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Abstract

Detection of cancer at an early stage when it is still localized improves patient response to medical 

interventions for most cancer types. The success of screening tools such as cervical cytology 

to reduce mortality has spurred significant interest in new methods for early detection (for 

example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from 

early lesions are limited by fundamental biological and mass transport barriers — such as short 

circulation times and blood dilution — that limit early detection. To address this issue, synthetic 
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biomarkers are being developed. These represent an emerging class of diagnostics that deploy 

bioengineered sensors inside the body to query early-stage tumours and amplify disease signals 

to levels that could potentially exceed those of shed biomarkers. These strategies leverage design 

principles and advances from chemistry, synthetic biology and cell engineering. In this Review, 

we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine 

how these strategies harness dysregulated features of tumours to amplify detection signals, use 

tumour-selective activation to increase specificity and leverage natural processing of bodily fluids 

(for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the 

challenges that exist for preclinical development and clinical translation of synthetic biomarker 

diagnostics.

The earliest stages of cancer detection are when our existing clinical interventions can be 

more successful. Detecting pre-invasive tumours before clinical symptoms appear is likely 

to enhance the effect of medical interventions such as surgical resection, which can be 

curative for most types of localized cancers that have not metastasized1. When accurate 

tests are available, risk-based cancer screening of populations is recommended by regulatory 

agencies, and contributes to lowering cancer deaths. Examples include mammography for 

breast cancer, colonoscopy for colorectal cancer, Papanicolaou test (Pap smear) for cervical 

cancer and low-dose chest computed tomography for those at high risk of lung cancer2–7. 

However, accurate tests based on imaging and/or non-invasive analysis of patient fluids such 

as blood are not available for the vast majority of cancer types, and the diagnostic specificity 

of current tests is insufficient to allow routine screening of asymptomatic segments of the 

population where the cancer prevalence is low. A test with low positive predictive value 

would lead to an unacceptably high percentage of false positives and unnecessary medical 

interventions, precluding broad deployment. The continuing debate over whether the only 

widely used blood biomarker test, the prostate-specific antigen (PSA) test, is useful for 

reducing prostate cancer mortality despite its drawbacks (such as unnecessary treatments, 

patient morbidity and costs) serves as an important lesson for future tests8.

There are several ongoing efforts towards detecting other endogenous biomarkers (for 

example, cell-free nucleic acids, proteins, lipids and metabolites) via analysis of blood 

and other biofluids9–17. Significant strides have been made with sequencing of cancer 

genes from circulating tumour DNA (ctDNA), as evidenced by the recent success of a 

multianalyte, multicancer test in a prospective study of women without a history of cancer 

in which the feasibility of using a blood test to detect multiple cancers was established9,14. 

However, biological and technical challenges remain obstacles to the early detection of 

cancer, especially before symptoms are apparent; a test with high sensitivity would be 

required to detect very low signal levels, but such a test must not contribute substantially 

to the overdiagnosis of inconsequential cancers. The expression or release of biomarkers 

is variable and compounded by interpatient variation, tumour heterogeneity, comorbidities 

and background secretion by healthy cells. Moreover, individual biomarkers often lack 

specificity because their levels can be elevated in non-cancerous conditions, as in the case 

of DNA mutations from non-malignant clonal haematopoiesis of indeterminate potential 

(CHIP)18 or PSA level increase from benign prostatic hyperplasia19, or they are shed across 

many types of cancer, as is the case for carcinoembryonic antigen (CEA), the level of 
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which is elevated in cancers of the colon, breast, lung and other organs20. This necessitates 

identifying multianalyte panels that combine different classes of biomarkers into a single 

predictive score to assess the presence of disease and localize the cancer to anatomical 

sites9,14,21.

These lessons learned are informing the design of an emerging class of diagnostics based 

on the design of bioengineered sensors — such as molecular probes or genetically encoded 

vectors — that exploit dysregulated features of early-stage tumours or their precursors, 

which have the potential to become lethal, to produce an amplified signal that cancer cells 

would otherwise not produce or would produce at undetectable levels. These exogenously 

administered sensors harness tumour-dependent activation mechanisms such as enzymatic 

amplification to drive the production and amplification of synthetic biomarkers. Cancers 

can also be detected by imaging systems that may share essential features of a synthetic 

biomarker approach, such as reporter gene imaging, whereby an exogenous molecular tracer 

(for example, a positron-emitting probe) is systemically infused22,23. Imaging will also 

play an essential role in detecting the location of the tumour following confirmation of a 

detectable synthetic biomarker signal. However, as advances in cancer imaging have been 

extensively reviewed elsewhere22,24, this Review focuses on synthetic biomarkers detectable 

from biofluids such as blood and urine. First, we highlight the challenges associated with 

early cancer detection that have motivated research into synthetic biomarkers. We then 

review advances in activity-based and genetically encoded sensors, which are the two 

major strategies being used for synthetic biomarker development. Finally, we discuss the 

challenges that exist for this growing field in the setting of preclinical studies and strategies 

for clinical translation.

The challenge of early detection

The rationale for synthetic biomarker development comes from the biological, physiological 

and mathematical limitations of endogenous biomarkers (FIG. 1). For continuously shed 

biomarkers such as proteins, patient tumours are not universally biomarker positive, and 

secretion rates can vary by as much as four orders of magnitude, even for cells of the same 

tumour type25. Moreover, biomarkers that are released only by dead or dying cells are shed 

just once, and their detection is confounded by background shedding from healthy tissues. 

Cell-free DNA (cfDNA), for example, is released from non-cancerous cells throughout the 

body, which makes the proportion of somatic mutations in malignant cells versus normal 

cells, or the variant allele frequency (VAF), increasingly difficult to detect at low tumour 

burdens. Analysis of the Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy 

(TRACERx) study predicted that primary tumour burdens of 1 cm3, 10 cm3 or 100 cm3 

would result in average clonal plasma VAFs of 0.006%, 0.1% or 1.3%, respectively26. For a 

typical 4 ml of plasma from a 10-ml blood draw and a VAF of 0.1%, it has been estimated 

that there would be an average of just six molecules per tube carrying the respective 

somatic mutation27. Further compounding the technical challenge, shed biomarkers are 

diluted by a large pool of blood (~5 l) and circulate for short periods owing to degradation or 

clearance; ctDNA, for example, has a circulation half-life of less than 1.5 h in blood28,29. By 

comparison, the resolution of clinical positron emission tomography (PET)-based molecular 
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imaging (specifically using Jaszczak phantoms and fluorine-18) has been reported30 as ~200 

mm3, which is equivalent to a tumour diameter of ~7 mm.

