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Bone injuries or defects that require invasive surgical
treatment are a serious clinical issue, particularly
when it comes to treatment success and effectiveness.
Accordingly, bone tissue engineering (BTE) has been
researching the use of computational fluid dynamics
(CFED) analysis tools to assist in designing optimal
scaffolds that better promote bone growth and repair.
This paper aims to offer a comprehensive review
of recent studies that use CFD analysis in BTE.
The mechanical and fluidic properties of a given
scaffold are coupled to each other via the scaffold
architecture, meaning an optimization of one may
negatively affect the other. For example, designs

that improve scaffold permeability normally result
in a decreased average wall shear stress. Linked
with these findings, it appears there are very few
studies in this area that state a specific application
for their scaffolds and those that do are focused on
in vitro bioreactor environments. Finally, this review
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also demonstrates a scarcity of studies that combine
CFD with optimization methods to improve scaffold
design. This highlights an important direction of
research for the development of the next generation
of BTE scaffolds.

1. Introduction

Bones are some of the most important tissues in the
human body, being responsible for providing structural
support, protecting important internal organs and
maintaining mineral homeostasis. Therefore, a quick
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Figure 1. Examples of possible scaffold geometries for bone tissue engineering (BTE): (a) lattice geometry (adapted from [5])
and (b) triply periodic minimum surfaces (TPMS) [6]. (Online version in colour.)

intervention is vital to treat any injury or defect on this tissue that cannot be easily repaired.
A common treatment method for bone injuries or defects is bone grafting [1]. However, this
treatment presents considerable drawbacks, such as donor site morbidities and higher risk of
infections. Taking these limitations into consideration, bone tissue engineering (BTE) has been
looking into the use of scaffolds as an appealing alternative for the treatment of bone injuries and
bone defects.

Scaffolds are porous support matrixes designed to allow cell growth, while maintaining the
mechanical properties inherent to bone tissue. These structures can be random porous solids [2],
but can also be designed to have targeted geometries, such as simple lattices [3] or more complex
structures such as the triply periodic minimum surface (TPMS) approach [4] (figure 1). To promote
cellular growth, scaffolds must account for the mass-transport requirements of cell nutrition
and for the interconnectivity of porous channels for cell migration and surface conditions for
cell attachment [7]. One parameter that is usually studied regarding these requirements is the
scaffold’s permeability. This is a fundamental characteristic of any BTE scaffold, because higher
permeability facilitates cells entering the scaffold as well as easing the distribution of nutrients
through the scaffold. These factors, in turn, translate to more favourable conditions for cellular
growth. Another important parameter to study during a scaffold’s design is wall shear stress
(WSS) that affects the cells inside the scaffold. WSS arises through load-driven fluid flow from
relative movement between the scaffold and the cell and tissue containing fluidic phase within
the scaffold. Studies have shown that different levels of WSS result in different mechanical signals
affecting the mesenchymal stromal cells, resulting in differences to the cellular differentiation
process [8,9].

Studies have shown that, during the scaffold design process, small changes to the pore
size and/or porosity might considerably influence the scaffold’s mechanical support and the
process of cell growth and tissue infiltration [10,11]. Other factors that might also influence
scaffold properties are the materials and manufacturing techniques that are chosen [12,13]. These
multiple inputs for scaffold development result in a large range of possible designs: in the
conceptualization of a new scaffold, one fundamental step is to ascertain its properties through
computational simulations, to save time and manufacturing/prototyping costs.

Computational methods have been used in various engineering fields to reduce costs and
optimize the desired characteristics [14]. This is especially true in BTE, where computational
simulations allow scaffolds to be designed and tested prior to manufacturing, thus reducing
the costs associated with creating new scaffolds. Furthermore, numerical methods also permit
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the testing of a much larger range of scaffold designs by allowing changes to a scaffold
material and simple geometric properties (such as the wall thickness), without the need to re-
manufacture the entire structure. One of the most important types of simulations in BTE is
computational fluid dynamics (CFD), which allows the study of the fluid passing through the
scaffold (more specifically, the study of the permeability, fluid velocity and WSS), permitting a
better understanding of how each scaffold geometry influences the cell growth process [15,16].

Additionally, computational simulations can also be used to design the scaffold geometry
using an optimization approach (by attempting to optimize scaffold characteristics such as their
Young’s modulus [17]; compressive strength [18] or octahedral shear strain [19-21]), instead
of merely analysing the properties of the scaffolds. However, optimization strategies in BTE
have almost exclusively focused on the mechanical properties of the scaffold itself, disregarding
the fluid flow inside the structure, and consequently, the interaction between the cells and the
scaffolds.

