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Abstract
Background SARS-CoV-2 infection has, as of April 2021, affected .133 million people worldwide, causing .2.5
million deaths. Because the large majority of individuals infected with SARS-CoV-2 are asymptomatic, major
concerns have been raised about possible long-term consequences of the infection.

Methods Wedeveloped an antigen capture assay to detect SARS-CoV-2 spike protein in urine samples from
patients with COVID-19whose diagnosis was confirmed by positive PCR results from nasopharyngeal swabs
(NP-PCR1) forSARS-CoV-2. We used a collection of 233 urine samples from 132 participants from Yale New
Haven Hospital and the Children’s Hospital of Philadelphia that were obtained during the pandemic (106 NP-
PCR1 and 26 NP-PCR2), and a collection of 20 urine samples from 20 individuals collected before the pandemic.

Results Our analysis identified 23 out of 91 (25%) NP-PCR1 adult participants with SARS-CoV-2 spike
S1 protein in urine (Ur-S1). Interestingly, although all NP-PCR1 children were Ur-S2, one child who was NP-
PCR2was found to be positive for spike protein in their urine. Of the 23 adults who were Ur-S1, only one
individual showed detectable viral RNA in urine. Our analysis further showed that 24% and 21% of adults who
were NP-PCR1 had high levels of albumin and cystatin C, respectively, in their urine. Among individuals with
albuminuria (.0.3 mg/mg of creatinine), statistical correlation could be found between albumin and spike
protein in urine.

Conclusions Together, our data showed that one of four individuals infected with SARS-CoV-2 develop renal
abnormalities, such as albuminuria. Awareness about the long-term effect of these findings is warranted.
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Key Points
� Using an antigen capture assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike

S1 protein, we found that the protein is present in the urine of 25% of patients with coronavirus disease 2019
(COVID-19).

� Further, we found that 24% and 21% of adult patients with COVID-19 have high levels of urine albumin and
cystatin C, respectively.

� The presence of SARS-CoV-2 spike protein in the urine suggests renal abnormalities resulting from COVID-19.
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Introduction
Coronavirus disease 2019 (COVID-19) is a highly conta-
gious disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). The disease was first reported
in December 2019 by health authorities in Wuhan, China,
where a cluster of patients with symptoms of unidentified
pneumonia had characteristics reminiscent of viral pneu-
monia (1–4). By March 12, 2020, the virus spread across the
globe, having infected 145,200 individuals, and leading the
World Health Organization to declare COVID-19 a global
pandemic (5). As of early April 2021, .133 million cases
and .2.5 million deaths have been recorded worldwide.
Epidemiologic estimates suggest that approximately 70%
of the world’s population could become infected with
COVID-19, with a global case fatality rate between 0.1%
and.25% (6).
Coronavirus-related illnesses in humans are caused by

seven viruses, four of which (human coronavirus 229E
[HCoV-229E], HCoV-OC43, HCoV-NL63, and HCoV-
HKU1) cause common cold symptoms, and the remaining
three (SARS-CoV, SARS-CoV-2, and Middle East respirato-
ry syndrome–CoV [MERS-CoV]) cause SARS and MERS,
respectively. SARS-CoV and MERS-CoV are known to
have fatal outcomes, as occurred during the two outbreaks
reported in 2002/2003 and 2012, respectively (7,8). SARS-
CoV-2, the agent of the COVID-19 pandemic, is a member
of b-coronaviruses, which mostly infect bats (9). However,
this enveloped, positive-stranded RNA virus is also capable
of infecting humans (10). Genetic characterization of SARS-
CoV-2 shows it is closely related to bat virus RaTG13 (11).
Similar to the extensively studied SARS-CoV (12,13), the

spike protein of SARS-CoV-2 plays a crucial role in viral at-
tachment to the angiotensin-converting enzyme 2 receptor
of the human cell membrane and entry into the target cell
(14,15). This process is accompanied by proteolytic activa-
tion of the SARS-CoV-2 spike protein at the spike 1 (S1)/S2
site, where host proteases cleave the S1 from the S2 protein
(15). Therefore, screening for the SARS-CoV-2 spike protein
could be an excellent strategy for monitoring active and re-
cent COVID-19. Analysis of the tissue distribution of angio-
tensin-converting enzyme 2 showed high expression of the
receptor in the epithelial cells of the intestine, kidneys, alve-
oli, heart, arteries, and the gastrointestinal system (16); this
suggests that, in addition to the lungs and the upper respi-
ratory tract, SARS-CoV-2 could also invade other important
organs, including the kidneys, and cause inflammation
with possibly long-lasting injuries (17). To date, the effect
of SARS-CoV-2 infection on renal function has been contro-
versial. Analysis of a cohort of 193 adult patients with
laboratory-confirmed SARS-CoV-2 infection from three
hospitals in and around Wuhan, China showed kidney ab-
normalities (computed-tomography scan), with 63% of the
participants showing proteinuria (Z. Li et al., unpublished
observations). In the United States, a study by Hirsch et al.
(18), showed that 37% of patients with COVID-19 devel-
oped AKI during hospitalization, most of whom were on
mechanical ventilation. However, another study by Wang
et al. (19), on 116 patients with confirmed COVID-19 (from
the Renmin Hospital in Wuhan, China), found that Acute
Kidney Infection (AKI) was uncommon, and that SARS-
CoV-2 infection did not result in AKI or exacerbate Chronic
Kidney Disease (CKD). Another indication for renal