Despite the technical challenges associated with detecting shed biomarkers, mathematical 

model predictions and genomic timeline studies consistently estimate a window of 

opportunity for early cancer detection that may span at least a decade. Work on 

multicompartment models31–34 to understand the relationship between tumour volumes and 

shed biomarker levels has resulted in predictions that tumours could remain undetectable 

for more than 10 years following initiation of tumorigenesis32. Genomic studies on cancer 

progression timelines have estimated periods of ~7 years or more from the birth of a founder 

carcinoma cell to macrometastatic tumours, given the inherent inefficiency of individual 

tumour cells to seed and survive in distant organs35–38. It is important to keep in mind, 

however, that cancers that are present for a decade or more are likely to be of indolent nature 

and eventually detectable at some point by existing screening modalities that are not based 

on biofluids. By contrast, fast-growing and highly aggressive cancers — including interval 

cancers that are diagnosed during the time between a regular screening that appears normal 

and the next screening — may rapidly progress within a relatively narrow window of months 

to years and are associated with poor clinical outcomes. Examples include triple-negative 

breast cancer and high-grade serous ovarian carcinoma (HGSOC) in women whose tumours 

have BRCA1 or BRCA2 mutations, or homologous recombination deficiency39,40. Detecting 

such aggressive cancers at an early stage would likely require identification of cancer 

precursors (such as serous tubal intraepithelial carcinoma for HGSOC) and the development 

of new ultrasensitive approaches that permit increased frequency of testing. Advances that 

are occurring in the field of synthetic biomarker research aim to address these challenges, 

with the main approaches being those that leverage activity-based or genetically encoded 

mechanisms for early detection.

Multicompartment models

A mathematical modelling technique whereby distinct compartments are used to 

represent organs, tissues, blood or lymph to predict how an administered drug is 

absorbed, distributed, metabolized or excreted.

Activity-based synthetic biomarkers

The systemic administration of exogenous agents to assess biological function in vivo has 

a long clinical history. Examples include infusion of patients with inulin, which is an 

inert polysaccharide that is not digestible or absorbed, to measure kidney function41 and 

indocyanine green, a fluorescent dye, to quantify liver dysfunction42. These biomarkers 

and other similar tests target known features of human physiology (for example, plasma 

clearance via hepatocytes) or established disease mechanisms with a biologically inert probe 

to produce a readout that is not normally found in the body, thereby maximizing the signal-

to-noise ratio. Activity-based synthetic biomarkers are based on this paradigm but include 

sensor components that are activated by enzymes in the tumour or its microenvironment to 

provide a mechanism for molecular amplification of tumour biomarkers. Here we discuss the 
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key design considerations for activity-based synthetic biomarkers, with a particular focus on 

protease-activated sensors and small-molecule probes.

Protease-activated synthetic biomarkers.

The human genome encodes more than 550 proteases, and their dysregulation has broad 

implications at the molecular level (for example, protein activation and matrix degradation), 

cellular level (for example, immune cell cytotoxicity and apoptosis) and systems level 

(for example, cancer-induced hypercoagulable state) in cancer43. For example, matrix 

metalloproteinases (MMPs) are overexpressed across the vast majority of cancer types44 

as one of their key functions is to regulate the bioavailability of vascular endothelial growth 

factor (VEGF) during the angiogenic ‘switch’, a process that occurs when nascent tumours 

reach 1–2 mm in diameter and require increased access to blood nutrients to overcome 

diffusion-limited growth45,46. Recent studies have also highlighted that dysregulated 

protease expression can be used for predictive cancer classification, for example, 

separating prostate cancer into aggressive and indolent phenotypes47 using machine learning 

algorithms. Another study showed that protease transcript signatures can differentiate lung 

adenocarcinoma from interstitial lung disease or chronic obstructive pulmonary disease48, 

demonstrating the potential of protease-based classifiers for differential diagnosis.

Protease-activated synthetic biomarkers comprise peptide substrates conjugated to the 

surface of an inert carrier25,47–51 that upon enzymatic cleavage by tumour proteases release 

reporters into the blood or urine for detection (FIG. 2). Proteases are particularly potent 

molecular amplifiers because hydrolysis of peptide bonds is irreversible and proteases are 

not consumed during peptidolysis, thereby allowing a single copy to turn over thousands 

of substrates52. In addition to molecular amplification, another key strategy to attain the 

limit of detection (LOD) required for early detection involves harnessing features of human 

physiology to increase synthetic biomarker concentration in biofluids. One approach is to 

take advantage of size filtration by the kidneys by selecting a carrier with a hydrodynamic 

radius larger than the ~5-nm size cut-off of the glomerular filtration barrier53 to prevent 

surface-conjugated peptides from being cleared into urine. Production of detection signals 

occurs after intravenous administration when the peptides are cleaved from the surface of 

the carrier by tumour proteases, releasing synthetic biomarkers into the circulation that 

are then rapidly cleared into urine for detection based on their reduced hydrodynamic 

diameters25,47–49,51,54. Although the use of a nanoparticle carrier increases the circulation 

time of surface-conjugated peptides, one limitation is the reliance on passive delivery to 

tumour sites. Approaches that use carriers with smaller hydrodynamic diameters, such as 

polyethylene glycol (PEG) polymers, which are characterized by higher passive diffusion 

rates than larger, iron oxide nanoparticles (IONPs)55, could increase delivery to tumours51. 

Another approach is to functionalize sensors with tumour-penetrating ligands that engage 

active trafficking pathways to the tumour microenvironment44.

Hydrodynamic radius

For a macromolecule in solution, the radius of an equivalent hard sphere diffusing at the 

same rate as the macromolecule.
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Proteases are promiscuous enzymes capable of cleaving a variety of substrate sequences, 

which limits the detection specificity of a single sensor. Therefore, another key design 

principle is to design a multiplexed library of sensors to detect cancer by signature 

analysis. This approach requires each synthetic biomarker within a cocktail to be labelled 

with a unique molecular barcode. Various strategies have been developed, including mass 

barcodes25,47,48,56, whereby reporters are differentially enriched with stable isotopes such as 
13C to generate a unique mass detectable by tandem mass spectrometry; DNA barcodes57, 

whereby each reporter is labelled with a unique DNA sequence for detection by sequencing, 

PCR or CRISPR–Cas; ligand-encoded reporters50,58,59, which are labelled with small 

molecules for detection by antibodies; volatile organic compounds60 that are emitted as 

gases after cleavage; and ultrasmall gold nanoclusters61 to catalyse a colorimetric readout. 