Taking into consideration the importance of CFD analyses and optimization techniques for
BTE, this review attempts to identify the current limitations facing the use of CFD in scaffold
design. Additionally, this review also highlights some possible alternatives that could help a new
generation of BTE scaffolds that overcomes said limitations. Therefore, this paper provides a
comprehensive view of publications from 2015 onwards that used CFD analyses to study BTE
scaffolds or played a role in designing said scaffolds. This review first delves into the general
framework of most CFD analyses, followed by an overview on recent applications of CFD in BTE.
Then we present recent studies that combine CFD with other techniques such as the finite-element
method (FEM), experimental validation or scaffold design optimization. Finally, we discuss the
current limitations of the field and enumerate the challenges of integrating CFD with scaffold
design optimization.

2. CFD

CFD is a computational approach to modelling the fluid flow of a certain fluid domain by
numerically solving the Navier-Stokes equations. This method can be implemented by using
several distinct techniques; however, the approach chosen for a majority of CFD analyses is the
finite volume method (FVM). The FVM consists in a numerical method that attempts to resolve
the conservation laws by applying them over differential volumes and finding the solution for the
resulting equations [22]. The FVM presents two advantages over alternative methods for solving
numerical fluid simulations: it is strictly conservative, and it has an easier implementation of
boundary conditions. In flow dynamics, the flux that exits from a given volume face must be
equal to the flux entering the adjacent face and because the FVM is based on volumes instead of
elements, mass, energy and momentum remain conserved locally, making it preferable over other
methods, such as the FEM. Furthermore, since all of the unknown variables are evaluated at the
centroid of the volume, it is less invasive to insert boundary constraints in the FVM compared to
other methods.

When analysing scaffolds meant for BTE, CFD studies usually consist of a fluid flow starting at
a given inlet surface(s), passing through the scaffold and exiting at an outlet surface(s). The fluid
is normally modelled as a Newtonian fluid with constant density and viscosity (in most cases
the fluid is assumed to be water); the inlets are velocity inlets with a constant velocity and the
outlets are pressure outlets set to 0 Pa. Although this is the most commonly used configuration,
some papers have conducted analysis with different conditions, such as the simulation of non-
Newtonian fluids [23] and non-constant inlet flow rates [24,25].

CFD simulations are normally used to study specific properties of scaffolds that are related
to the fluid flow, with almost all CFD studies analysing the permeability and most of them
also analysing the WSS (figure 2a) [23,26,28-36]. Additionally, these analyses are sometimes
used to study the tortuosity of the fluid flow [6,27,37] (figure 2b) or to examine the possible
cellular distribution inside the scaffolds [24,25]. Alternatively, CFD simulations have also been
employed by a couple of studies for considerably distinct applications. These include the study
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Figure 2. Fluidic properties studied using CFD simulations: (a) wall shear stress (WSS) along the walls of the scaffold (adapted
from [26]) and (b) tortuosity of the fluid flow through the scaffold (adapted from [27]). (Online version in colour.)

by Rouhollahi et al. [38] who used this computational method to determine the average pore size
and pore distribution in Freeze-Cast scaffolds and the paper by Chappard et al. [37] who used
CFD to determine the permeability of different granule biomaterials for mandible scaffolds.

3. Current applications of CFD in BTE

In recent years, several studies have been conducted that implemented CFD analyses on scaffolds
meant for BTE. Most of these papers normally focus on either analysing fluidic properties of the
structures or analysing the cellular behaviour inside the scaffolds (table 1).

(a) Analysing fluidic properties

Tissue engineering scaffolds are essentially designed with the objective of promoting cell growth
[62]. Therefore, whether a scaffold is meant for in vitro or in vivo applications, it must possess
the required characteristics to promote the desired rates of cellular differentiation and growth.
These characteristics can be determined by examining the fluid flow passing through the scaffold,
normally by employing a CFD analysis. As previously mentioned, the two main parameters that
are studied are the scaffolds” permeability and WSS.

