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Abstract—With the increase of COVID-19 cases worldwide,
an effective way is required to diagnose COVID-19 patients. I
The primary problem in diagnosing COVID-19 patients is the
shortage and reliability of testing kits, due to the quick spread
of the virus, medical practitioners are facing difficulty in iden-
tifying the positive cases. The second real-world problem is
to share the data among the hospitals globally while keeping
in view the privacy concerns of the organizations. Building
a collaborative model and preserving privacy are the major
concerns for training a global deep learning model. This
paper proposes a framework that collects a small amount of
data from different sources (various hospitals) and trains a
global deep learning model using blockchain-based federated
learning. Blockchain technology authenticates the data and federated learning trains the model globally while preserving
the privacy of the organization. First, we propose a data normalization technique that deals with the heterogeneity of data
as the data is gathered from different hospitals having different kinds of Computed Tomography (CT) scanners. Secondly,
we use Capsule Network-based segmentation and classification to detect COVID-19 patients. Thirdly, we design a method
that can collaboratively train a global model using blockchain technology with federated learning while preserving privacy.
Additionally, we collected real-life COVID-19 patients’ data open to the research community. The proposed framework can
utilize up-to-date data which improves the recognition of CT images. Finally, we conducted comprehensive experiments
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to validate the proposed method. Our results demonstrate better performance for detecting COVID-19 patients.

Index Terms— COVID-19, privacy-preserved data sharing, deep learning, federated-learning, blockchain.
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I. INTRODUCTION
A. Background
HE massive and sudden spread of the coronavirus
(COVID-19) has overwhelmed the world for more than
a year since the initial cases were reported. Coronavirus
triggers an acute respiratory infection in the lungs causing
a large number of deaths. Due to the highly contagious
nature, COVID-19 detection remains among high-priority
tasks. Currently, a nucleic acid test by sampling throat and
nasopharyngeal swabs is the most feasible way for the diag-
nosis. However, sampling error and low viral load affect the
diagnosis results in terms of accuracy. In contrast, the antigen
tests are comparatively faster, but, have poor sensitivity.
Besides the pathological tests, radiological examinations in
the form of chest Computed Tomography (CT) and X-ray
imaging also contribute in recognizing the infection in patients.
To improve the detection accuracy, a significant series of
deep learning models are proposed which detect different
types of infection by analyzing the CT and X-ray images
[1]-[6]. Based on a small set of available infected samples,
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deep learning models are trained and improved accordingly.
However, sensitivity and accuracy are still compromised due
to the lack of training data. Traditional federated learning is the
natural solution for such problem. Federated learning collects
locally trained models from the different sources (in our case
from the hospitals or health care centers) and collaboratively
train a global model over the decentralized network [7]-[9].
However, sharing such confidential data is not possible due to
the absence of a privacy-preserving approach for the health
care centers [7], [10]-[19].

To solve this issue, Shokri and Shmatikov [20] proposed a
distributed model, in which, the users can share the gradients
to assure the privacy of the data. However, their methodol-
ogy was exposed to vulnerability even for passive attackers
[21], [22]. Bonawitz et al. [23] designed a privacy-preserving
framework for secure aggregation of the gradients using the
federated learning global model. Zhang et al. [24] presented
homomorphic encryption (HE) and threshold secret sharing
schemes to secure the gradients. However, the shared model
has no measure of certainty related to the authentic users.
In other words, the trust problem between different sources
still exists which threatens the quality of data and leads to
poor training of the model.

To overcome the trust problem over decentralized network,
blockchain technology provides the trust mechanism in various
ways [13], [25]-[28]. The idea of private data sharing [13]
proposed the framework for the authentication of the data
from the source. Qu et al. [27], proposed a blockchain-based
algorithm for the aggregation of the local deep learning models
which ensure data reliability. Such data-sharing techniques
increase the risk of data leakage due to not considering
the gradients’ privacy. Furthermore, these schemes require
multiple rounds in each aggregation which is not suitable for
the blockchain distributed network.

