement in the diameter and depth 

distributions between the virtual population and the clinical sample. It is worth noting that 
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the distributions of the virtual population are skewed toward slightly larger breast sizes 

compared to those of the clinical sample. This is intentional and aims to address a limitation 

of the sample in [45], which is biased toward denser—and therefore smaller—breast types 

(23% type A, 40% type B, 28% type C, and 9% type D).

V. CASE STUDIES

Two case studies were conducted to demonstrate the usefulness of the proposed framework 

for generating acoustic NBPs. Case study 1 (Section V-C) assesses reconstructed SOS IQ 

when heuristic procedures for compensating for unknown AA are employed. Case study 

2 (Section V-D) demonstrates the utility of the proposed framework for the training and 

assessment of deep learning-based USCT reconstruction methods. In both studies, 2-D 

cross-sectional slices extracted from the 3-D NBPs are (virtually) imaged using the stylized 

2-D imaging system described in Section V-A.

A. Virtual Imaging System

A stylized 2-D virtual imaging system was modeled to generate USCT measurement data. 

It comprised 1024 idealized, point-like, transducers that were evenly arranged in a circular 

array with a radius of 110 mm. The excitation pulse employed in this study was assumed to 

be spatially localized at the emitter location. The central frequency and duration of the pulse 

were set to 1 MHz and 10 μs, respectively. The pulse profile s(t) was defined as the sum of 

three sinusoidal functions tapered by a Gaussian kernel as

s t = exp − t − ts 2

2σ2

× 1
8sinπfct + sin2πfct + 1

8sin4πfct
(4)

where σ = 1.6 μs is the standard deviation of the Gaussian kernel, ts = 3.2 μs is a constant 

time shift, and fc = 1 MHz is the central frequency. The maximum frequency of s(t) is 2.3 

MHz.

Cross-sectional slices were extracted from the 3-D NBPs and centered within the field of 

view of the imaging system. Bilinear interpolation was employed to downsample the maps 

of acoustic properties to a computational grid comprised of 0.1 mm isotropic pixels. To 

emulate the imaging process, the propagation of the pressure waves through the object was 

modeled by solving the lossy acoustic wave equation with power-law frequency-dependent 

AA [58] by use of a time-explicit pseudo-spectral k-space method [59]–[61]. Further 

details regarding the wave solver and its implementation are presented in Appendix C. 

The simulated measurement data were corrupted with Gaussian independent and identically 

distributed (i.i.d.) noise that had zero mean and a standard deviation of 0.02% of the 

maximum pressure amplitude at the emitting transducer.

Computation of USCT measurement data for a single slice took about 110 GPU hours using 

a single NVIDIA GK110 Kepler GPU on the Blue Water cluster at the National Center for 

Supercomputing Applications.
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B. SOS Images Reconstructed Under Favorable Conditions

Reconstruction of SOS images under favorable conditions (namely, AA map known 

exactly) is considered here. However, this study does not represent an inverse crime as it 

includes three sources of model mismatch: 1) a constant density map was employed in 

the reconstruction; 2) measurement data were corrupted with additive Gaussian noise; and 

3) reconstruction was performed on a coarser grid. By use of the procedures described 

above, 2-D slices from 52 NBPs (13 for each of the 4 breast types) were extracted and 

virtually imaged to produce USCT measurement data. From these data, SOS images were 

reconstructed on a grid with pixel size of 0.2 mm by use of a previously published waveform 

inversion with source encoding (WISE) method [2]. The reconstruction was initialized by 

use of a blurred version (Gaussian blur with 8-mm correlation length) of the true SOS. 

Because true values of AA were considered here, the reconstructed SOS estimates are 

expected to generally be of higher quality than would be obtained if attenuation properties 

had to be concurrently estimated with the SOS or if incorrect fixed values of AA were 

employed. In this sense, it will be useful to compare these reconstructed SOS estimates 

against the images reconstructed in the two case studies mentioned next.