Permeability has been demonstrated to be essential for cellular growth, with more permeable
scaffolds generating more favourable conditions [10]. However, it should be highlighted that
high permeability scaffolds also present some limitations, namely, lower overall mechanical
properties and the reduction of the cell-scaffold interaction [11]. This is because high permeability
is normally caused by high porosity, which might not allow sufficiently long entrapment of the
cells inside the scaffold. Such limitation would cause them to not adhere to the scaffold wall
[15]. Singh ef al. [46] used a CFD analysis to determine the permeability of various scaffolds
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with circular pores. They discovered that their structures presented permeabilities in the range
of natural bone when the pores had a diameter between 0.5 and 1.5mm. Rahbari et al. [45]
also evaluated the permeability of cylindrical pored scaffolds and determined their permeability
coefficient. They found that, contrary to past research, the trend of the variation of pressure drop
with mass flow rate was exponential instead of linear. Furthermore, the study also found that at
higher porosities, the pore shape had a considerable higher impact on the scaffold permeability,
with hollow structures being much more permeable than tubular structures.

Besides permeability, the work of Prendergast et al. (and subsequent studies) discussed how
a combination of the velocity of the fluid flow and the shear stress influences the cellular
differentiation process (denominated as ‘mechanobiological output’), underlining the importance
of both of these parameters [11,63-65]. Begum & Arumaikkannu [39] analysed the WSS of
15 customized scaffolds with circular pores. The study found, as expected, that the scaffold
geometries with the smaller pore sizes resulted in the highest values of WSS. Ouyang et al. [44]
conducted an experimental study to evaluate how changes to a porous lattice scaffold geometry
affects cellular response and bone regeneration. Alongside an experimental component, the study
also used a numerical CFD analysis to better evaluate the permeability of the scaffolds as well
as the WSS and fluid velocity along the structure. The results suggested that the scaffolds with
larger pores were preferable for cell penetration, while scaffolds with smaller pores were more
conducive to cell deposition.

When studying the WSS of a given structure, a problem arises for irregular geometries, given
the high computational cost of running a CFD analysis on the whole structure. To overcome this,
Zhao et al. [29] developed a multi-scale CFD approach to quantify the micro-fluidic environment
in irregular scaffold geometries. The multi-scale framework consists of a macro-model of the
entire scaffold and a detailed micro-model of a representative portion of the scaffold. This new
approach was successfully validated using a silk fibroin scaffold.

Alongside the CFD analysis, a number of studies also implement a fluid structure interaction
(FSI) analysis [26,33,34]. This method is used to obtain a better understanding of how differences
in scaffolds (such as different geometries or pore sizes) influence the shear stress on scaffold
surfaces and consequently the cell adhering to those surfaces. Zhao et al. [33,34] used CFD
alongside FSI to investigate how the geometry of scaffolds, with rectangular or circular pores,
influences the WSS of the structure. They discovered that combined stimuli (fluid perfusion and
mechanical compression) caused an amplified WSS, instead of a simple superposition for each
isolated system. FSI was also used to examine how interstitial cell formation influenced the WSS
of the scaffold. It was found that after 28 days of cellular growth, the permeability of the scaffold
was approximately a 10th of its original value, with tissue growing within the pores rather than
on its struts. In terms of the WSS, this was dependent on three factors: (i) the volume of the
present interstitial tissue; (ii) the morphology of said tissue; and (iii) the location of the tissue in
the scaffold. Nevertheless, it was shown that interstitial tissue could lead to a 10 times increase
in the WSS affecting the cells: in order to maintain a proper cellular stimulation, the flow rate
might need to be adjusted during growth. Basri et al. [26] investigated effects of degradation on
magnesium scaffolds with circular pores, evaluating their permeability and WSS before and after
the degradation. The areas with higher WSS had a considerably greater material degradation.

As the previous studies have demonstrated, the design parameter of a given scaffold that most
influences the fluidic properties is its geometry. Accordingly, many studies have used CFD to
investigate various scaffold geometries. Lin et al. [41] used CFD to investigate the fluid velocity,
pressure and WSS of three distinct scaffold geometries: artificially designed lattice scaffolds, a
scaffold produced using freeze-drying and the geometry derived from a dog femur as a reference
criterion. These latter two geometries were obtained through micro-computed tomography
(uCT). The researchers discovered that the designed scaffold showed much closer values of
WSS to the reference geometry than the freeze-drying scaffold. Cruel et al. [40] investigated WSS
levels on different scaffold geometries produced via random granular packings. They tested three
different geometries, which were the Ccube, Clbead and C2bead, each named after the particle
that was used to design them (3 mm sided cubes, 2mm diameter beads and 3.5 mm diameter
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Figure 3. Average WSS in scaffolds with different pore diameters and fluid inlet velocities (adapted from [32]). (Online version
in colour.)

beads, respectively). The results demonstrated how these new designs could present a possible
alternative to existing geometries. Out of the three tested geometries, the C2bead configuration
was the best in terms of WSS levels, distribution and homogeneity.