abnormality in patients with COVID-19 was observed by
Diao et al. (unpublished observations), who found SARS-
CoV-2 nucleocapsid protein in almost three quarters of
urine samples collected from patients with COVID-19.
In this study, we developed an antigen capture assay

that detects the presence of SARS-CoV-2 spike protein in
biologic specimens. We used this assay to evaluate the
presence of the antigen in urine samples collected during
the COVID-19 pandemic from adults and children with
PCR results from nasopharyngeal swabs that were positive
(NP-PCR1) and negative (NP-PCR2) for SARS-CoV-2.
Our study population also included urine samples collect-
ed 3–5 years before the pandemic. We found that, in our
study population, 25% of adult patients with COVID-19
had the SARS-CoV- 2 S1 protein in their urine at least once
during the course of infection. Urine protein analyses
further revealed proteinuria with elevated albumin and
cystatin C in 24% and 21% of NP-PCR1 individuals,
respectively.

Methods
Definitions and Calculations
A urine sample was considered positive for the SARS-

CoV-2 spike protein if its OD value was greater than the
OD value obtained from a NP-PCR2 urine sample spiked
with 5 ng/ml of the SARS-CoV-2 spike protein. Urinary
levels of SARS-CoV-2 spike protein, albumin, and cystatin
C were normalized to urine creatinine levels and expressed
as milligram per milligram of urine creatinine (20,21). The
fractional excretion of sodium (FENa) was calculated using
the formula (22–23):

urinesodium=serumsodium½ �
urinecreatinine=serumcreatinine½ �

� �
3100:

The fractional excretion of urea (FEUrea) was calculated
using the formula (22–23):

urineurea=serumurea½ �
urinecreatinine=serumcreatinine½ �

� �
3100:

Study Population
In this study, we analyzed 253 urine samples from 152

participants. Of these, 233 urine samples were collected be-
tween March and August 2020 (COVID-19 period; N5132)
and 20 urine samples were collected before December 2019
(pre–COVID-19 period; N520). Participants from the
COVID-19 period were recruited from Yale New Haven
Hospital (YNHH; NP-PCR1 inpatients, N591; NP-PCR2
healthcare workers [HCWs], N513) and Children’s Hospi-
tal of Philadelphia (CHOP; NP-PCR1 children, N512 (out-
patients); NP-PCR2 healthy children, N514). In addition,
we included two adult participants who were NP-PCR2.
A participant was considered positive for COVID-19 by
performing quantitative RT-PCR (RT-qPCR) for SARS-
CoV-2 on nasopharyngeal swabs (NP-PCR), as previously
described (24).
The samples from the pre–COVID-19 period that were

used as controls included Yale Kidney BioBank participants
(N510), patients with heart failure (N55), and healthy par-
ticipants (N55). These samples were collected between

KIDNEY360 2: 924–936, June, 2021 SARS-CoV-2 Spike Protein in Urine, George et al. 925



2015 and 2018. We used the convenience sampling
technique, where no statistical methods were used to pre-
determine sample size. A flowchart describing the study
population is shown in Figure 1A. In addition, we also
screened 49 serum samples from 38 NP-PCR1 individuals
for the SARS-CoV-2 spike protein using spike capture ELI-
SA. These samples were collected on the same day urine
samples were collected from the individual (not shown in
Figure 1A).

Sample Processing, RNA Extraction, and RT-qPCR
Detection
Urine samples were centrifuged at 2000 3 g for 10 mi-

nutes at room temperature, and immediately used for RNA
extraction or stored frozen at 280�C. RNA extraction and

RT-qPCR detection for SARS-CoV-2 in urine followed the
procedures detailed in Kaplan and Kohn (24). All urine
samples from CHOP were treated with nonidet P-40 (NP-
40) for viral inactivation before shipping to Yale School of
Medicine. Our comparative analysis using capture ELISA
on NP-40–treated versus –nontreated urine samples re-
vealed that NP-40 had no effect on the sensitivity of the as-
say. The processing of nasopharyngeal samples to detect
the presence of SARS-CoV-2 RNA has been described in
detail elsewhere (25).