Fig. 9 presents the examples, one for each breast type, of the ground truth and reconstructed 

SOS images assuming that the AA distribution and density are known. Table V reports the 

average mean square error (MSE)1 and structural similarity index measure (SSIM) [62] for 

each breast type.

C. Case Study 1: Heuristic Compensation of AA in SOS Reconstruction

In this study, two heuristic approaches to compensating for AA when reconstruction SOS 

estimates were compared: a two-region attenuation model (TRAM) and a data domain 

attenuation compensation (DDAC). The TRAM assumes that the breast boundary is known 

(reflectivity imaging could be possibly used to estimate it) and assigns one constant AA 

value to the water bath (α0 = 0) and another to the breast region. The attenuation coefficient 

of the breast region was set to 5.20 [Np/m/MHzy] , which corresponds to a weighted average 

(80%–20% split) of the mean values of AA in fatty and glandular tissues, as reported 

in Table II. The heuristic DDAC procedure seeks to compensate for AA by modifying 

the amplitudes of the recorded pressure data, rather than explicitly modeling attenuation 

in the wave propagation forward model. Specifically, for each pair of emitting/receiving 

transducers, the maximum amplitude of the recorded signal was rescaled to match that of the 

corresponding measurement when only the water bath was present [63]. The generation of 

synthetic data and reconstruction method used in this case study is the same as described in 

Section V-B.

Fig. 10 shows the examples of reconstructed images of four breast types using the 

proposed techniques (TRAM and DDAC) to compensate for unknown AA properties. The 

corresponding ground truth images and reference reconstructions are shown in Fig. 9. Table 

VI shows the quantitative evaluations of all reconstructed images on each breast type from 

A to D. Fig. 11 shows the variation with respect to MSE and SSIM in all image samples 

1Only pixels within the breast region were used to evaluate the MSE.
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and breast types A–D. In all the cases tested but 9, TRAM led to measurable improvement 

(i.e., smaller MSE) compared to DDAC. Remarkably, of the nine cases in which DDAC led 

to a smaller MSE, six were for breast type C. Furthermore, TRAM achieved an MSE smaller 

than that of the reference reconstruction (Section V-B) for 25 out of the 52 tested cases, 

thus suggesting that TRAM is an effective approach to compensate for unknown AA in FWI 

reconstruction of SOS maps.

D. Case Study 2: Deep Learning Reconstruction Method

There remains an important need to lessen the computational burden of FWI. A supervised 

learning-based method is proposed to reduce the number of FWI iterations and drastically 

lessen the computational burden, as well as enhancing the reconstruction by using ground 

truth images as training data. Fig. 12 shows the proposed learning framework, in which 

a deep neural network (a five-level U-Net [64]) is trained to minimize the MSE of the 

reconstructed SOS images. The input to the network is an intermediate SOS estimate 

obtained by early stopping of the WISE method after 35 iterations. The rationale of this 

method is that early stopped reconstructed images capture structural information of the SOS 

map but lack quantitative accuracy. The network was trained for 220 epochs on a dataset 

consisting of 622 2-D slices, each extracted from a different NBP (312 type B NBPs and 

310 type C NBPs). The Adam optimizer was used with a batch size equal to 32 and the 

initial learning rate 0.001. The learning rate was reduced by a factor of 0.9 after each epoch. 

Several models corresponding to different architecture hyper-parameters (e.g., number of 

layers at each level) were trained. The selected model was that achieving the highest mean 

MSE on the validation set consisting of 100 slices (equally split between types B and C).

The testing set consisted of the 52 2-D phantoms described in Section V-B, thus allowing 

us to evaluate the accuracy of the network for both in-distribution (types B and C) and 

out-of-distribution data (types A and D).