The most densely multiplexed cocktails of sensors reported to date are mass-barcoded 

14-plex48,56 or 19-plex47 systems. These densely multiplexed approaches allow classifiers to 

be trained on the basis of multivariate machine learning algorithms that have the potential 

to indicate disease with increased diagnostic sensitivity and specificity compared with 

univariate classifiers trained on a single biomarker. Indeed, development and utilization 

of machine learning approaches have great potential for expediting the development of 

synthetic biomarkers for a variety of clinical applications. Machine learning or deep 

learning methods (BOX 1), when powered correctly along with considerations for comorbid 

conditions and other confounders, can help to increase the signal-to-noise ratio. In addition, 

deconvolution of complex signatures also has the potential to reveal new biological insights.

Small-molecule probes.

In light of the increasing number of tumour-specific antigens, cell surface markers and 

metabolic pathways that are targetable with small molecules, a number of studies are 

emerging that focus on engineered molecular probes to generate synthetic biomarkers 

for cancer detection (FIG. 3). Nishihara and colleagues62 reported a strategy to generate 

synthetic biomarkers by targeting cancer cell-surface lectins using a two-step strategy. 

First, they labelled LoVo human colorectal carcinoma cells with a protein conjugate 

composed of the enzyme β-galactosidase conjugated to avidin. Avidin is a positively 

charged protein that contains terminal N-acetylglucosamine and mannose residues that bind 

to lectins overexpressed by tumour cells. In a second step, they administered a substrate 

for β-galactosidase called ‘β-galactosidase-responsive acetaminophen’ that is converted into 

acetaminophen (also known as paracetamol) by exogenous β-galactosidase on the surface 

of tumour cells. They found that acetaminophen plasma levels generated in this two-step 

process were elevated within 60 minutes in tumour-bearing mice. A similar approach was 

reported to quantify H2O2 activity using H2O2-responsive acetaminophen.63

Small molecules labelled with stable isotopes have been widely used as diagnostic probes 

in research laboratories for more than 30 years64. The advantages of stable isotope labelling 

include the lack of radiation risk to patients, indistinguishable metabolism compared with 

their unmodified counterparts and high signal-to-noise ratio owing to the lack of background 

signal. Among the first clinically approved tests was the 13C-urea test for Helicobacter 
pylori that detects urease activity central to H. pylori metabolism and virulence based on 

the level of 13CO2 released in the breath65. Several isotope-labelled probes, including 13C-
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methacetin66 and 13C-cholate67, which measure hepatic cytochrome P450 activity and liver 

shunting, respectively, are approved by the FDA for measurement of liver dysfunction in the 

context of liver fibrosis, which is an important risk factor for hepatocellular carcinoma.

Natural volatile organic compounds (VOCs) present in patient breath samples have also 

been investigated for cancer diagnosis68,69. However, identifying a VOC signature for cancer 

is not trivial because of the high variability and low concentration of natural VOCs in 

breath. Lange and colleagues70 used an isotope-labelled synthetic VOC called ‘D5-ethyl-β-

D-glucuronide’ (EtGlu), which is a deuterated metabolite of ethanol. Following intravenous 

administration, EtGlu is enzymatically converted by β-glucuronidase, an extracellular 

enzyme secreted by solid tumours, into D5-ethanol, which is then detected from the breath 

by gas chromatography coupled with high-resolution mass spectrometry. In various tumour 

models, including a transgenic mouse model of mammary tumours, Lange and colleagues 

found significantly increased D5-ethanol levels in breath following a single injection of 

EtGlu, and used D5-ethanol levels to monitor the response to chemotherapy. In the future, 

isotope-labelled probes have the potential to be expanded into synthetic agents that sense 

different classes of tumour enzymes, including proteases60; they could also be densely 

multiplexed by mass to allow rapid analysis of breath samples for synthetic biomarkers.

Deuterated metabolite

A compound in which one or more hydrogen atoms have been replaced by the stable 

isotope deuterium to distinguish it from its unmodified counterpart.

Genetically encoded synthetic biomarkers

Design-driven advances in mammalian synthetic biology are pushing the boundaries for 

biological sensing. In addition to activity-based probes, genetically encoded constructs 

form the other major group of strategies that use engineered components or cells to 

amplify the release of synthetic biomarkers. These methods focus on strategies that drive 

resident cells or infiltrated cells within the tumour microenvironment to produce or secrete 

bio-orthogonal reporters71–77. The main advantage of these approaches is the ability to 

transcriptionally target synthetic biomarker production to cells of a particular phenotype, 

thereby potentially reducing the number of false positives caused by background production 

in healthy tissues. Here, we review advances in three main classes of genetically encoded 

systems for producing synthetic biomarkers, namely vector-based, mammalian cell-based 

and bacterial cell-based systems (FIG. 4).

Bio-orthogonal reporters

Non-native reporters that do not interfere with biological functions.

Vector-based synthetic biomarkers.

Transcriptional targeting with gene vectors is a powerful method to restrict transgene 

expression in target tissues and has been extensively explored for cancer imaging and 
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therapy71,78. Building upon this foundation, vector-based systems rely on two key design 

components: a tissue-selective or cancer-selective promoter to drive transcription and a 

synthetic biomarker designed to be secreted into blood or urine for detection79,80. Tissue-

selective promoters provide the first level of specificity — for example, the promoter for 

the gene pulmonary surfactant-associated protein B (SFTPB) restricts transgene expression 

to alveolar type II cells and Clara cells of the lung81, and similarly, use of the promoter 

for the gene glial fibrillary acidic protein (GFAP) restricts expression almost exclusively 

to astrocytes82. However, with this approach, systemic delivery will result in transgene 

production by normal as well as tumour tissue derived from the same cell type, thereby 

increasing the background signal. By comparison, cancer-selective promoters increase the 

precision of transcriptional targeting as these are driven primarily by cancer cells but have 

limited activity in normal cells. One example is the promoter for the normally silent human 

telomerase reverse transcriptase (TERT), which encodes telomerase, which is frequently 

activated in cancer cells to achieve proliferative immortality83, one of the hallmarks of 

cancer. As TERT is expressed at high levels in ~90% of human cancers but silenced in 

almost all somatic cells, the TERT promoter has been used to drive expression of genes in a 

wide variety of tumour cells84–86.