Detection of SARS-CoV-2 Spike Protein Using Urine
Capture ELISA and Serum Capture ELISA

Rabbit polyclonal anti-spike protein antibody, purified
using protein G immunoaffinity chromatography, was
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Figure 1. | Consolidated summary of study population, assay chemistry, and sensitivity and specificity of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike protein using capture ELISA. (A) Flowchart describing the study population. Samples used in
this study were collected both before and during the coronavirus disease 2019 (COVID-19) pandemic. (B) Schematic representation of the
capture ELISA assay chemistry. (C) Representative standard curve generated using 5 mg/ml SARS-CoV-2 polyclonal anti-spike antibodies.
LOD, limit of detection (D) Assay used to define the specificity of the SARS-CoV-2 capture ELISA. Two different concentrations (5 mg/ml
and 5 ng/ml) of different human-infecting coronaviruses (SARS-CoV-2, SARS-CoV, and human coronavirus HKU1 [HCoV-HKU1]) were as-
sessed to determine the specificity of the polyclonal anti-spike SARS-CoV-2 antibodies. Data points in the shaded area are below the limit
of detection. (E) Sensitivity of the polyclonal antibodies to detect SARS-CoV-2 spike S1 protein using Western blot. SARS-CoV-2 in three
different concentrations was measured: 0.1 mg, 0.5 mg, and 1 mg. CHOP, Children’s Hospital of Philadelphia; HRP, horseradish peroxidase;
NP-PCR, PCR of nasopharyngeal swab; YNHH, Yale New Haven Hospital.
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purchased from MyBioSource (MBS434243; 2 mg/ml) and
used as the capture antibody in the capture ELISA. This an-
tibody was also biotinylated using the EZ-Link Micro Sul-
fo-NHS-Biotinylation Kit (catalog number 21925; Thermo
Fisher) and used as the detection antibody. In addition, the
SARS-CoV-2 S1 protein (78.3 kD), obtained from GenScript
(catalog number Z03501), was used as a positive control
(Figure 1B). For the urine capture ELISA (UELISA), urine
samples from participants who were NP-PCR2 were
spiked with different concentrations of SARS-CoV-2 S1
protein (5000 ng/ml, 2500 ng/ml, 1000 ng/ml, 500 ng/ml,
250 ng/ml, 100 ng/ml, 50 ng/ml, 5 ng/ml, and 0.5 ng/ml;
Figure 1C) and used as a standard in every plate. For
the serum capture ELISA (SELISA), human serum sample
from a healthy individual was spiked with different con-
centrations of the SARS-CoV-2 S1 protein (5000 ng/ml,
2500 ng/ml, 1000 ng/ml, 500 ng/ml, 250 ng/ml, 100 ng/
ml, 50 ng/ml, and 5 ng/ml; Supplemental Figures 1 and 2).
A 96-well ELISA plate (Nunc MaxiSorp Plate, catalog num-
ber 442404; Thermo Fisher) was coated with 5 mg/ml poly-
clonal anti-spike antibody diluted in carbonate coating
buffer (0.848 g sodium carbonate, 1.428 g sodium bicarbon-
ate, 500 ml distilled water) and incubated at room tempera-
ture for 2 hours. Unbound antibodies were removed, and
300 ml of blocking solution (PBS with 0.05% Tween 20
[PBST] and 2% BSA) was added per well. The plate was
then incubated for an hour at room temperature. For UELI-

SA, this was followed by an addition of 100 ml of urine sam-
ple per well to screen for the presence of SARS-CoV-2 spike
protein, and the plate was incubated overnight at 4�C. For
SELISA, incubation was followed by the addition of 20 ml of
serum sample and 80 ml of PBS per well to screen for the
presence of SARS-CoV-2 spike protein, and the plate was
incubated overnight at 4�C. After 15–16 hours, the wells
were washed four times with PBST; biotinylated polyclonal
anti–COVID-19 antibodies (spike protein) were added at a
concentration of 5mg/ml; and plates were incubated for 1
hour at room temperature. After four washes with PBST,
horseradish peroxidase–streptavidin conjugate (catalog
number KPL 474-3000; Seracare Life Sciences Inc.) was
added at a dilution of 1:10000 in PBST, and plates were in-
cubated for 1 hour at room temperature. A final wash (four
times) with PBST was then carried out, before adding 100
ml of 3,39,5,59-tetramethylbenzidine liquid substrate (Sure-
Blue Reserve TMB 1-Component Microwell Peroxidase
Substrate, catalog number KPL 5120-0083; Seracare Life
Sciences Inc.) to each well. The OD was measured with a
BioTek FLx800 fluorescence plate reader at 450 nm. A sche-
matic of the antigen capture ELISA is shown in Figure 1B.
In addition, to determine the specificity of polyclonal SARS-

CoV-2 anti-spike antibodies (2 mg/ml, MBS434243; MyBio-
Source), different concentrations (0.1 mg, 0.5 mg, and 1 mg) of
purified recombinant SARS-CoV-2 S1 (catalog number Z03501;
GenScript) were probed using a Western blot (Figure 1E).

Evaluation of the Specificity of the Detection of SARS-
CoV-2 Spike Protein by UELISA

Two recombinant proteins, SARS-CoV spike protein
(NR-722, lot number 660P029) and HCoV-HKU1 spike gly-
coprotein (NR-53713, lot number 70037425), were obtained
from BEI Resources, National Institute of Allergy and

Infectious Diseases (NIAID), National Institutes of Health
(NIH). These proteins (at 5 mg/ml and 5 ng/ml) were used
to spike NP-PCR2 urine sample in the UELISA. In addition,
two NP-PCR1 urine samples were spiked with SARS-
CoV-2 S1 protein at the same concentrations as stated
above. The crossreactivity of the polyclonal anti-spike anti-
body was measured at an OD of 450 nm.