A promising scaffold geometry that has also been the focus of recent studies is the TPMS.
A minimal curve surface is defined as a surface that is locally area-minimizing, meaning that
for a given boundary condition, these surfaces have a minimal surface area. The geometries are
also symmetric in three independent directions, thus making them triply periodic. Montazerian
et al. [43] studied the longitudinal and radial permeability of TPMS and lattice scaffolds. They
concluded that TPMS scaffolds, especially the I-WP geometry, are overall more permeable than
lattice scaffolds. They also discovered that radial permeability appears to be a more accurate
indicator of cell growth behaviour than the conventional longitudinal permeability. Ali et al. [30]
also compare lattice with TPMS scaffolds, but focus on their permeability as well as their WSS. Out
of the eight tested geometries, the results showed that the lattice-diamond structures presented
the highest permeability and one of the highest WSS, making it the preferable geometry for BTE.
Furthermore, the study also reported that it was not possible to find a direct correlation between
the architecture of the scaffold and its WSS distribution, highlighting the complexity in designing
a scaffold with an optimal WSS distribution. Ma et al. [42] and Wang et al. [32] used experimental
and numerical methods to examine the properties of TPMS scaffolds (figure 3). The CFD analyses
demonstrated how the tested structures revealed favourable permeability and fluid streamlines
and WSS that could promote cell seeding efficiency and cellular growth. Zhianmanesh et al.
[47] analysed the permeability of cylindrical TPMS scaffolds with radially graded porosity. Their
study indicates that although both the central and peripheral porosity have a considerable impact
on structural permeability, the permeability is much more dependent on the peripheral porosity.
Furthermore, the paper also highlights that while some geometries have the highest permeability
for non-uniform porosities (I-WP, G and Fxyz-Fxxx2), this is not true for all of them, as one specific
geometry (IJ+-P2) has the highest permeability for a uniform porosity.

When designing BTE scaffolds, two related characteristics that also influence the viability of
a given scaffold, besides its geometry, are the chosen material and the manufacturing process.
Although a scaffold’s material does not directly affect its fluidic properties, it can indirectly affect
WSS and permeability, because different materials are associated with different manufacturing
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techniques. Furthermore, a scaffold manufacturing process greatly influences its properties,
because different manufacturing techniques possess distinct levels of accuracy. Accordingly,
many studies have implemented computational methods to evaluate how differences in materials
and manufacturing alter the fluidic properties of the scaffold. Mahammod et al. [31] used a
CFD analysis alongside mechanical compression tests to investigate the properties of different
hydroxypatite-polymethylmethacrylate (HA/PMMA) composite scaffolds. The CFD analysis
was conducted on geometries obtained through uCT of composite scaffolds fabricated with
varying weight percentages of HA in a PMMA matrix (50-70%). The results showed that an
increase in the scaffolds” porosity leads to an increase in their permeability, but also results in
lower WSS (figure 3). Taking this into consideration, alongside the results of the compression
test, leads to the conclusion that the composite scaffold with 60% HA content is the preferable
option for BTE applications. Campos Marin & Lacroix [5] investigated the WSS and fluid
velocity on five supposedly identical scaffolds, created through a rapid prototypes technique.
puCT analyses were conducted on each of the five polycaprolactone (PCL) scaffolds and the
resulting geometries were studied using CFD. The results revealed that there was a considerable
variability between the WSS and fluid velocities of the ideal initial scaffold geometry and the
five manufactured geometries. The researchers argue that this variability is inherent to all rapid
prototyping manufactured scaffolds, requiring a more systematic analysis of such scaffolds in any
pre-clinical and clinical tests.