B. Motivation

The motivation of this study is inspired by some fundamen-
tal problems. COVID-19 is spreading rapidly having different
symptoms with different patients. Thus, hospitals can share
their data for the accurate diagnosis of COVID-19 patients.
Sharing data securely (without leakage the privacy of users)
and train the global model for detection of the positive cases
is a challenging task. Moreover, the existing studies are not
capable enough to share the data collaboratively and train
the model accurately. Collecting data from various sources
is a big challenge and a bottleneck in the advancement of
Artificial Intelligence (AI) based techniques. The availability
of such confidential data is not possible due to the absence
of a privacy-preserving approach for the health care centers
[7]1, [10]-[18]. Furthermore, training the deep learning model
collaboratively over a public network is another challenge.

The latest report of the World Health Organization (WHO)
reveals that COVID-19 is an infectious disease that primarily
affects the lungs such as SARS, giving them a honeycomb-like
ap pearance [29]. Even after recovering from COVID-19, some
patients have to live with permanent lung damage [30], [31].
The first motivation of our work is to find small infected areas
in the lungs due to COVID-19. Such detection can benefit

professional radiologists to accurately detect infected areas.
The second motivation to share the data to train a better deep
learning model while keeping in view the privacy concern of
the data providers. The sharing of data helps to develop a
robust deep learning-based model for the automatic detection
of COVID-19 patients.

« Unbalanced Data: The data is collected from different
hospitals and CT scanners and various scanners support
different resolutions, sizes, and other properties.

o Privacy: The third challenge is the lack of an appropriate
dataset for training. It is quite challenging to collect
enough amount of training data and train a robust predic-
tion model while keeping in view the privacy concerns
of hospitals.

o Detection of COVID-19 CT scan: Recognizing the
patterns of infections in the lung and screening COVID-
19 are also challenging tasks.

« Collaboratively learning: Training the global model
based on a decentralized network and send back the
aggregated model to the client is a quite challenging task.

C. Proposed Approach

To solve the mentioned challenges, we propose a frame-
work that builds an accurate collaborative model using data
from multiple hospitals to recognize CT scans of COVID-19
patients. The proposed blockchain-based federated learning
framework learns collaboratively from multiple hospitals hav-
ing different kinds of CT scanners. Firstly, we propose a
data normalization process to normalize the data obtained
from the different sources. Then we employ deep learning
models to recognize the COVID-19 patterns of lung CT scans.
We use SegCaps [32] for image segmentation and further train
a Capsule Network [33] for better generalization. We found the
capsule network achieved better performance as compared to
other learning models. Finally, we train the global model and
solve the privacy issue using the federated learning technique.
The proposed framework collects the data and collabora-
tively trains an intelligent model then shares this intelligent
model in a decentralized manner over the public network.
By using federated learning, the weights are aggregated from
the various local models with keeping their data privacy of
the hospitals. For preserving the privacy, hospitals share only
gradients to the blockchain network, The blockchain-based
federated learning aggregates the gradients and distribute
updated model to the verified hospitals. The blockchain decen-
tralized architecture for data sharing among multiple hospitals
shares the data securely without leakage the privacy of the
hospitals.

Additionally, this article introduces a new dataset, named
CC-19, related to the latest family of coronavirus i.e.
COVID-19. The dataset contains the Computed Tomography
scan (CT) slices for 89 subjects. Out of these 89 subjects,
68 were confirmed patients (positive cases) of the COVID-19
virus, and the rest 21 were found to be negative cases. The
dataset contains 34,006 CT scan slices (images) belonging
to 89 subjects. The data for these patients were collected on
various days having about 231 CT scan volumes in total.
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The main contributions of the paper are not limited to:

1) This paper proposes a data normalization technique (to
accurately train the federated learning model) as the data
is collected from different sources (i.e, Hospitals) and
devices (CT scanner machines).

2) The proposed technique detects the patterns of
COVID-19 from the lung CT scans using Capsule
Network-based segmentation and classification.

3) This paper proposes a blockchain empowered method to
collect the locally trained model weights collaboratively
from different sources while keeping in view the organi-
zations’ privacy concerns. Federated learning employed
is to protect the organizations’ data privacy and train
the global deep learning model using less accurate local
models.

4) Additionally, we introduce a new dataset that consists
of 89 subjects out of which 68 subjects are confirmed
COVID-19 patients. The dataset contains 34,006 CT
scan slices (images) belonging to 89 subjects.