Urine Electrolyte, Albumin, and Cystatin C Analyses
Urine electrolytes were measured using ion-sensitive

electrodes on the Randox Imola clinical chemistry analyzer
(Randox Laboratories, Crumlin, Northern Ireland). Urine
creatinine was determined using a modified Jaffe method.
Creatinine measurements were standardized to National
Institute of Standards and Technology Standard Reference
Materials (SRM 967). Cystatin C and microalbumin were
used in accordance with the manufacturer’s instructions
(Randox Laboratories).

Determining the Integrity of SARS-CoV-2 S1 Protein Using
Western Blot
To determine the integrity of SARS-CoV-2 spike protein

in urine, 10 ml urine samples from NP-PCR1, NP-PCR2, and
kidney biopsy (KB) participants were analyzed on a 4%–20%
Mini-Protean TGX gel (catalog number 4568096; Bio-Rad).
The gel was analyzed by Western blot after transfer to a ni-
trocellulose membrane (catalog number 1620214; Bio-Rad).
The membrane was blocked with 5% milk (catalog number
AB10109-00100; American Bio) in PBST, followed by treat-
ment with polyclonal antibody against SARS-CoV-2 S1 and
S2 proteins raised in rabbit (MBS434243; MyBioSource) and
used at 1:1000 dilution in PBST. Goat anti-rabbit IgG conju-
gated with horse radish peroxidase (catalog number 31466;
Thermo Fisher Scientific) was used as the secondary antibody
at a dilution of 1:5000. The membrane was then treated with
SuperSignal West Pico PLUS Chemiluminescent Substrate
(catalog number 34577; Thermo Fisher Scientific), and
scanned and imaged using an Odyssey Fc system (catalog
number 2800-03; LI-COR Biosciences).

Statistical Analyses
Continuous variables are expressed as either mean (95%

CI) or median (interquartile range [IQR]). Statistical analy-
ses were performed using a two-tailed, unpaired t test, or
one-way ANOVA in case of multiple variables. Categoric
variables are expressed as numbers (%). Differences were
considered statistically significant when P,0.05.

Ethics Statement
This study was approved by the Yale Human Research

Protection Program Institutional Review Boards
(FWA00002571, protocol ID 2000027690). Urine collection
from children who were positive and negative for COVID-
19 was conducted under protocol IRB20-017503, approved
by the CHOP Institutional Review Board (FWA00000459).
Informed consent was obtained from all enrolled partici-
pants. The pre–COVID-19 urine samples from KB partici-
pants were provided by Yale BioBank, and the study was
approved by the Yale Human Investigation Committee
(HIC) (HIC number 11110009286). The pre–COVID-19
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urine samples from the heart failure cohort and healthy in-
dividuals were provided by J.T. (HIC number 1311013065).

Results
Identification of SARS-CoV-2 Spike Protein in Urine and
Demographic Characteristics
Large-scale screening of individuals positive for SARS-

CoV-2 infection, to identify both symptomatic and asymp-
tomatic individuals, is a major priority in the control of
COVID-19 transmission worldwide. This screening may be
facilitated by the use of easy-to-collect biospecimens over
several days during the course of an infection or after sus-
pected exposure. To detect the presence of SARS-CoV-2
spike protein in biologic specimens from YNHH and
CHOP (Figure 1A, Table 1), we developed a capture ELISA
using anti-spike polyclonal antibodies for antigen capture,
and biotinylated antibodies for detection of the antigen-an-
tibody complex (Figure 1B). To use this sandwich ELISA
for detection of SARS-CoV-2 spike protein in a collection of
urine samples, the assay was optimized using purified re-
combinant S1 antigen in PBS (data not shown) and urine
samples from individuals who were NP-PCR2, and stan-
dard curves were generated (Figure 1C).
Using this assay, we determined the lower limit of detec-

tion (LOD) to be 5 ng/ml of protein in the urine (Figure 1C).
The specificity of the antibodies was further evaluated by
ELISA using available recombinant spike proteins from
SARS-CoV and HCoV-HKU1. Although no crossreactivity
could be detected with HCoV-HKU1 spike protein at concen-
trations as high as 5 mg/ml, or with SARS-CoV spike protein
at 5 ng/ml, a weak signal could be detected by ELISA with
the SARS-CoV spike protein at 5 mg/ml (Figure 1D). Western
blot analysis confirmed the specificity of the antibodies to the
SARS-CoV-2 spike protein (Figure 1E and Supplemental
Figure 1)
Having determined sensitivity and specificity, the assay