Fig. 13 reports the examples of learned reconstructed images of four breast types. The top 

row corresponds to the early stopped WISE reconstruction after 35 iterations, and the bottom 

row shows the output of the neural network. The corresponding ground truth images and 

reference reconstructions are shown in Fig. 9. The proposed learning approach improved 

the visual quality of the images, leading to sharper tissue interfaces. Table VII and Fig. 14 

show the quantitative evaluations on the test dataset. The reported MSE and SSIM values 

are stratified by breast types: breast types A and D (out of distribution) have a larger median 

MSE and smaller median SSIM than types B and C (in distribution). While the reported 

MSE and SSIM are comparable (or sometimes even better) than those reported for the 

reference reconstructions in Table V, the learned reconstruction method may mistakenly 

introduce some fine structures (hallucinations2) that are not existing in the ground truth 

image [65]. An example is shown in Fig. 15. This case study demonstrates that, while deep 

learning methods can be used to enhance perceived and quantitative IQ, their results must be 

interpreted with particular care due to the possibility of introducing hallucinated features in 

the image.

2Hallucinations are a specific type of image artifact that are attributable to the prior employed by a reconstruction method and cannot 
be produced by use of the measurement data alone.
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VI. CONCLUSION

In this work, procedures were established by which 3-D NBPs can be computed for use 

in large-scale VITs of 2-D or 3-D breast USCT. This will, for the first time, permit 3-D 

realistic NBPs to be computed that possess varying shapes, acoustic properties, tissue 

texture, and tumors. This was accomplished by adapting VICTRE tools to USCT imaging. 

While some modeling choices and simplifications had to be made, the modular and flexible 

implementation of the phantom generation procedures allows for additional customizations 

of the NBPs. For example, future studies may include additional tissue type, use of 

different lesion models, analyze the detectability of microcalcifications, or develop advanced 

biomechanical models to capture deformations of the submerged breast due to buoyancy. In 

summary, the generated NBPs improve the authenticity of USCT virtual imaging studies and 

can be employed widely for the investigation of advanced image reconstruction methods, 

objective evaluation of the USCT breast imaging systems, and the development of machine 

learning-based methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

PUBLICLY RELEASED DATASETS AND CODE AVAILABILITY

Two datasets have been publicly released on the Harvard Dataverse.

The first dataset [35] consists of the 52 slices and corresponding simulated USCT data 

described in Section V-B. For each slice, the dataset includes tissue label, SOS, AA, and 

density maps. Each slice contains a variable number of lesions (up to 3) with a diameter 

between 1.5 and 5 mm. The image size is 2560 × 2560 with pixel size at a 0.1 mm 

resolution. The measurement data have a sampling frequency of 25 MHz and have been 

perturbed with additive Gaussian white noise as described in V-B.

The second dataset [36] consists of four high-resolution 3-D NBPs, one for each breast type. 

Each NBP contains 3-D maps of tissue label, SOS, AA, and density with a resolution of 0.1 

mm. Fig. 6 shows the 3-D rendering of the four public NBPs.

A python package implementing the methods presented in this work is available under 

GPL-2.0 license from [34].

APPENDIX B

SUPPLEMENTARY MULTI-MEDIA MATERIAL

A video  presenting cross-sectional slices of 3-D SOS maps (one for each breast type) is 

included in the Supplementary Materials.

APPENDIX C

COMPUTER-SIMULATION OF THE DATA ACQUISITION PROCESS

Pressure wave propagation in the breast tissue was modeled by solving the lossy 

acoustic wave equation with power-law frequency-dependent AA. Specifically, a first-order 

formulation of the linear acoustic wave equations in heterogeneous media is considered, 

which is described by the following three coupled differential equations [58]:
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∂
∂t ui = − 1

ρ0
∇pi

∂
∂t ρi = − ρ0∇ ⋅ ui +

0

t
fidt

p = c0
2 1 − μ ∂

∂t − ∇2 1y
2 − 1 − η − ∇2 1y − 1

2 ρi

(5)

where ui = ui (r, t), pi = pi (r, t), and ρi = ρi (r, t) denote the fluctuations of particle 

velocity, acoustic pressure, and density, respectively, corresponding to the excitation of the i 
th transducer. The source term fi has the form fi r, t = δri r s t  where δri is the Dirac delta 

function centered a the location ri of the i th transducer and s(t) is the pulse profile in (4). 