D. Applications

The proposed approach is practical for big data analysis
(i.e., lung CT scans), and it efficiently processes the data using
blockchain and deep learning models. Consider a scenario
of the real-time use case of a hospital having some new
symptoms of the COVID-19 virus. To find out new symptoms
or new information regarding COVID-19, the data needs to
be stored on a decentralized network without leakage of the
privacy of the patients and securely share the knowledge of
the latest symptoms. Federated learning secures data through
the decentralized network and distributes the training task to
train a better model using the latest available patients data.

The proposed framework collects a small amount of data
from various sources and trains a collaborative deep learn-
ing model. Federated learning combines all the individually
trained models over the blockchain (global model). The col-
laboratively trained global model provides better and more
accurate predictions as it holds the latest information about
COVID-19 symptoms.

E. Structure of Paper

The rest of this paper is organized as follows: In Section II,
we describe the system model and its workflow. Section III
describes the proposed data normalization process and the
capsule network-based classification and segmentation model.
In Section IV, we provide details for the global federated
learning model. We present the experiment details and results
in Section V followed by a conclusion in Section VI.

Il. SYSTEM MODEL

In this paper, we distributed the data among multiple hospi-
tals. Each hospital shares its data to train the global model
shown in Fig 1. The main goal of this paper to share the
data from multiple sources and collaboratively train a deep
learning model. As the data is collected from multiple sources,
for that reason, we design a normalization technique to deal
with different kinds of CT scanners’ (Brilliance ICT, Samatom

definition Edge, Brilliance 16P CT) data. After normalization
of the data, we segmented the images and then train the
model for reorganization of COVID-19 suspects using the
Capsule Network. We utilize a blockchain-based federated
learning framework to train and share a collaborative model.
The purpose of federated learning is to combine the weights of
the locally trained model. After the aggregation of the locally
trained model weights, the global model is returned to the
hospital or organization.

The privacy of the data providers is the most important
factor. The privacy and leakage of sensitive data are managed
by the blockchain. Therefore, we store the two types of
transactions in the blockchain ledger i.e., i) data sharing
transactions and ii) data retrieve transactions. To assure data
privacy, this paper utilizes the permissioned blockchain for
managing the accessibility of data. The main advantage of the
permissioned blockchain is that it records all transactions to
retrieve the data from a global model. The Second objective to
achieve data collaboration. The proposed blockchain federated
learning method combines the local model weights and sends
updated weights to the local model. Finally, we design a local
model for the heterogeneous or imbalanced data using the
spatial normalization process.

The proposed model is divided into two parts i) Local model
ii) Blockchain-based Federated learning. First, we solve the
problem of heterogeneous CT scan data. Then, we use the
SegCaps [32] for segmentation and train the local model to
detect the patterns of COVID-19. Finally, we share the local
model weights to the blockchain network to train the global
model.

Il1. LocAL CLIENT MODEL
A. Data Normalization

A major challenge with federated learning is to deal with
input data from multiple sources and various machines with
different parameters. Most of the existing techniques are not
efficient enough to deal with this problem for federated learn-
ing. To overcome this challenge, we propose a normalization
technique that deals with different types of CT scans and
brings the images to the same standard. As a result of this
normalization process, federated learning can deal with the
heterogeneity of the dataset and train a better learning model.
The normalization method has two phases i) spatial normaliza-
tion, and ii) signal normalization. Spatial normalization deals
with the dimension and resolution of the CT scan. Signal
normalization deals with the intensity of each voxel of the
CT scanners which is based on the lung window.

1) Spatial Normalization: As already discussed, different CT
scanners have different parameters for CT scans such as
high-resolution scan volume is 0.31 x 0.31 x 0.31 mm> and
low resolution 0.98 x 0.98 x 2.5 mm?. In our case, we used
federated learning for the data obtained from multiple sources.
We use the standardized volume 334 x 334 x 512 mm? for
human lung. Moreover, we use the Lanczos interpolation [26]
to resale the standard resolutions.

2) Signal Normalization: As every CT scan has Hounsfield
Units (HU) and the data collected from different hospitals have
different HU (i.e.,-400 HU to -600 HU). In medical practice,
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Fig. 1. Overview of the federated learning process.

radiologists set the lung window for every CT scanner. There
are different types of windows such as window length (W L)
and window width (W W). Where W L is defined as the central
signal value and WW defines the width of this window. The
proposed Equation (1) represents the upper bound and the
lower bound of the voxel.
Ioriginal — WL (1)
WwWw

Iorigina is the intensity of the data and Inormalized iS the final
intensity. We set the range of the lung window is [—0.5, 0.5]
to standardized the embedding space.