Finally, some recent studies have also investigated how other factors influence the fluidic
properties of a given scaffold. Ali & Sen [23] used CFD analyses to compare the permeability
and WSS of lattice scaffolds with Newtonian and non-Newtonian fluid models. This study was
conducted because most numerical models simplify blood, which is a non-Newtonian fluid, into
a Newtonian fluid. The study presents a clear distinction between the models, with the non-
Newtonian model revealing considerably lower permeability and overall higher WSS. These
results underline the need for further numerical BTE scaffolds studies that incorporate a non-
Newtonian blood model. They also studied the role of surface roughness on the permeability and
WSS [28]. The study found that the effects of surface roughness on permeability were negligible
when compared with the effects of pore sizes. Furthermore, surface roughness had the biggest
impact on permeability on the scaffolds with the smallest pore sizes (300 um). However, the effects
of this parameter were much more significant on the WSS. On scaffolds with larger pore sizes,
rough surfaces created more favourable conditions for cell attachment. On scaffolds with smaller
pores, rough surfaces had the opposite effect, causing channel occlusion, which inhibited cell
differentiation and proliferation.

(b) Analysing cellular behaviour

Computational simulations are essential to analyse the mechanical and fluidic properties
of a given scaffold. However, these methods are not limited to merely determining these
characteristics. Several studies have used CFD simulations in conjunction with cellular models
to evaluate how different scaffolds influence cell growth [59] and cell differentiation [60].

Guyot ef al. [59] used a CFD analysis alongside a previously developed growth model [66,67]
to predict the cellular growth in a titanium scaffold meant for a perfusion bioreactor. This study
considered the following equation to study the cells behaviour:

VG = Axg(k) * f(SSsurf), G.1)

where V¢ is the local neotissue growth velocity, A is the neotissue growth velocity parameter
(determined experimentally), g(k) is the mean curvature influence function (with k being the local
mean curvature) (equation (3.2)) and f(SSeyyf) is the surface shear stress influence function [66]
(equation (3.3)):

—k ifk>0

k)= .
86 0 ifk<0, (3:2)
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Figure 4. Surface shear strain of: (a) a 0-90 scaffold with no flow; (b) a 090 scaffold with flow; (c) a 0-90 offset scaffold with
no flow; and (d) a 0—90 offset scaffold with flow (adapted from [60]). (Online version in colour.)
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The implemented model predicts the development of local neotissue based on the curvature
of the surface and the shear stress induced by the fluid flow. The authors find that there is a
lower amount of neotissue formation at the periphery of the scaffolds because of the lower flow-
induced shear stress at that location. The study also reports that when different fluid flow rates
are applied, a considerable distinction in shear stress is noted throughout the scaffolds, with
the lower flow rates causing lower shear stresses, resulting in lower cell growth. Hendrikson
et al. [60] used a combination of CFD and the FEM to study how different lattice scaffold
geometries influence shear stresses and shear strains inside the structures. Their results were
then coupled with Prendergast mechano-regulation theory [64], to evaluate how the distinct
geometries translate to differences in cell differentiation (figure 4). The study demonstrated a
clear correlation between the geometry of a scaffold and the cell differentiation process, with a
higher overall bone formation on their 0-90 offset geometry.

Zhao et al. [35] also used CFD analysis to study the WSS and consequently the behaviour of
cells inside different scaffolds with either rectangular or circular pores. This study was conducted
to determine the optimal flow rate to induce mineralization for a perfusion bioreactor. The study
concluded that the optimal flow rate corresponded to the range between 0.5 and 5mlmin~!
(which corresponds to fluid velocities between 0.166 and 1.66 mm s~ 1), with lower flow rates
not inducing mineralization and higher flow rates causing cellular death. Another study also
investigated the effect of flow rate on the WSS inside the scaffolds [36]. That paper focused on
evaluating whether a time-varying flow rate was required to maintain the WSS in the optimal
range. They found that, because of the formation and growth of the extracellular matrix (ECM)
over time, a linear reduction of the flow rate was preferable because it resulted in a higher
percentage of the ECM surface to be exposed to the optimal WSS after cellular growth.

Besides cellular growth and differentiation, a couple of studies have also used CFD analyses
to better understand the positions of cells inside a scaffold at a given time. Campos Marin et al.
[24] studied the positions of cells inside a scaffold, in bioreactor conditions, to determine which
were the most relevant factors in the occurrence of cell deposition. They found that the only two
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mechanisms that drive cells towards the scaffolds walls are secondary flows and the effect of
gravity. Further research into the effect of gravity [25] revealed that its impact is very dependent
on the fluid flow rate. Low flow rates result in a poor transport of cells to the scaffold, while high
flow rates overcome the effect of gravity but also minimize the interaction between the cells and
the scaffold walls, causing the cells to pass through the structure.