was then used to examine a repository of 253 urine samples
collected from 152 participants for the presence of SARS-
CoV-2 spike protein (Figure 1A; Table 1). This repository
included 203 urine samples from NP-PCR1 adults (189
urine samples; N591) and children (14 urine samples;
N512) from YNHH and CHOP. Samples from NP-PCR2
HCWs (N513) and children (N512) from both hospitals,
adult participants negative for COVID-19 (N52), and urine
samples collected before the COVID-19 pandemic (N520)
were used as controls (Figure 1A). Creatinine levels in all
of the urine samples were measured and used to calculate
the urine protein-creatinine ratio to standardize measure-
ments. Of the 203 urine samples from 103 NP-PCR1 adults
and children analyzed in this study, 29 (N523; 25%) were
found to contain the SARS-CoV-2 spike protein in the urine
(Figure 2A). Interestingly, one child (with no respiratory
symptoms) who was NP-PCR2 (tested for preadmission
screening) appeared to have high levels of the SARS-CoV-2
spike protein in their urine (Figure 2A). Overall, the mean
concentration of the SARS-CoV-2 spike protein in adults
was 0.033 (95% CI, 0.01 to 0.06) mg/mg of urine creatinine,
and the child had 0.0083 mg/mg of urine creatinine. None
of the urine samples from adult HCWs (N515; YNHH),
NP-PCR1 children (N512), or pre–COVID-19 participants
(N520) showed the presence of the SARS-CoV-2 spike

protein (Figure 2A). No correlation between the presence
of the SARS-CoV-2 spike protein in the urine and the sex of
patients with COVID-19 could be found (P50.34; Figure
2B) among 20 of the 23 participants with the SARS-CoV-2
spike protein in their urine (information on sex for three
individuals was not available). Similarly, no significant as-
sociation between the presence of the SARS-CoV-2 spike
protein and factors such as body mass index (BMI;
P50.16), age (P50.29), and duration of hospitalization
(P50.49) could be found (Figure 2C). In this cohort, we also
examined possible correlations between the levels of albu-
min and cystatin C in the urine samples and BMI, age, and
duration of hospitalization of the patient. However, no sig-
nificant association was observed between these confound-
ing factors and elevated levels of albumin (BMI, P50.33;
age, P50.06; duration of hospitalization, P50.12) and cysta-
tin C (BMI, P50.36; age, P50.88; duration of hospitaliza-
tion, P50.11) (Supplemental Figure 4, A and B). Among
the adults who were NP-PCR1, no correlation between na-
sopharyngeal SARS-CoV-2 viral load and presence of the
SARS-CoV-2 spike protein in urine could be found (P50.
47; Supplemental Figure 5). For individuals who were neg-
ative for the urine spike (Ur-S2), the mean6SD viral titer
was 2.43 10766.43 107; the mean6SD viral titer for indi-
viduals positive for the urine spike (Ur-S1) was 4.
43 10661.13 107.

Of the 23 patients with COVID-19 with the spike protein
in their urine, 17 provided at least two urine samples dur-
ing the course of hospitalization (Figure 3A). The SARS-
CoV-2 spike protein could be detected in urine from day 1
to day 44 post–hospital admission (Figure 3A). However,
no correlation could be found between the concentration of
the SARS-CoV-2 spike protein in the urine and the day
urine sample was collected post–hospital admission. To as-
sess whether the presence of the spike protein in the urine
of a subset of individuals with COVID-19 is due to the
presence SARS-CoV-2–infected cells in this biospecimen,
RT-qPCR analysis was conducted on all urine samples
from NP-PCR1 individuals using two primer pairs, as pre-
viously reported (24). Of 93 patients who were NP-PCR1,
only two individuals were positive for viral RNA in their
urine (approximately 2%; Figure 3B). Of these two positive
individuals (one male and one female), only one (female)
was positive for both the spike protein and viral RNA in
urine.

More importantly, considering the importance of protein
size in renal filtration, we detected the spike protein in
urine samples by Western blot. As shown in Figure 3C, a
band of 78.3 kD that comigrates with the recombinant S1
antigen was detected in the urine of adults positive for the
SARS-CoV-2 spike. No S1 protein could be detected in the
Ur-S2 adults positive for SARS-CoV-2, HCWs, or individu-
als whose urine samples were collected before the
pandemic.

Evidence of Proteinuria in Individuals Infected with SARS-
CoV-2

To assess whether the presence of the spike protein in
the urine of individuals with COVID-19 may indicate renal
abnormalities caused or exacerbated by viral infection, we
analyzed the link between SARS-CoV-2 infection and renal
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Table 1. Clinical and demographic characteristics of the study participants

Characteristics

COVID-19 Period Pre–COVID-19 Period

Adults Children

Kidney Biopsy Heart Failure Healthy

Inpatients
(NP-PCR Positive; YNHH) Healthcare Workers

(NP-PCR
Negative; YNHH)

(COVID-19 negative;
NP-PCR)

COVID-19 positive
(CHOP; YNHH) Healthy (CHOP)

UELISA

SARS-CoV-2
S1 Positive

UELISA

SARS-CoV-2
S1 Negative

Demographic characteristics
Age 68.3 (61.27–75.43) 63.72 (59.16–68.29) 44.36 (37.02–51.69) 12.18 (9.062–15.30) 13.93 (12.33–15.53) 57.5 (57–71) 66.5 (62.7–68.7) NA
Sex NA