Lormalized =

B. Segmentation and Classification Model

This section proposes the segmentation based on [32].
Further, the Capsule Network is trained for the detection of
COVID-19 using the segmented CT scan images.

The proposed method takes 2D slices as input for segmenta-
tion. A standardized volume 334 x 334 x 512 mm? for human
lung segmentation is used. Each CT scan volume (3D) has
three planes XY, XZ, and YZ. We formalize the XZ or Y X
planes to easily differentiate the lung infection (as shown in
the first row of Fig. 8).

probB =g (Prg, Pr)lfz, Pr)g) (2)

Where prob® denotes the probability and B is the infection
point. g is the method to define the voxel of three dimensions
views. g is aggregation function to predict the Py, Py,, and
P, voxel. Thus, the traditional method is time-consuming, so,
we modify the Equation (2) to:

~ B ~B ~B ~B
prob =g (prxy, DPryzs prxz)
e (5 () () 2 () @

1) Capsule Networks for Classification of COVID-19: A deep
learning framework usually has a feature extraction pipeline
that estimates and extracts prominent features. Afterward,
a learning process such as MLP (multi-layer perceptron) is
applied to learn the appropriate class on the extracted features.

Over the past few years, researchers have used and fine-tuned
the feature extraction pipeline of these robust deep learning
frameworks. We design a Capsule Network because it achieves
high performance in detecting diseases in the medical images.
The previous technique needs lots of data to train a more accu-
rate model. The Capsule Network improves the deep learning
models’ performance inside the internal layers of the deep
learning models. The architecture of our modified Capsule
Network is shown in Fig. 2, which is similar to Hinton’s
Capsule Network. The Capsule Network contains four layers:
i) Convolutional layer, ii) Hidden layer, iii) PrimaryCaps layer,
and iv) DigitCaps layer.

A capsule is created when input features are in the lower
layer. Each layer of the Capsule Network contains many
capsules. To train the Capsule Network, the activation layer
represents instantiate parameters of the entity and compute
the length of the Capsule Network to re-compute the scores
for the feature part. Capsule Networks is a better replacement
for Artificial Neural Network (ANN). Here, the capsule acts
as a neuron. Unlike ANN where a neuron outputs a scalar
value, Capsule Networks tend to describe an image at a
component level and associate a vector with each component.
The probability of the existence of a component is represented
by this vector’s length and replaces max-pooling with “routing
by agreement”. As capsules are independents the probability of
correct classification increases when multiple capsules agree
on the same parameters. Every component can be represented
by a pose vector U; rotated and translated by a weighted matrix
Wi, to a vector u;|;. Moreover, the prediction vector can be
calculated as:

iiijj = Wi jui @
The next higher level capsule i.e. s; processes the sum of

predictions from all the lower level capsules with ¢; ; as a
coupling coefficient. Capsules s; can be represented as:

Sj =D cijili 5)
i
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where ¢; ; can be represented as a routing softmax function
given as:

ebii

= S

As can be seen from the Fig. 2, the parameter c, A squashing

function is applied to scale the output probabilities between
0 and 1 which can be represented as:
lal®> a

a=-———>"—"

1+ llall” llall

For further details, refer to the original study [33]. We perform

the routing by agreement using the Algorithm 1.

(6)

)

Algorithm 1 Routing Algorithm

1: Forall capsules i in layer [ and capsule in layer / + 1)
dob;;j <0

2: For k iterations do

3: Forall capsule 7 in layer [ do ¢;

4: Forall capsule j in layer / + 1 do §;

5: Forall capsule j in layer / + 1 do §; State Forall
capsule i in layer /, j in layer / 4+ 1 do
bij < b ; +12i|j.l)j

6: Return v;

C is an array after softmax, and it can be determined
by dynamic routing by agreement. There are quite a few
introductions to this method, the main meaning is that through
several iterations, the distribution of the output of the low-level

TABLE |
A COMPARISON BETWEEN CAPSULE AND TRADITIONAL NEURAL
NETWORK

Operation Neuron (scalar) Capsule (vector)
Affine NA Uy 5 = Wi jus
transformation

Weighted sum a; = Z?:l W;x; +b Sj = Zz Ci,]‘ﬂﬂj
Activation hw,p(x) = flay) aj = %ﬁﬁ
Output scalar vector(a;)

Graphical

f(x):tanh relu,ete.

representation
hep(x)

u—> 1y

Ur—> 1)y

us—> iy a;
+1

capsule to the high-level capsule is gradually adjusted accord-
ing to the output of the high-level capsule, and finally an ideal
distribution will be reached. The detailed training algorithm is
shown in the paper [34]. We use the Capsule Network to train
the model and compare it with the state of art deep learning
networks. Table I shows the difference between traditional and
Capsule Network. In section V, we compare traditional deep
learning with the Capsule Network classifiers.