The second component of vector-based strategies is a secreted reporter that acts as synthetic 

biomarker and can be detected in blood or urine. Secreted embryonic alkaline phosphatase 

(SEAP) was among the first reporters to be engineered for applications in vivo. SEAP is 

an engineered form of human placental alkaline phosphatase that contains a termination 

codon at the membrane-anchoring domain to convert it into a truncated but fully active 

secreted reporter87,88. In xenograft tumour models, production of SEAP by cancer cells 

allowed early and long-term measurement of tumour growth and response to drug treatment 

as SEAP levels directly correlated with tumour size and cell numbers89–91. The limitations 

associated with SEAP include its high molecular mass (64 kDa), which limits its use to 

a synthetic blood biomarker as it is not normally excreted in urine92. Moreover, alkaline 

phosphatases are naturally expressed by major organs and may leak into the bloodstream 

through tissue injury and interfere with SEAP measurements. Another commonly used 

reporter is a luciferase cloned from the marine copepod Gaussia princeps (Gluc)93–98. 

Unlike earlier luciferases such as Photinus pyralis luciferase (Fluc) and Renilla reniformis 
luciferase (Rluc), Gluc is naturally secreted and is among the smallest luciferases at 19.9 

kDa, and its initial activity per mole is about 100–1,000 times higher than that of Rluc or 

Fluc and it is more than 20,000-fold more sensitive than SEAP93. On the basis of these 

favourable properties, Wurdinger and colleagues94 demonstrated that Gluc could detect as 

few as 1,000 Gli36 human glioma cells in vivo compared with a LOD of ~500,000 cells with 

use of SEAP.

One limitation of vector-based strategies is the requirement for efficient tumour delivery 

without the use of viral vectors, given concerns regarding immunogenicity and insertion 

mutagenesis, particularly for early detection applications that will require longitudinal 

assessment and repeated administrations. Fang and colleagues99 designed plasmid vectors 

that were charge-complexed with cationic polyethylenimine for detection of bladder 

cancer. These constructs used cancer-selective promoters from cyclooxygenase 2 (Cox2) 

and osteopontin (Opn) to drive production of Gluc for detection from urine samples 
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in mice. Although plasmids have a superior safety profile compared with viral vectors, 

they are limited by low gene transfer rates and transient expression profiles. By contrast, 

DNA ‘minicircles’100, which are minimal vectors free of prokaryotic components that 

conform to regulatory principles for plasmids free of antibiotic resistance genes (pFAR)101, 

have increased delivery efficiency, enhanced expression and reduced transcriptional 

silencing compared with plasmids. For cancer detection, Ronald and colleagues77 designed 

minicircles that encoded SEAP driven by the cancer-selective survivin promoter. Systemic 

delivery of these in a melanoma lung metastasis mouse model led to detectable elevations 

of SEAP levels in plasma that correlated with tumour burden. With this approach, it would 

be possible to create bespoke vectors for particular cancer types by designing minicircles 

with alternative promoters, such as the mucin 1 promoter for breast cancer102. In addition, 

their application could be extended beyond early cancer detection, for example, to assess the 

aggressiveness of prostate cancer103.

Mammalian cell-based synthetic biomarkers.

The recent clinical successes of adoptive cell therapies have inspired the idea of engineered 

mammalian cells as living biosensors (FIG. 4). A clear advantage of cells as diagnostic 

vehicles is that some are capable of homing to and infiltrating cancer sites, in contrast 

to molecular probes, which are limited by their reliance on passive diffusion from 

the vasculature to accumulate in tumours. Mesenchymal stem cells (MSCs) are adult 

multipotent stem cells that possess regenerative and immunomodulatory properties, and 

systemically infused MSCs selectively home to primary and metastatic tumours104. Liu and 

colleagues105 used a mouse model to demonstrate the use of engineered MSCs for detection 

of cancer metastasis from blood. First, MSCs were engineered to secrete humanized Gluc; 

upon intravenous administration, engineered MSCs persisted longer in mice with MDA-

MB-231 breast cancer lung metastases than in tumour-free mice, resulting in higher blood 

levels of humanized Gluc. However, as MSCs exhibit tropism to sites of inflammation and 

injury106, or may themselves participate in cancer progression107, additional studies are 

needed to understand these potential limitations.

Aalipour and colleagues76 further developed the concept of cell-based diagnostics using 

engineered macrophages as living cellular sensors. Within the tumour microenvironment, 

a subset of macrophages is polarized to an M2 tumour-associated metabolic profile that 

promotes an immunosuppressive microenvironment. Aalipour and colleagues found that M2 

reprogramming led to striking changes in the levels of arginase 1 (encoded by ARG1), 

which was upregulated by as much as 200-fold by adoptively transferred macrophages 

in solid tumours. On the basis of this finding, they used the ARG1 promoter to drive 

production of Gluc upon macrophage M2 polarization. This study laid the foundation 

for the concept of cellular immunodiagnostics, and considering that a number of other 

immune cells likewise modulate expression of metabolic genes in the context of the tumour 

microenvironment, this approach could also be extended to T cells108, B cells109 and natural 

killer cells110. Several limitations are worth noting, including observations that macrophage 

sensors did not detect visibly necrotic tumours in high tumour burden settings, which could 

be attributed to poor infiltration. Another limitation is the high cost of adoptive cell transfer 

and the complex pipeline for good manufacturing practice (GMP) cell manufacture that 
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would prevent this approach from being a routine screening tool. However, numerous efforts 

are under way to reduce the time and cost, including in situ reprogramming of circulating 

cells111, which circumvents the need for ex vivo cell isolation, and allogeneic ‘off-the-shelf’ 

immune cells112.

Bacterial cell-based synthetic biomarkers.

Certain types of bacteria infiltrate and selectively grow in tumours, which has been 

attributed to suppressed immunosurveillance and increased levels of nutrients released 

by necrotic cells within the core of solid tumours113–116. This has prompted the use of 

engineered tumour-targeting bacteria as programmable vehicles for cancer detection. Panteli 

and colleagues117,118 genetically modified an attenuated strain of Salmonella enterica that 

is 10,000-fold less toxic than its wild-type counterpart to release ZsGreen as a fluorescent 

biomarker, or ‘fluoromarker’. Following intravenous administration in tumour-bearing mice, 

fluoromarker levels in serum were dependent on tumour mass and were predicted by 

mathematical modelling to have the capacity to detect tumours as small as 120 mg. 