Male 10 24 3 5 6 6 2
Female 10 34 12 6 9 4 2
Unknown 3 10 0 0 1

Race NA NA
Asian 1 1 0 0
Black 9 21 4 0
White 9 29 6 0
Hispanic or Latino 1 6 2 2 0 0
Other/not listed 3 11 9 13 0 4

Clinical characteristics NA NA NA
Duration of hospitalization (days) 21.6 (13.06–30.24) 19.07 (14.43–23.71) NA
Discharge disposition NA
Alive 20 47 10
Died 0 11 0
Unknown 3 10 0
BMI 36.2 (31.33–41.09) 32.4 (29.31–35.46) 24.87 (21.65–28.09) 21.70 (15.73–27.66) 30.57 (19.56–41.57) 27.83 (26.57–41.89) 35.97(31.41–38.97) NA
Blood (7 day mean) NA NA NA NA
WBC (1000/ml) 7.724 (5.39–10.06) 7.966 (7.013–8.918) 9.6 (6.6–9.9) NA
Hemoglobin (g/dl) 11.77 (10.82–12.71) 11.42 (10.78–12.05) 9.6 (8.9–9.6) NA
Platelet (1000/ml) 245.8 (198.9–292.8) 223.4 (198.2–292.8) 309 (289–325) NA
Glucose (mg/dl) 146.7 (121.4–172.0) 141.4 (127.3–155.6) NA 103 (85.25–124)
BUN (mg/dl) 25.83 (18.96–32.71) 30.59 (23.55–37.63) 21 (21–38) 31 (11.75–45)
Creatinine (mg/dl) 1.320 (0.8765–1.763) 1.527 (1.090–1.964) 2.45 (2.3–2.8) 1.35(0.75–2.25)
Total protein (g/dl) 6.610 (6.301–6.919) 6.408 (6.230–6.585) NA NA
D-dimer 3.000 (1.728–4.272) 3.288 (2.381–4.195) NA NA
Chloride (mmol/L) 102.9 (100.6–105.1) 103.7 (102.3–105.0) 101 (101–104) 100 (92.75–102.75)
Potassium (mmol/L) 4.102 (3.941–4.263) 4.074 (3.970–4.178) 3.8 (3.6–4.1) 4(3.9–4.1)
Urine
Total protein (g/L) 3.423 (1.139–5.708) 3.254 (2.006–4.502) 0.6277 (0.3905–0.8648) 3.628 (0.2663–6.989) 0.7950 (0.4618–1.128) NA NA NA
Creatinine (mg/dl) 105.5 (71.20–139.9) 80.99 (66.14–95.85) 66.94 (42.47–91.42) 67.01 (28.69–105.3) 137.2 (60.91–213.4) 60.89 (48.56–85.39) 68.19 (37.37–168.28) 55.16 (49.44–253.57)
Microalbumin (mg/dl) 7.548 (4.294–10.80) 12.93 (6.038–19.83) 0.9923 (0.05204–1.933) 16.60 (-17.45–50.64) 0.9110 (0.2679–1.554) 42.84 (1.46–110.88) 3.03 (0.5–10.85) 0.5 (0.5–1.56)
Cystatin C (mg/L) 0.2152 (0.044960–0.3809) 1.179 (0.4372–1.921) 0.04154 (0.02656–0.05651) 0.09125 (-0.004743–0.1872) 0.07100 (0.04589–0.09611) NA NA NA
Sodium (mmol/L) 66.11 (48.68–83.55) 77.23 (64.76–89.69) 109.3 (68.54–150.0) 124.7 (38.62–210.9) 158.9 (119.4–198.3) NA 49 (24–83.5) 120 (71.5–153)
Urea (mmol/L) 287.7 (220.0–355.5) 250.3 (215.3–285.2) 275.2 (169.1–381.3) 245.4 (110.4–380.3) 28.2 (152.4–404.0) NA 152.83 (91.31–399.28) 220.89 (126.06–333.49)
Potassium (mol/L) 28.87 (20.51–37.23) 25.00 (21.73–28.26) 62.62 (36.12–89.11) 18.25 (7.036–29.46) 38.00 (10.01–65.99) NA 36 (22–54.6) 49.6 (48.15–63.35)

COVID-19, coronavirus disease 2019; NP-PCR, PCR result from nasopharyngeal swab; YNHH, Yale New Haven Hospital; CHOP, Children’s Hospital of Philadelphia; UELISA, urine cap-
ture ELISA; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NA, not available; BMI, body mass index; WBC, white blood cells.
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filtration of the human proteins albumin and cystatin C.
Urine samples from ten patients who underwent KB, which
were collected before the pandemic (2015–2018), were in-
cluded as controls. Our analysis revealed that the median
(IQR) concentration of urine albumin among all NP-PCR1
individuals in our cohort was 0.073 (0.019–0.276) mg/mg
of urine creatinine, whereas urine cystatin C was 0.00014
(0.00008–0.00106) mg/mg of urine creatinine. Among indi-
viduals who were Ur-S1, the median (IQR) urine albumin
concentration was 0.089 (0.016–0.299) mg/mg of urine cre-
atinine), whereas urine cystatin C concentration was
0.00012 (0.00007–0.00029) mg/mg of urine creatinine. The
median (IQR) concentration of urine albumin in individu-
als who were NP-PCR1 was 0.061 (0.019–0.158) mg/mg of
urine creatinine, whereas that for urine cystatin C was
0.00012 (0.000007–0.00050) mg/mg of urine creatinine. In
contrast, the median (IQR) concentration of urine albumin