The quantities ρ0 = ρ0(r) and c0 = c0(r) denote the density and SOS of the medium. The 

quantities μ and η are defined as

μ r = − 2α0 r c0 r y − 1 (6)

η r = 2α0 r c0 r ytan πy
2 (7)

where α0(r) is the AA coefficient and y is the AA exponent. As explained in Section III-B3, 

y was assumed to be spatially homogeneous and its numerical value was determined for 

each phantom as a function of the fatty and glandular volume fraction. Equation (5) is 

discretized on a uniform Cartesian grid and solved using a time explicit pseudospectral k-

space method [59]. Acoustic transducer locations were approximated by using the center of 

the pixel to which they belong to. Discretization parameters are reported in Table VIII. Note 

that, while finite-difference or finite-volume discretizations usually require about ten points 

per wavelength (ppw), pseudospectral method can correctly capture the solution with as 

little as 2 ppw. A high-performance GPU-accelerated implementation of the psuedospectral 

k-space wave solver, developed by Huang et al. [60] and Matthews et al. [61], was employed 

to perform the simulations. The amplitude of pressure at all transducer locations was 

recorded as a function of time.
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Fig. 1. 
(a) Volume rendering of fatty breast phantom: partial transparencies are used to highlight 

anatomical structures and cross-sectional view of this 3-D breast phantom. (b) Volume 

rendering of spiculated lesion phantom and cross-sectional view of this 3-D lesion phantom.
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Fig. 2. 
Overview of size parameters: a1t, a1b, a2r, a2l, and a3.
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Fig. 3. 
Overview of deformation parameters. Red breast: hemispherical breast phantoms without 

deformation. Yellow breast: deformed breast phantoms. Left: effect of superquadric 

exponent deformation (ϵ1) in sagittal plane. Center: effect of ptosis deformation (B0, B1) 

in sagittal plane. Right: effect of turn top deformation (H0, H1) in coronal plane.
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Fig. 4. 
Illustration of relabeling of tissues type invisible to USCT. (a) Anatomical phantom (tissue 

labels) generated by VICTRE. (b) Phantom after tissue relabeling. The different colors 

represent distinct tissue types.
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Fig. 5. 
Illustration of texture generation on SOS phantoms. (a) Piecewise constant SOS phantom. 

(b) SOS phantom after texture generation.
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Fig. 6. 
3-D rendering of acoustic phantoms from four breast types. From up to bottom: (a) almost 

entirely fatty, (b) scattered areas of fibroglandular density, (c) heterogeneously dense, and 

(d) extremely dense. From left to right: the SOS (m/s), AA (Np/m/MHzy), and density 

(kg/m3) volumes.
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Fig. 7. 
Realization of a cross-sectional slice from four types breast. From left to right: the SOS 

(mm/μs) image, AA (Np/m/MHzy) image, and density (kg/m3) image. Tumor region is 

zoomed in. From up to bottom: (a) almost entirely fatty, (b) scattered areas of fibroglandular 

density, (c) heterogeneously dense, and (d) extremely dense.
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Fig. 8. 
Breast size distribution comparison. (a) Breast diameter distributions. (b) Depth 

distributions. Blue: distributions of the generated NBPs. Orange: distributions estimated 

from clinical data [45].

Li et al. Page 26

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Reference images: ground truth (top row) and reconstructed (bottom row) SOS maps. From 

left to right: breast type A-D. The unit is mm/μs.
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Fig. 10. 
Case study 1: reconstructed SOS images corresponding to the same phantoms shown in Fig. 