Danino and colleagues119 showed that the nonvirulent probiotic bacterium Escherichia coli 
Nissle 1917, genetically engineered with a lacZ reporter, selectively colonizes colorectal 

cancer liver metastases following oral delivery in recipient mice. One limitation of gene 

circuits constructed on intracellular plasmids is that they lose stability and function over 

time and under environmental conditions that disrupt cellular homeostasis. Therefore, 

the team engineered a dual-maintenance vector including a toxin–antitoxin system that 

simultaneously produces a long-lived host-killing (hok) toxin and a short-lived suppression 

of killing (sok) antitoxin, such that in the event of plasmid loss, the cell will be killed by 

the long-lived toxin. To detect the presence of liver metastases, the team showed that a LacZ 

substrate could be administered to produce a colorimetric reporter in urine. A demonstrated 

advantage of this approach is the ability of tumour-targeting bacteria to expand by more than 

106-fold after colonization, providing yet another mechanism to amplify detection signals 

beyond enzymatic turnover and urinary enrichment.

Moving forward, several challenges need to be addressed for bacteria to be used for 

early cancer detection. Although engineered strains, including Clostridium, E. coli Nissle 

and Salmonella, have been shown to be non-pathogenic in animals and humans113, the 

inherent toxicity of bacterial components and the potential to revert to virulence pose 

safety concerns. It is also not clear whether all tumour types and nascent lesions that 

lack a necrotic core can be colonized by systemically delivered bacteria. Advances in 

synthetic biology could offer solutions to mitigate these challenges as well as providing the 

opportunity to engineer ‘smart’ micro-organisms with specified and controlled behaviour120. 

For instance, bacteria engineered with quorum-sensing biocircuits can be used for bacterial 

communication to synchronize activity121,122 and produce emergent behaviour such as 

timed release of therapeutic cargo after a threshold population density has been reached 

to either kill tumours123 or promote systemic anti-tumour immunity124,125. Applied to the 

field of early cancer detection, these biocircuits have the potential to increase specificity 

by reducing background activity from healthy tissues, since off-target bacteria would not 

reach a quorum and therefore not falsely produce a reporter. In the future, these genetically 

programmable vehicles may have the potential to be developed into safe and regularly 
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ingested food products (for example, yogurt) to allow routine cancer screening or cancer 

chemoprevention126.

Preclinical studies

A number of preclinical studies have been reported that demonstrate the potential of activity-

based synthetic biomarkers to achieve the LOD required for earlier detection (FIG. 5). In 

a xenograft mouse model, an activity-based sensor composed of IONPs conjugated with 

mass-barcoded peptide substrates was able to discriminate LS174T colorectal tumours that 

were 60% smaller in volume than those detected by the shed serum biomarker CEA (130 

mm3 versus 330 mm3 on average, respectively) with an area under the receiver operating 

characteristic curve (AUROC) of 0.94 (REF.25). By contrast, a separate study by Aalipour 

et al.76 that also used the LS174T colorectal cancer model found that ctDNA was detectable 

from blood only when tumour volumes reached ~1,000 mm3. Kwon and colleagues44 

reported a formulation of activity-based sensors that incorporated tumour-penetrating 

peptides to target and increase their delivery to metastatic nodules in an orthotopic ovarian 

cancer model to further lower the LOD. By quantifying cleaved synthetic biomarkers 

enriched in urine, they reported the ability to detect disseminated disease with near-perfect 

accuracy (AUROC of 0.99) when the median nodule diameter was less than 2 mm and 

the average total tumour burden was 36 mm3. By comparison, the shed human epididymis 

protein 4 (HE4) serum biomarker was able to indicate disease only when the average tumour 

burden reached 88 mm3. This 59% reduction in tumour burden LOD was an important 

demonstration considering that current transvaginal ultrasonography can reliably resolve 

individual tumour nodules only when they are larger than 5 mm in diameter (equivalent to 

65 mm3 per nodule), and estimates indicate that decreasing serous ovarian cancer mortality 

by 50% would require a test capable of detecting nodules smaller than 5 mm in diameter127.

Depending on the cancer type, use of different delivery routes also provides another 

approach to reduce the LOD by reducing sensor activation by off-target organs. Kirkpatrick 

and colleagues48 showed that intrapulmonary delivery of a 14-plex cocktail of sensors, 

composed of mass-barcoded peptides conjugated to an eight-arm PEG carrier, could be used 

to query the lungs for early tumours by producing cleaved synthetic biomarkers detectable 

in urine. In the Kras- and Trp53-mutant genetically engineered mouse model of lung 

adenocarcinoma, they reported the ability to detect a total average tumour burden of 2.8 

mm3. This LOD compared favourably with that in an independent publication by Rakhit and 

colleagues128, where they showed that ctDNA from an autochthonous KrasG12D-mutant lung 

cancer model was detectable only when average tumour volumes were 7.1 mm3. Kirkpatrick 

and colleagues further showed that a random forest machine learning classifier (BOX 1) 

trained on the 14-plex synthetic biomarker signature predicted lung cancer progression with 

high accuracy (AUROC greater than 0.90) and distinguished lung cancer-bearing mice from 

mice with benign lung inflammation (AUROC greater than 0.97)48.

In vivo LOD studies have also been reported for genetically encoded synthetic biomarkers. 

Aalipour and colleagues76 showed that the adoptive transfer of engineered macrophage 

sensors detected moderately sized CT26 colorectal tumours (volume 50–250 mm3) with 

100% sensitivity and specificity, while small tumours (25–50 mm3) were also discriminated, 
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with an AUROC of ~0.85, compared with healthy animals. The team further demonstrated 

the potential for translation by using primary bone marrow-derived macrophages in addition 

to the RAW264.7 macrophage cell line. They found that engineered bone marrow-derived 

macrophage sensors detected CT26 tumours with a volume of 60–75 mm3 with an AUROC 

of 0.81. In benchmarking studies comparing the performance of their macrophage sensors 

with either plasma CEA secreted by LS174T tumours or cfDNA released by CT26 tumours, 

they reported a lower LOD; tumours ~136 mm3 in volume were detectable by CEA, while 

tumours larger than 1,500 mm3 were detectable by cfDNA.

Challenges for clinical translation

Preclinical limitations.