in HCWs who were NP-PCR2 was 0.011 (0.007–0.024)
mg/mg of urine creatinine, whereas that for urine cystatin
C was 0.00007 (0.00006–0.00008) mg/mg of urine creati-
nine. Eight urine samples from six individuals who were
Ur-S1 had an albumin concentration .0.3 mg/mg of urine
creatinine (Figure 4A, Supplemental Figure 3A). In total, 22
adult participants with COVID-19 (24%; 31 urine samples)
had urine albumin levels .0.3 mg/mg of urine creatinine
(Figure 4A, Supplemental Figure 3A). Similarly, 18 adult
participants with COVID-19 (21%; 26 samples) had a medi-
an (IQR) urine cystatin C concentration of .0.0022 (0.
001–0.003) mg/mg of urine creatinine (Figure 4C,
Supplemental Figure 3B). Interestingly, using a cutoff for
albumin of 0.3 mg/mg of urine creatinine, which is consid-
ered a marker for AKI (26), we found significant associa-
tion between elevated urine albumin-creatinine ratio and
concentration of the SARS-CoV-2 spike protein in urine
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(P50.02; Figure 4B). There were six individuals with an
elevated urine albumin-creatinine ratio .0.3 mg/mg
who had spike protein in their urine, with a median
(IQR) concentration of 0.0086 (0.00019–0.1341) mg/mg
of urine creatinine. As shown in Figure 4D, for two pa-
tients who were NP-PCR1 (INP.1.019 and INP.1.095)
with three or four urine samples testing positive for the
SARS-CoV-2 spike protein, our analysis showed no cor-
relation between the levels of urine albumin and cysta-
tin C (normalized to creatinine) and the levels of urine
SARS-CoV-2 spike protein (Figure 4D).
Previous studies demonstrated an increased level of

blood creatinine (.0.3 mg/dl) in individuals with AKI
(27–29). To determine whether the presence of spike
protein in urine was due to AKI, we measured the concen-
tration of creatinine (in milligrams per deciliter) in sera of

individuals that were either Ur-S1 or Ur-S2. No signifi-
cant difference was found between the levels of serum cre-
atinine and the presence or absence of SARS-CoV-2
spike protein in urine among these individuals (P50.70;
Supplemental Figure 2B). Among the individuals who were
Ur-S1, the mean concentration of serum creatinine was 1.
319 (95% CI, 0.88 to 1.76) mg/dl, whereas the mean concen-
tration of individuals who were Ur-S2 was 1.526 (95% CI,
1.09 to 1.96) mg/dl. In addition, we analyzed the FENa and
FEUrea levels between samples from individuals who were
Ur-S1 and Ur-S2 by considering one urine sample per par-
ticipant (adults, N589; children, N52). We found no statisti-
cally significant difference for both FENa (P50.38) and
FEUrea (P50.88) between Ur-S1 and Ur-S2 samples
(Figure 4, E and F). The mean FENa for Ur-S1 samples was
1.86 (95% CI,20.09 to 3.82), whereas that for Ur-S2 samples
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was 1.73 (95% CI, 0.93 to 2.54). The mean FEUrea for Ur-S1
samples was 48.98 (95% CI, 35.06 to 62.90), whereas that for
Ur-S2 samples was 62.13 (95% CI, 45.25 to 79.00).

The Presence of Spike Protein in Urine Does Not Correlate
with Increased Levels of Viral Protein in Serum
To assess whether the presence of high levels of SARS-

CoV-2 spike protein in the urine samples from patients
with COVID-19 may be due to high levels of the protein in
the serum, we screened 49 available serum samples from
the cohort of 38 patients with COVID-19 using SELISA (48
urine samples; N538). Only four samples from three indi-
viduals showed levels of spike protein in serum above the
lower LOD (5 ng/ml), and none of these were positive in
the ELISA assay performed on the urine samples from pa-
tients with COVID-19 (Figure 5). Together, these data sug-
gest there is no correlation between high levels of spike
protein in urine and serum concentrations of the protein.