4. Beyond CFD

Scaffold design is a complex process that involves more aspects that simply determining the
fluidic properties of different geometries and how they influence cellular behaviour. Taking this
into consideration, this section looks into how CFD simulations can be used alongside other
techniques during scaffold design, more specifically FEM analysis, experimental validation and
optimization processes.

(a) FEM analysis alongside CFD

Scaffolds that are meant to replace injured bone tissue need to possess the required mechanical
properties to maintain the balance of providing adequate mechanical support to the developing
bone tissue [7] while avoiding the occurrence of stress shielding of the surrounding bone [68].
An exception to this requirement are scaffolds focused on in vitro applications such as bioreactors
[24,25,29,34,35,40,59]. This is because these applications are more focused on improving cellular
differentiation and growth, thus only need to maintain enough mechanical support to allow
cellular attachment.

CFD only analyses the behaviour of the fluid within a scaffold and the mechanical properties of
the actual scaffold are commonly estimated using the computational method of FEM. This method
attempts to solve a chosen set of mathematical equations of a given domain by first dividing it
into smaller subdomains (referred to as finite-elements) and then solving the equations for each
subdomain. These subsolutions are then pieced together to solve over the entire domain.

Different computational studies have given emphasis to distinct mechanical properties, all of
which are important in creating a functional BTE scaffold. The two mechanical parameters of
a scaffold that are regularly examined are its compressive strength [48,49,54,56] and Young's
modulus [48-52,54-56,58]. Any scaffold meant for an in vivo application needs to have an
appropriate compressive strength and Young’s modulus providing the required mechanical
support to the implantation site, without resulting in a large loss of bone mass due to stress
shielding. Kantaros et al. [53] and Arjunan et al. [49] investigated both the fluidic as well as
the mechanical properties of simple lattice scaffolds. These studies found that the mechanical
properties of the scaffold were the best at the lowest porosity. Additionally, Kantaros et al. [53]
also found that the WSS, similar to the mechanical properties, was better at lower porosities
(figure 5). Noordin et al. [55] also performed similar studies on various Fe scaffolds with circular
interconnected 800 um pores of varying porosities. They also concluded that lower porosity
resulted in better mechanical properties and WSS, but at the cost of a lower permeability
(as discussed in the previous section). Egan et al. [51] tested various lattice-based structures
for a spinal interbody fusion cage application. This study determined that the cube lattice
topology resulted in the highest Young’s modulus of all of the scaffolds while maintaining a
high permeability, but it also presented the lowest shear modulus. Conversely, the octet topology
resulted in overall high shear modulus but low permeability, meaning it could be useful for
cellular growth conditions which are not limited by nutrient transport.

As previously discussed, TPMS geometries are an appealing choice for scaffold design, and
several numerical studies simultaneously focused on their fluidic and mechanical properties.
Montazerian et al. [54] used numerical methods to evaluate the fluidic and mechanical properties
of 240 different TPMS geometries. They divided the geometries into two groups: high strength
structures and low stiffness structures. The study concluded that, for 70% porosity, two of the
analysed structures (P* and Ixxx-J*) had the highest overall Young’s modulus, compressive
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Figure 5. Maximum mechanical stress and maximum WSS in function of the scaffold porosity (adapted from [53]). (Online
version in colour.)

strength and permeability. For the analysed low stiffness structures, a specific scaffold (Fxyz-
Fxxx2) had the strongest and most permeable geometry. The paper also presented the possibility
of combining the two groups of structures to place the high strength geometries in the load-
bearing regions while allowing the low stiffness geometries to be in the most biological significant
region. Ali & Sen [48] and Yu et al. [56] both studied the properties of titanium lattice and TPMS
scaffolds using CFD and the FEM. Ali & Sen [48] concluded that the lattice geometries had a
higher compressive strength and permeability than the equivalent gyroid geometry. Nevertheless,
the latter design (with an 80% porosity) had the closest permeability, WSS distribution and
Young’s modulus to human bone, making it the best choice for a BTE scaffold. Yu et al. [56] also
concluded that the lattice geometries presented the highest permeabilities. However, contrary
to the previous paper, they concluded that the gyroid scaffolds had a much higher compressive
strength than the lattice scaffolds.