Significant sources of noise for synthetic biomarker strategies include off-target and 

on-target, off-tumour activation. For activity-based synthetic biomarkers, most published 

protease substrates were identified through in vitro selection; therefore, these substrates 

were not selected against background activity arising from circulating blood (for example, 

coagulation and complement proteases) or organ-associated proteases in vivo. Therefore, it 

will be important to develop screening strategies that permit substrate discovery by negative 

selection under healthy as well as comorbid conditions. Ideally, the substrate development 

pipeline would include steps conducted in vivo or, at a minimum, with appropriate control 

plasma samples in vitro that account for the anticoagulant used during sample collection 

and the classes of proteases it inhibits. Developing peptide display technologies that 

permit sequence selection based on on-target and off-target protease activity in vivo would 

significantly advance the design of peptide-based protease sensors129,130.

Standardized and better preclinical models are needed to accurately recapitulate pre-invasive 

and early-stage cancer. The vast majority of immortalized cancer cell lines were derived 

from patients with advanced metastatic disease, which do not fully reflect early or pre-

cancerous conditions. Moreover, the rate at which endogenous biomarkers are produced by 

these cancer cell lines can vary by as much as four orders of magnitude25, which makes 

benchmarking studies difficult to compare across laboratories unless the same cell lines are 

used. Additional methods need to be developed to increase the information we are able 

to collect from patients, including the ‘age’ of a tumour131–134, the relationship between 

tumour sizes and secreted biomarker levels, and the permeability of tumours. This increased 

understanding will provide important clinical data to support the development and validation 

of predictive mathematical models and to optimize formulations of synthetic biomarkers51. 

Genetically engineered animal models that recapitulate pre-invasive conditions, such as 

prostatic intraepithelial neoplasia (PIN)135, would provide a rich test bed for future synthetic 

biomarker studies geared towards early detection of cancers.

Allometric scaling.

It is likely that several key system parameters will be linearly proportional between 

preclinical rodent models and humans. For example, for protease-activated synthetic 

biomarkers, it is estimated that more than 500 of 628 mouse proteases are considered true 

orthologues136 of the ~550 proteases encoded by the human genome. Thus, the efficiency 
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with which a protease cleaves a substrate sequence (that is, the catalytic efficiency kcat/Km, 

where kcat is the catalytic rate constant and Km is the Michaelis–Menten constant137) 

would likely be similar between rodent and human orthologues, especially for proteases that 

perform conserved functions. For others that are substantially different, substrate screening 

technologies could be used to identify target substrates with similar Michaelis–Menten 

constants between species. Therefore, it is likely that the kinetics of protease cleavage 

and signal amplification observed in mouse models would be reflected in humans. Similar 

assumptions could be drawn for other parameters, such as tumour transfection efficiencies, 

biomarker secretion and degradation rates, and safety and clearance from the body.

However, there are significant physiological differences between mice and humans, 

including blood pool volume (2 ml versus 5 l), urine volume (500 μl versus 500 ml) 

and glomerular filtration rates, such that allometric scaling across species would likely 

be non-linear. For example, Kwong and co-authors51 developed a physiologically based 

pharmacokinetic model to understand how probe and physiological parameters affect the 

performance of activity-based synthetic biomarkers. Their model revealed a number of 

intuitive relationships (for example, signal is proportional to sensor delivery) but also 

predicted relationships that were non-linear and non-intuitive. Several of these non-linear 

relationships (for example, signal-to-noise ratios are largely independent of the dose of the 

administered sensor) have been experimentally validated in mice44,51,58 but have yet to be 

shown in humans. Moreover, synthetic biomarkers shed by genetically encoded vectors into 

the circulation will be diluted by ~3,500-fold in humans over mice if scaling is calculated 

linearly on the basis of only blood volume. Yet this does not imply that a synthetic 

biomarker that can discriminate ~5-mm3 tumours in mice can discriminate only tumours 

that are ~3,500-fold larger in volume in humans, as both clinical data and mathematical 

modelling support that smaller tumour sizes are detectable even by shed endogenous 

blood biomarkers31,32. Clearly, biological factors other than tumour burden affect detection 

sensitivity.

Tumour localization.

For cancer screening applications, a blood or urine synthetic biomarker has limited utility 

unless it also reports on which organ should be followed up for tumour localization. One 

approach could involve signal normalizers such as a probe that reports on organ-specific 

proteases (for example, liver hepsin) or, alternatively, normalization against a synthetic 

biomarker released by a tissue-specific promoter. Another potential approach is to combine 

synthetic biomarkers with different classes of endogenous analytes and clinical variables 

such that a multianalyte classifier can be trained to predict potential tumour sites. This 

strategy was recently demonstrated by CancerSEEK9, a blood test designed to detect eight 

common cancer types by ctDNA sequencing. The test included 31 proteins and the patient’s 

sex to generate a score that correctly localized the tumour to one of the two top predicted 

anatomical sites in 83% of patients. A similar approach was reported for a stool-based test 

for colon cancer screening that included a haemoglobin immunoassay and was able to detect 

significantly more cancers than a faecal immunochemical test alone21.
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Imaging will play a critical role in determining the location of the tumour following 

confirmation of a synthetic biomarker signal. Molecular imaging with reporter genes is a 

rich area of research for platforms such as single photon emission computed tomography 

(SPECT) and PET that are not limited by depth or tumour site within the body compared 

with optical modalities138. Genetically encoded synthetic biomarkers are most amenable to 

these approaches, which essentially involve exchanging the secreted synthetic biomarker 

for a reporter gene. For example, macrophage sensors could be engineered to express 

the herpes simplex virus 1 thymidine kinase (HSV1-TK) reporter gene to allow tumour 

site-induced M2 polarization of macrophages to be detected by PET22. Similar approaches 

have also been demonstrated with vector-based strategies; for example, the tumour-specific 

progression elevated gene 3 (Peg3) promoter (PEG-Prom) has been used to drive HSV1-TK 

expression, enabling tumour-specific imaging of lung metastasis71. This approach showed 

the ability to detect small lesions that were missed by fluorodeoxyglucose PET in preclinical 

studies. Imaging strategies that integrate concepts from synthetic biology have the potential 

to further increase the sensitivity and specificity of cancer imaging, as illustrated by Widen 

and colleagues139, who described an AND gate optical probe requiring two cleavage events 

by multiple tumour proteases to produce a signal.

Herpes simplex virus 1 thymidine kinase

(HSV1-TK). The enzyme expressed by the reporter gene phosphorylates radiolabelled 

purine and pyrimidine nucleoside analogues to trap the probe within cells and thereby 

allow visualization by positron emission tomography (PET).