Discussion
In this study, we developed an antigen capture ELISA

assay to detect SARS-CoV-2 spike protein and used it to
analyze urine samples from a cohort of 152 individuals, in-
cluding adults and children who were NP-PCR1. Al-
though antigen-based detection assays have been reported
(30,31), to the best of our knowledge, this is the first report
using an antigen capture assay to detect spike protein in
the urine of patients with COVID-19 and asymptomatic
individuals.
Analysis of our urine collection revealed that approxi-

mately 25% of patients who were NP-PCR1 shed the
SARS-CoV-2 spike protein in their urine. In addition, the
urine from one NP-PCR2 child was found to be positive
for SARS-CoV-2 spike protein. In our study, the overall
mean ratio of SARS-CoV-2 spike protein/urine creatinine
in adults was 0.033 (95% CI, 0.01 to –0.06) mg/mg of urine
creatinine, whereas that of the positive child was 0.0083

mg/mg of urine creatinine. None of the other urine sam-
ples used in our study showed the presence of the SARS-
CoV-2 spike protein. There was also no correlation between
the presence of the SARS-CoV-2 spike protein and the con-
founding factors of BMI, age, sex, and duration of hospitali-
zation. We further assessed whether the presence of spike
protein in urine was due to kidney infection, injury, or
dysfunction in patients with COVID-19. No correlation was
observed between the presence of the SARS-CoV-2 spike
protein in urine and markers of kidney dysfunction, includ-
ing serum creatinine, FENa, FEUrea, or cystatin C. Howev-
er, we noted the level of the SARS-CoV-2 spike protein in
urine was higher in patients with albuminuria (Figure 4B).
A 2003 study by Chu et al. (32) suggested the develop-
ment of AKI in patients with SARS-CoV was likely to be
due to multiorgan failure rather than kidney tropism of
the virus. Interestingly, our Western blot analysis of the
urine samples showed the presence of a protein fragment
that was the expected size (78.3 kD) of theS1 fragment
of the spike protein (Figure 3C). In addition, we also
observed additional fragments, suggesting proteolysis
(Figure 3C). Considering that both the spike protein and
albumin have molecular masses .60 kD, it is likely that
their release may be the result of similar filtration abnor-
malities (33). Altogether, our data suggest that the pres-
ence of the spike protein in urine samples of some
patients with COVID-19 may still be indicative of an
unknown or unpredicted kidney injury, most likely
involving the spilling of spike protein from serum. Nota-
bly, the presence of proteinuria and microscopic hematu-
ria has been associated with greater clinical severity of
COVID-19 (19). The predominant form of kidney injury
in COVID-19 seems to be acute tubular injury, which
might be secondary to cytokine storm or shock. Direct vi-
ral infection, when present, may only occur in the most
severe cases, as noted in autopsy studies (34–36).
Another important finding of this study is the lack of

viral RNA in the urine of most individuals who were NP-
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PCR1. Of 93 patients who were NP-PCR1, only two indi-
viduals were positive for viral RNA in their urine (approxi-
mately 2%; Figure 3B). Of these two positive individuals
(one male and one female), only one (female) was positive
for both spike protein and viral RNA in urine. This sug-
gests that the SARS-CoV-2 spike protein detected in the
urine is a direct result of a filtration abnormality, rather
than a viral infection of the kidney. Whether the presence of
viral RNA in the urine of a small percentage of patients with
COVID-19 is a result of viral shedding, or simply due to con-
tamination during urine collection, remains to be further elu-
cidated. However, our analysis of urine samples collected at
different times from the same individuals during hospitaliza-
tion do not show a pattern of viral RNA detection that
would be consistent with viral RNA shedding in the urine.
More importantly, it cannot be ruled out that the urine sam-
ples, in general, have not gone through as rigorous accuracy
verification or matrix equivalency studies for RT-qPCR as
have the nasopharyngeal or nasal swab samples.
A significant finding in this study is that one child was

found to have the SARS-CoV-2 spike protein in their urine,
despite being NP-PCR2. Notably, this urine sample was
collected on the same day the nasopharyngeal swab was
performed for RT-qPCR analysis. One possible explanation
is that the child was previously infected and then tested
negative due to viral clearance, but continued to shed the
viral spike protein in their urine. Another possibility is that
the PCR result in this patient was a false negative. The abil-
ity of the antigen capture assay to detect spike protein in
an individual who is NP-PCR2 highlights the need for the
development of assays that are not intrusive, are rapid, and
can be deployed for large-scale detection of active infection
in the general population, and at different times, to prevent
continued propagation of the virus. Although urine ELISA-
based tests are particularly suitable for large-scale, repeat,
and rapid diagnostic campaigns, the fact that only 25% of
infected individuals in our study were found to have the
spike protein in their urine suggests that the sensitivity of
the current urine spike capture assay is not sufficient for pop-
ulation-based screening. Efforts to evaluate the usefulness of
this antigen-based assay to detect SARS-CoV-2 infection in
other biospecimens, such as saliva, are warranted.
In conclusion, our data demonstrate that 25% of individ-

uals infected with SARS-CoV-2 shed spike protein in their
urine. RT-qPCR on urine samples demonstrated that this
shedding is neither due to the presence of infected cells in
this specimen, nor to high levels of this viral protein in the
serum. However, it does not preclude the possibility of kid-
ney infection by the virus. Nevertheless, our data highlight
possible kidney abnormalities resulting from SARS-CoV-2
infection. Considering the possible long-term implications
of these findings, longitudinal studies aimed at under-
standing the long-term effects of SARS-CoV-2 infection on
renal filtration and injury are warranted.
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