Besides the TPMS geometry, a couple of studies have also been conducted to evaluate scaffolds
created by using the Voronoi tessellation method. Du et al. [50] tested the properties of lattice
scaffolds as well as scaffolds created by the Voronoi tessellation method. As expected, the study
found that higher porosity led to an increase in the scaffolds’ permeability, at the expense of
their compressive strength. They also concluded that the Voronoi tessellation method resulted in
irregular porous structures that more closely imitated the human bone structure. Gémez ef al. [52]
studied structures created by this method and also found that the resulting scaffolds could have
applications in BTE. They discussed how the properties of the scaffolds are directly dependent
on structural characteristics, such as porosity, trabecular thickness, trabecular separation and
trabecular number.

The combination of the FEM and CFD analysis has also seen some use in other areas of study
in BTE. Zhang ef al. [58] used these computational methods to compare new titanium dioxide
(TiOy) scaffolds with existing, commercial materials (Bio-Oss, Cerabone and Maxresorb). The
results showed that the TiO, had a better permeability and WSS distribution than the existing
commercial materials but had a lower Young’s modulus. Similar to the studies that also used
FSI discussed in the previous section, Zhao et al. [57] used a combination of CFD and FSI
to determine how the fluid flow influenced the mechanical stimulation of the cells inside the
scaffold. Additionally, this study also used the FEM to determine how mechanical compression
affected the osteoblast cells. The results showed that while the fluid flow stimulated the bridged
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cells within the scaffolds, there was almost no stimulation in the attached cells. The mechanical
compression tests demonstrated the opposite effect, with the attached cells experiencing much
higher stimulation than the bridged cells. The paper suggests that a combination of flow perfusion
and mechanical compression might be the optimal method to obtain the required stimulation for
both bridged and attached cells.

(b) Experimental validation of CFD

Most of the studies discussed in this review develop their numerical simulations by using CFD
parameters taken from the literature (such as inlet velocity and fluid viscosity), or by validating
their new numerical models by comparing the results with values from existing research.
However, some papers validated their numerical results by comparing the computational results
with values obtained through experimental testing [24,25,43,47,56,61].

Montazerian et al. [43] and Zhianmanesh et al. [47] both conducted constant head permeability
tests to determine the correction factor between the numerical and experimental scaffold
permeability. Montazerian et al. [43] conducted this experimental test for seven different scaffold
designs and with five different fluid heights. They determined that the correction factor between
their numerical and experimental results was between 0.062 and 0.145 (for an experimental fluid-
height range of 50-10 mm, respectively). Zhianmanesh et al. [47] conducted their experimental
tests for 12 different scaffold designs and with five different fluid heights, repeating the test three
times for each configuration. They determined that the correction factor between their numerical
and experimental results was between 0.12 and 0.20, for fluid heights between 20 and 60 mm. The
discrepancies between numerical and experimental results were attributed to differences between
the computational and three-dimensional printed models, as well as not having considered the
surface roughness of the scaffold wall on the numerical models.

In a similar permeability study, Yu et al. [56] used a falling head permeability test to validate the
numerical results. Once again, that study found that the computational results are much higher
than the experimental ones; however, the two sets of results show a R%>0.99, demonstrating the
reliability of the CFD models. Entezari et al. [61] also implemented an experimental permeability
test, more specifically a peristaltic pump permeability test, to validate the results that were
obtained numerically. Two different scaffold geometries were tested with six scaffolds for
each geometry, to obtain statistically reliable results. The experimental values of the pressure
difference (and consequently of the scaffold permeability) were very close to the numerical ones,
highlighting the effectiveness of numerical simulations.

Finally, Campos Marin et al. [24] also implemented experimental validation of their
computational results. They analysed cell seeding efficiency using CFD analysis for the numerical
component and a DNA assay for the experimental component. For each fluid flow configuration,
five scaffolds were tested experimentally, whereas only one computational simulation was carried
out for each configuration. They found a good agreement between the in silico and in vitro cell
seeding efficiencies, even though this value was 35% higher in the numerical simulations. This
difference was likely due to the limitation of the computational model to simulate realistic cell
adhesion events or formation of cell clusters. Another work also used experimental results to
validate its numerical results [25]. That paper compared the results of its CFD models with
equivalent particle-tracking velocimetry (PTV) experiments. The authors found that the CFD
results agreed with the PTV experiments on the fact that cells followed the fluid streamlines due
to the strong effect of fluid drag.