IV. DECENTRALIZED GLOBAL FEDERATED LEARNING
MODEL
In this Section, we consider a decentralized data sharing
scenario with multiple hospitals. Each hospital is willing to
share its locally trained model (weights), our proposed method
assists in hiding the user data and share the model over a
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decentralized network. Further, federated learning is used to
combine the net effect of different models shared by different
hospitals. The main goal is to utilize federated learning to
share the data among the hospitals without leakage of privacy.

A. Blockchain Based Fast and Effective Federated
Learning

As patients’ data is sensitive and has a high volume in
terms of disk capacity. Placing data on the blockchain with
its limited storage space is expensive both financially and
for computational resources. Thus, the actual CT scan data
is stored by the hospital while blockchain helps to retrieve the
trained model. When a new hospital provides the data, it stores
a transaction in the block to verify the owner of the data. The
hospitals’ data include the type of data and the size of the
data. Each transaction for the data sharing and retrieval process
is shown in Fig. 3. The proposed model solves data-sharing
retrieval requests. Multiple hospitals can collaboratively share
the data and train the collaborative model which can be used
to predict optimal results. The retrieval mechanism does not
violate the privacy of hospitals. Inspired by Maymounkov
and Mazi‘eres [35], we present multi-organization architecture
using blockchain technology. All hospitals H are partitioned
and share data for various categories. Each category has a
different community and each community maintains the log
table Log(n). The blockchain stores the all unique IDs for
every hospital.

Retrieving data into the physically present nodes is
expressed by Equation (8). We measure the distance between
two nodes as Equation (8) where H is the data categories to
retrieve the data among the hospitals. Moreover, the distance
of two nodes d; (H,-, H j) measured to the retrieve of data,

; H; . . .
and (x;{} +x p(;) are the attributes of the weight matrix for
the node H; and Hj, respectively. Every hospital generates its

unique ID according to the logic and distance of the nodes.
H; Hj
Zp,qe{HiUijH,ﬂH_,‘} (qu + xpé)
H; H;
queHiUH_, (qu + qu/)
-log (dp (Hi, Hj)) (8)

The nodes H; and H; with unique IDs H;(id) and H;(id)
shown in the Equation (9).

d (Hl-, Hj) = H;(id) @ H,(id) )

di (i, Hy) =

To maintain the privacy of data in a decentralized manner,
the randomized method for two hospital nodes is shown in
Equation (10). Where R and R’ is the neighboring records of
data. O is the outcome set of data. A(R) € S achieves the
privacy of the data.

Hr[A(R) € S] < exp(e) - Hr [A(R') € O] (10)

However, to achieve data privacy for multiple hospitals,
Laplace is applied for the local model training (m;):

m; = m; + Laplace(s/¢) (11

where s represents the sensitivity as expressed by Equa-
tion (12):

s = max |1 () — f ()] (12)

The consensus algorithm is executed to train the global
model by using the local models. As all nodes collaboratively
train the model, we provide proof of work to share the
data between the different nodes. During the training phase,
the consensus algorithm checks the quality of local models,
and the accuracy is measured by mean absolute error (MAE).
F(x;) shows predicated data and m;, y; is the original data.
The high accuracy of m; shows the low mean absolute error
of m;. The consensus algorithm (voting process) among the
hospitals is represented by Equation (13) and (14). Where
Equation (13) MAE (m;) shows the locally trained model and
y shows the global models weights in Equation (14).

1 n
MAE (m) = D vi = f () (13)
i=1

1
MAE (Hj) = y - MAE (m;) + ;ZMAE(m,-) (14)

To preserve the hospitals’ data privacy, all the data
is encrypted and signed using public and private keys
(PK;, SK;). MAE calculates all transactions and broadcast
(Hj) and MAE (M) calculates each transaction of the model.
If all transactions are approved then the record is stored in the
distributed ledger. More precisely, the training of the consensus
algorithm describes as follows:

1) Node H; transfers the local model m; transaction to the
H;.