AND gate

A Boolean logic gate operation that outputs a value of 1 if and only if both inputs are 1; 

otherwise it outputs 0.

Strategies for clinical testing.

A densely multiplexed cocktail of synthetic probes would likely be necessary to achieve the 

selectivity required to handle the expected tumour heterogeneity, interpatient variations and 

comorbidities in the human population. Importantly, in the reported preclinical studies with 

activity-based synthetic biomarkers25,47,48, the study authors showed that the diagnostic 

performance of two or three probes was sufficient to attain the sensitivity and specificity 

of the entire panel (more than ten probes). Moreover, when the same multiplexed probe 

set was used, different subsets of probes distinguished different disease states, including 

liver fibrosis progression from regression25, lung cancer from benign lung inflammation48 

and response from resistance to checkpoint blockade immunotherapy56. While the ability to 

distinguish disease states in mice with low-dimensional data can be attributed partially to 

the lack of variation in isogenic tumour models, these observations also highlight a potential 

strategy for clinical trial design that makes use of a ‘superset’ of probes. This approach 

may provide the ability to capture high-dimensional data for classifier training (BOX 1), 

while allowing the possibility of down-selection after classifier validation. In addition, once 
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the safety and immunogenicity of a superset of probes have been demonstrated, it could 

potentially be applied to different clinical use cases without changing its composition, 

which could reduce the amount of resources required and regulatory burden. Similar 

specificity challenges lie ahead for genetically encoded sensors, which thus far have been 

designed to produce a single synthetic biomarker. One approach to increase the specificity 

of tumour detection would be to multiplex several metabolic gene reporters. This could 

be accomplished with different promoters paired with different secreted reporters, such 

as artificial microRNAs140. Cell-based sensors could also be engineered with synthetic 

circuitry to endow them with the capacity to perform logic-based computations. This could 

take the form of biocircuits that require the presence of multiple environmental inputs 

before a single output reporter is produced, for example, using AND-gated sensing141–143 

to increase tumour-selective activation or analogue-to-digital conversion143 to reduce 

background noise.

As the field is in its infancy, human testing of synthetic biomarkers has yet to proceed 

to pivotal trials to determine their use for early cancer detection. To the best of the 

authors’ knowledge, the synthetic biomarker formulation that has advanced the furthest 

in clinical testing is mass-barcoded PEGylated peptides48, which were found to be well 

tolerated and safe in healthy human volunteers on the basis of preliminary data from a 

recent phase I study144,145. The first several clinical use cases for synthetic biomarkers 

need to be carefully considered, as an early failure may set the field back. Screening 

asymptomatic patients for early cancer is highly challenging and may present ethical 

challenges in clinical trial validation studies; for example, patients with a positive synthetic 

biomarker test result may need to wait for confirmation by imaging (that is, allow 

tumours to grow) before therapeutic intervention. Potential clinical entry points such 

as pharmacodynamic assessment of treatment response56 or monitoring for recurrence 

following primary resection could show the utility of a synthetic biomarker approach before 

transitioning to early detection applications. As the field advances towards human testing, it 

should be noted that a number of components and vehicles that form the ‘parts’ for synthetic 

biomarker generation are undergoing clinical evaluation, have a demonstrated safety record 

in humans or are approved by the FDA. Examples include protease-activated substrates 

used in imaging probes for intraoperative detection of tumour margins146–148, linkers for 

masked antibodies (NCT03993379 and NCT03013491)149–151, activation domains for T cell 

engagers152,153 (NCT03577028) and antibody–drug conjugates154. Similarly, for genetically 

encoded synthetic biomarkers, numerous clinical trials have highlighted the safety and utility 

of attenuated bacteria as vehicles for targeting tumours and delivering therapy155. These 

precedents provide a broader understanding of the embodiments of synthetic biomarkers that 

will be safe and well tolerated by humans, and anticipate the types of substrate sequences 

that will be selective for different types of human tumours.

Charting the course ahead

Although the nascent field of synthetic biomarkers is exciting and full of promise, there 

are gaps in our current knowledge of cancer pathogenesis that need to be filled alongside 

addressing technical challenges to guide future advances. In particular, there is limited 

understanding of the biology of early lesions and when and how a precursor lesion 
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transitions into malignancy, yet such information is needed to guide sensor engineering 

strategies. This highlights a challenge in the synthetic biomarker field for early detection of 

cancers. The Cancer Genome Atlas (TCGA) has generated a tremendous knowledge base 

for the biomedical community but there is a bias towards advanced and locally advanced 

tumours. Therefore, there is a need for extensive profiling of early-stage and in situ tumours 

as well as lethal precursors that have a high propensity for malignancy. There is also an 

urgent unmet clinical need to detect aggressive cancers, and early detection efforts would be 

greatly bolstered by the ability to predict tumour aggressiveness and lethality. In addition, 

one has to be mindful of the fact that tumours are heterogeneous, and the biology can 

be very complex. For translation of some of these synthetic biomarker technologies into 

humans, one has to select the tumour system carefully to avoid a potentially harmful 

combination of unknown biology and an agent for which information on pharmacokinetics 

and long-term safety in a particular clinical setting is limited. The US National Cancer 

Institute (NCI) initiated the Human Tumor Atlas Network (HTAN) to create detailed 

molecular, cellular and spatial maps of a variety of precancers, in situ cancers and advanced 

cancers as a function of time156. This will lead to a profound understanding of how 

precancers transition to malignancy for those cancer types studied by the HTAN, and how 

invasive cancers progress, metastasize and respond to or develop resistance to treatment. The 

knowledge generated from in situ and early lesions will generate testable hypotheses and 

biological information that could be leveraged to develop synthetic diagnostic tools, while 

also unearthing new candidate endogenous biomarkers.

Multidisciplinary teams of bioengineers, biologists and clinicians should work together 

strategically and in an integrated manner to find the answers to a number of questions that 

include, but are not limited to, the following. For which early-stage tumours or precancer 

lesions of lethal potential are the biology and pathogenesis sufficiently understood to drive 

the engineering of sensors? How can machine learning support identification of key features 

within complex biological datasets to achieve the required predictive power for synthetic 

biomarkers? Which populations will benefit the most from early detection? What are 

the short-term or long-term tolerability profiles of bioengineered sensors? How often can 

patients be screened? What additional complications can result from patient comorbidities? 