9 using TRAM (top row) and DDAC (bottom row). From left to right: breast type A-D. The 

unit is mm/μs.
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Fig. 11. 
Case study 1: boxplots of MSE and SSIM value with respect to TRAM and DDAC. From 

left to right: breast types A-D and all breast types together.
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Fig. 12. 
Case study 2: supervised deep learning framework for SOS reconstruction.
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Fig. 13. 
Case study 2: reconstructed SOS images of the phantoms shown in Fig. 9 using a machine 

learning-based method. Top row: input to the neural network. Bottom row: corresponding 

estimated image. From left to right: breast type A–D. The units are mm/μs.
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Fig. 14. 
Case study 2: boxplot of MSE and SSIM value of learned reconstructed results for breast 

type A–D. The subscript ∗ denotes out of distribution breast types.
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Fig. 15. 
Case study 2: false structures in the reconstructed image. (a) Ground truth image. (b) Neural 

network-based reconstructed image that contains small hallucinated features.
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TABLE I

SHAPE AND SIZE PARAMETERS

Parameter Types A-C Type D

a1t (cm) TN (5.85, 2.3275, 3.85, 7.70) TN (4.20,1.225,2.80,5.25)

a1b/a1t N (1, 0.02) N (1, 0.02)

a2r/a1t N (1, 0.05) N (1, 0.05)

a2l/a2r N (1, 0,05) N (1, 0,05)

a3/a1t TN (1.48, 0.18, 1, 1.6) TN (1.22,0.1,0.75.1.5)

ϵ 1 N (1, 0.1)

B 0 TN (0, 0.1, −0.18, 0.18)

B 1 TN (0, 0.1, −0.18, 0.18)

H 0 TN (0, 0.15, −0.11, 0.11)

H 1 TN (0, 0.25, −0.3, 0.3)

N μ, σ : Gaussian distribution with mean μ and standard deviation σ.

TN μ, σ, a, b : Truncated Gaussian distribution in interval (a, b).
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Li et al. Page 36

TABLE III

POINTWISE STANDARD DEVIATIONS AND CORRELATION LENGTHS USES TO MODEL TEXTURE IN FATTY AND GLANDULAR 

TISSUES

Property

SOS Density

σ (m/s) ℓ (mm) σ (kg/m3) ℓ (mm)

Fatty tissue* 28.8 0.21 18.22 0.21

Glandular tissue 30.4 0.21 20.82 0.21

*
Random texture in fatty tissues is truncated within the ±0.9σ range.
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Li et al. Page 37

TABLE IV

HOMOGENEOUS POWER-LAW EXPONENT y AS A FUNCTION OF THE FATTY TISSUE VOLUME FRACTION VFAT

Breast type A B C D

v fat ~95% ~85% ~66% ~40%

y 1.1151 1.1642 1.2563 1.3635

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2022 January 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 38

TABLE V

REFERENCE SOS RECONSTRUCTIONS: MSE AND SSIM

Breast type MSE (std) SSIM (std)

A 1.786e-04 (3.923e-5) 0.9835 (0.0056)

B 2.571e-04 (1.087e-4) 0.9788 (0.0069)

C 2.459e-04 (1.797e-4) 0.9732 (0.0102)

D 2.258e-04 (1.301e-4) 0.9835 (0.0066)

all types 2.269e-04 (1.210e-04) 0.9799 (0.0083)
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TABLE VII

CASE STUDY 2: MSE AND SSIM

Breast type MSE (std) SSIM (std)

A 2.165e-04 (8.413e-5) 0.9675 (0.0081)

B 1.973e-04 (7.9898e-5) 0.9707 (0.0079)

C 2.160e-04 (1.149e-4) 0.9788 (0.0069)

D 2.887e-04 (2.009e-4) 0.9651 (0.0073)
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Li et al. Page 41

TABLE VIII

IMAGING SYSTEM DISCRETIZATION PARAMETERS

Computational grid 2560 by 2560 pixels
(0.1 mm pixel size, ~6.5 ppw)

Time step size 1/50 μs, CFL number =0.3

Simulation time 170 μs, 8500 time steps
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