2) Node H; transfers the local model m; to the leader.

3) The leader broadcasts the block node to the H; and H;.

4) Verify the H; and H; and wait for approval.

5) Finally, store the blocks in the retrieval blockchain
database.
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1) Data Sharing Process: Current approaches use encryption
to protect data. It is a risk for data providers to share personal
data because of certain security attacks. A simple solution is to
transmit the data to the requester with legitimate details and to
preserve the data holders’ privacy. Instead of sharing original
data, data providers such as hospitals, exchange only the
locally learned model weights with the requester. Fig. 4 shows
the process of data sharing. The nodes are communicating with
each other and the consensus process learns from federated
data. The provider and requester search and store the data into
the blockchain nodes. More precisely, the steps of data sharing
are shown in Fig. 4. To integrate the blockchain with federated
learning retrieved data securely for the multiple world-wide
hospitals which can provide an effective prediction.

To protect the privacy of the data, we share the trained
model instead of the original image data. The objective of
the proposed architecture is to train the global model by
using locally trained models. The secure data sharing is
illustrated in Fig. 5. In the first phase, we select the training
data and then use the private federated learning algorithm
for collaborative multi-hospital learning. In other words,
the hospital shares the locally trained model weights to the
blockchain network and federated learning combines the local
model into a global model.

B. Federated Deep Learning Model for Node Selection

The nature of the dataset collected from various hospitals is
heterogeneous. Thus, the aggregating global model requires
an effective and fast aggregation process. To improve the
aggregated global model, we select the trained model in the
nodes to maximize the accuracy of the aggregated global
model i.e. Hp C Hj.

We formulate the node selection problem and introduce the
At'=[2L], t is the time slot of the vector for the selection of
hospitals states. If 2% = 1 then hospital is selected otherwise
not. We provide cost metrics for the node selection process.
The local capsule network model of hospitals i is time slot ¢
denoted as:

i H
@) = fi G g = 20

qi - T 15
20 ()

for(each hospital

‘While(accuracy <
Threshold)

l True False l
Closest centroid each sample Create a differential in a data
calculated mi nosed on noise- privacy mode using received
added vector data models
3
Broadcast models
participating hosptitals Broadcast local models to
according participating hospitals
to local retrieval tables
3
1
( M:;Zm J ( Tter=iter+1 }

T [
I
—}C Stop )

Fig. 5. Private federated learning algorithm.

where ¢; is the training data of hospitals i, and Hm is the
CPU cycles required for the training model m. The cost is
measured by:

i) = fo oy i, 1) = 2

(16)

i
Ti
The size of the trained model is w; with the time slot 7. Thus,
time cost ¢ describe as:

cte = max (¢ (i) + (1)) (17)
ieVp
We describe the time cost function as:
1 |Hp|
e = T 22 (el + () (18)

i=1
The learned model accuracy loss calculated with time slot ¢
as:

cg= 2 0 (whd)= 2 > L(y—d' (x;)), (19)

ieHp ieHp j

However, the aggregated model is w’ and L(-) is the loss
function. Where d; = {(x;,y;)} are the images for the
training data of the hospital i. In our scheme, the quality of the
learned model is measured for each hospital. Also, the total
cost of federated learning with time slot is given by:

¢ (A) =clo+ ¢ (20)

V. EXPERIMENTS AND RESULTS
A. CC-19 Dataset

In the past, Al has gained a reputable position in the field of
clinical medicine. And in such chaotic situations, Al can help
medical practitioners to validate the disease detection process,
hence increasing the reliability of the diagnosis methods and
save precious human lives. Currently, the biggest challenge
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TABLE I
CC-19 DATASET COLLECTED FROM THREE DIFFERENT HOSPITALS (A, B, AND C)

Hospital ID A A B B C C

CT scanner ID 1 2 3 4 5 6

Number of Patients 30 10 13 7 20 9

Infecation annotation Voxel-level Voxel-level Voxel-level Voxel-level Voxel-level Voxel-level

CT scanner SAMATOM Samatom Brilliance 16P Brilliance iCT Brilliance iCT GE 16-slice CT
scope Definitation Edge iCT scanner