(c) Scaffold optimization

A BTE scaffold is defined by a multitude of parameters, which include geometry, wall thickness,
porosity and the manufacturing material. These parameters can be optimized to reach a certain
goal, such as obtaining a scaffold with a pre-established compressive strength. This is known
as an optimization process and, although there are several different optimization algorithms,
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Figure 6. Types of possible scaffold optimization: (a) topology optimization and (b) shape optimization.

most of them follow the same framework [69]. The process starts with an initial step which
defines an initial geometry; the material properties of the structure; the constraints and the chosen
objective function for that specific optimization process. Afterwards, a numerical component
is implemented to analyse the relevant properties of the initial geometry. If the resulting
properties do not reach the objective, then an optimization function is used to obtain a new
geometry, according to the predefined constraints. This process repeats itself iteratively until a
new structure satisfies the objective function. Optimization can be divided into optimization and
shape optimization [14] (figure 6).

However, these optimization methods, even though they present an appealing tool to be used
alongside CFD in scaffold design, are almost always exclusively used for optimizing the scaffolds’
mechanical properties [18,19,21,70]. In recent years, very few studies have combined optimization
and a CFD analysis. One exception is the paper by Entezari et al. [61] that used a combination
of CFD analysis and the FEM to optimize lattice scaffolds in terms of their permeability and
compressive strength. To address the competing objectives of maximizing permeability and
maximizing compressive strength, a multi-objective particle swarm optimization algorithm coded
in Matlab was chosen. However, no other study was found that attempted to optimize other
fluidic properties, such as WSS.

5. Conclusion

CFD analysis is more and more a crucial tool in BTE, as it allows tailoring and evaluating the
fluidic properties of several different scaffold structures. Consequently, this numerical method
allows the study of the behaviour of the cells that will populate the inner space of the
scaffolds. The papers discussed in this review have demonstrated how changes to the material,
manufacturing process or geometry of a given scaffold may significantly influence its properties.
In addition, these studies have demonstrated how the porosity of a scaffold is fundamental in
determining its fluidic properties: more porous scaffolds are more permeable but have overall
lower WSS. For scaffold designed for in vivo applications, the combination of CFD with FEM
analyses has highlighted how the fluidic properties of a given scaffold are not separated from its
mechanical properties. Several studies have concluded how increasing the porosity of a scaffold
would increase its permeability, but this would come at the expense of its mechanical properties,
namely its compressive strength and Young’s modulus. This conclusion emphasizes the need for
in vivo BTE scaffolds to take into consideration both sides of their design: providing the bone
with the required mechanical support and possessing a microenvironment conducive to cellular
attachment, differentiation and growth. Towards achieving this goal, a balance must be reached
between mechanical and fluidic properties of the structure.

Studies available in the literature have already employed CFD analyses in conjunction with
cellular growth algorithms to obtain a better understanding of the cellular behaviour inside the
scaffolds. These studies revealed that fluid flow rate had a major impact in the WSS experienced
by the cells, which in turn influenced their growth and differentiation.

It seems very few papers have attempted to implement a CFD analysis as a component
of an optimization algorithm, in order to optimize the fluidic properties of scaffolds, with the
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exception of the previously discussed paper by Entezari et al. [61]. Most of the recent BTE scaffold
optimization studies focused on FEM with emphasis on mechanical properties. This raises an
interesting question on how to design an optimization process for scaffold design that could
account for both fluidic and mechanical properties, i.e. how would the objective function of such
a process be implemented, given the opposite nature of maximizing a scaffold’s permeability and
mechanical properties?

A major limitation of the current CFD studies is that a majority of reviewed papers did
not present a specific purpose (for specific bones) other than a generic application in BTE. The
only guidelines offered were to use the scaffolds for in vitro bioreactors or as a component in
spinal interbody fusion cages [51]. As different BTE applications have different requirements in
terms of their scaffold characteristics, not defining said requirements could severally limit the
relevance of the studies. Additionally, another challenge faced by current CFD studies is the (high)
discrepancy between the numerical and experimental results [43,47,56]. This difference, which is
probably caused by not taking into account certain factors (such as surface roughness) in the CFD
simulations, may inhibit the ability to accurately determine the characteristics of a given scaffold
design.

In summary, future research into the properties of BTE scaffolds needs to consider the relation
between the mechanical and fluidic properties of scaffolds, with improvements to one usually
negatively affecting the other. The present study also highlighted the lack of research into the
application of CFD analyses for the optimization of BTE scaffolds. This review underlines that
there are still no wide-range studies employing optimization to simultaneously improve the
permeability, WSS and compressive strength of bone-replacement scaffolds.
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