Under what situations can the same probes be used for detecting cancer recurrence? How 

expensive will long-term surveillance of ‘at risk’ patients be compared with the current 

standard of care? How can patient and tumour heterogeneity be overcome to ensure 

diagnostic accuracy? Which proof-of-principle studies in humans are worth consideration? 

How can mathematical models assist in such endeavours? Although there may seem to be 

more unknowns than definitive answers at this time, we anticipate that solutions will emerge 

at an increasingly rapid pace through collective, multidisciplinary efforts, and the audacious 

and innovative visions of scientists.
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Box 1 |

The application of machine learning to cancer

• Machine learning is a branch of artificial intelligence based on the theory 

that computers can learn from prior examples to perform tasks and predict 

outcomes rather than being explicitly programmed with rules to make 

decisions157,158. A key advantage of machine learning compared with human 

learning is that computers can learn from complex and massive amounts of 

data. For example, machine learning is being applied to wide-ranging areas 

in medicine from pathology for automated detection of cancer in digitized 

histology slides159,160 to prediction of disease aggressiveness and patient 

outcomes from -omic datasets161–166.

• Supervised learning is a type of machine learning algorithm whereby the 

model learns from prior examples by training on a range of input features (for 

example, biomarker levels, height and weight) associated with a known output 

label (for example, cancer)157,158. The trained model can then generalize the 

input-to-output mapping to predict the assignment of never-before-seen inputs 

to an output label. These predictions can result in discrete categories (for 

example, benign or malignant) or a continuous range (for example, a score 

from 0 to 100).

• A classifier is a supervised learning method that categorizes unlabelled data 

into one or more discrete categories, also referred to as ‘classes’, such as 

cancer stages. For example, a random forest classifier is a collection of a 

large number of randomly created decision trees in which each node in the 

decision tree works on a random subset of features to calculate the output. 

The predicted output class is based on the most popular prediction among 

individual decision trees167.

• In contrast to supervised learning, unsupervised learning is a type of machine 

learning algorithm that draws inferences from unlabelled data without prior 

knowledge. Clustering tumour specimens based on RNA transcript levels by 

t-distributed stochastic neighbour embedding (t-SNE), for example, is a form 

of unsupervised learning since the data are categorized without the use of 

predefined labels168.
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Fig. 1 |. Challenges associated with detecting early-stage tumours.
An early-stage tumour (smaller than 5 mm in diameter) is on average eight orders of 

magnitude smaller in volume than the human body. Several factors hinder the ability 

to detect biomarkers shed from tumours, including transport challenges from the tumour 

microenvironment (TME) into the circulation, an approximately five orders of magnitude-

fold dilution into blood and short circulation times owing to degradation and renal filtration. 

These factors decrease the number of tumour-associated biomarkers (for example, cell-free 

nucleic acids, proteins, metabolites and circulating tumour cells) that can be found in 

a typical 5–10 ml blood draw, which represents only ~1/1,000th of the total circulation 

volume. d, diameter; MW, molecular weight; Δt, change in time.
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Fig. 2 |. Activity-based synthetic biomarkers enrich tumour protease signatures.
a | Synthetic biomarkers are activity-based sensors that comprise a biocompatible carrier 

(for example, iron oxide nanoparticles (IONPs), polyethylene glycol (PEG) or iron oxide 

nanoworms) coupled to peptide substrates for dysregulated proteases and a cleavable 

reporter (for example, mass-barcoded or fluorescent peptides). Peptide substrate libraries 

can be multiplexed by using orthogonal reporters. b | Following non-invasive delivery of 

a synthetic biomarker library (for example, by intravenous or intranasal administration), 

protease signatures are amplified by enzymatic turnover, resulting in the release of multiple 

reporters from each sensor upon proteolytic cleavage at the tumour site. c,d | The cleaved 

reporters are shed into the circulation, where they are further enriched by renal filtration 

(panel c) and detected in urine samples by several analytical platforms, including mass 

spectrometry, enzyme-linked immunosorbent assay (ELISA) and paper tests (panel d). e | 

Diagnosis is performed using machine learning-based classification algorithms. LOD, limit 

of detection; n, number.
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Fig. 3 |. Small-molecule probes sense tumour-associated enzymatic activity.
Small-molecule probes comprise an enzyme recognition site linked to a synthetic cleavable 

reporter, such as volatile organic compounds (VOCs) or stable isotope labels (for example, 
13C-methacetin or 13C-cholate). Following systemic administration, tumour-associated 

enzymes convert the probes into synthetic biomarkers (for example, D5-ethanol or 

acetaminophen (APAP) conjugates) whose abundance is detectable in breath or plasma 

samples. β-GR-APAP, β-galactosidase-responsive acetaminophen.
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Fig. 4 |. Genetically encoded synthetic biomarkers leverage tumour-specific cues to achieve 
detectable signals.
Cells engineered with genetically encoded synthetic biomarkers exploit key features of the 

tumour microenvironment (TME) to trigger the secretion of detectable reporters. Secreted 

reporters can be detected in blood to indicate the presence of disease or they can be imaged 

to provide spatial information on tumour location or immune cell activation. a | Mammalian 

cell-based ‘immunodiagnostics’ exploit the metabolic alterations of tumour-infiltrating 

macrophages to trigger the production of a secreted biomarker by engineered macrophages. 

b | Bacteria, which colonize tumours owing to suppressed immunosurveillance and 

increased availability of nutrients in the necrotic tumour core, release programmed reporters 

at the site of the tumour. c | DNA vectors leverage tumour-associated gene expression 

patterns by encoding a secretable reporter transcriptionally targeted to cancer cells using 

tumour-specific promoters. LOD, limit of detection; prom., promoter; ss, steady state.
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Fig. 5 |. Characteristics of synthetic biomarkers for early-stage cancer detection.
Enzymatic, small-molecule, DNA-based, mammalian cell-based and bacterial cell-based 

sensors leverage synthetic biomarkers to enhance early cancer detection. Each 

technology senses dysregulated activity (that is, the ‘input’) associated with the tumour 

microenvironment (TME), such as protease activity, metabolic activity or biophysical 

features. Through diverse modes of amplification and strategies for improving signal 

specificity, these approaches lower the limit of detection below current clinical thresholds 

(~1 cm3). ECM, extracellular matrix; IONP, iron oxide nanoparticle; PEG, polyethylene 

glycol; VOCs, volatile organic compounds; NA, not available.
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