Lung Window level (LW) -600 -600 -600 -600 -600 -500

Lung Window Witdh (WW) 1200 1200 1600 1600 1600 1500

Slice thickness (mm) 5 5 5 5 5 5

Slice increment (mm) 5 5 5 5 5 5

Collimation(mm) 128*0.6 16%1.2 128*0.625 16*1.5 128*0.6 16*1.25

Rotation time (second) 1.2 1.0 0.938 1.5 1.0 1.75

Pitch 1.0 1.0 1.2 0.938 1.75 1.0

Matrix 512*%512 512*%512 512*%512 512*%512 512*%512 512*%512

Tube Voltage (K vp) 120 120 120 110 120 120

Fig. 6. Some random samples of CT scan 2D slices taken from CC-19
dataset.

faced by Al-based methods is the availability of relevant data.
Al cannot progress without the availability of abundant and
relevant data. In this paper, we collected the data CT scan
data for 34006 slices from the 3 different hospitals. The
data is scanned by 6 different scanners shown in Table II.
In addition, we collected the third party dataset [36], [37]
from different sources to validate the federated learning meth-
ods. Moreover, the collected dataset is publicly available via
GitHub (https://github.com/abdkhanstd/COVID-19). The col-
lected data set contains the Computed Tomography scan (CT)
slices for 89 subjects. Out of these 89 subjects, 68 were
confirmed patients (positive cases) of the COVID-19 virus,
and the rest 21 were found to be negative cases. The pro-
posed dataset CC-19 contains 34,006 CT scan slices (images)
belonging to 89 subjects out of which 28,395 CT scan slices
belong to positive COVID-19 patients. Fig. 6 shows some 2D
slices taken from CT scans of the CC-19 dataset. Moreover,
some selected 3D samples from the dataset are shown in
Fig. 7. The Hounsfield unit (HU) is the measurement of CT
scans radiodensity as shown in Table III. Usually, CT scanning
devices are carefully calibrated to measure the HU units. This
unit can be employed to extract the relevant information in
CT Scan slices. The CT scan slices have cylindrical scanning
bounds. For unknown reasons, the pixel information that lies
outside this cylindrical bound was automatically discarded by
the CT scanner system. But fortunately, this discarding of outer
pixels eliminates some steps for preprocessing.

Collecting datasets is a challenging task as there are
many ethical and privacy concerns observed the hospitals and

Fig. 7. This figure shows some selected samples from the CC-19
dataset. Each row represents different patient samples with various
Hounsfield Unit (HU) for CT scans. The first three columns represent
the XY, XZ, and YX plane of the 3D- volume respectively. The fourth
column represents a whole 3D-Volume followed by a bone structure in
the fifth column.

medical practitioners. Keeping in view these norms, this
dataset was collected in the earlier days of the epidemic from
various hospitals in Chengdu, the capital city of Sichuan.
Initially, the dataset was in an extremely raw form. We pre-
processed the data and found many discrepancies with most
of the collected CT scans. Finally, the CT scans, with dis-
crepancies, were discarded from the proposed dataset. All the
CT scans are different from each other i.e. CT scans have a
different number of slices for different patients. We believe
that the possible reasons behind the altering number of slices
are the difference in height and body structure of the patients.
Moreover, upon inspecting various literature, we found that
the volume of the lungs of an adult female is, comparatively,
ten to twelve percent smaller than a male of the same height
and age [38].

B. Evaluation Measures

Specificity and sensitivity are the abilities of a model
that how correctly the model identifies a subject with
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Ours U-NET ++ U-NET

Ground Truth

Fig. 8. A visual comparison (segmentation) of our method with other studies. The first row (CT-Images) represents the original images taken from
different datasets. The first two columns show the overlay segmentation result while the rest of the columns represent the masks.

disease and without a disease. In our case, it is criti-
cal to detect a COVID-19 patient as missing a COVID-
19 patient can have disastrous consequences. The formulas

. ) .o _ TP
of the measures are given as 7f(}{))llows. Precision = TPLFP"
sensitivity = recall = W;Vspeaflczty = TNTFP’
and Total accuarcy = TPITN+FPTEN "

A medical diagnosis-based system needs to have high
sensitivity and recall. We present a comprehensive overview
of various famous deep learning frameworks. The results
presented in Table IV indicate the superiority of our proposed
method.

C. Deep Learning Implimentation Details

We fine-tuned deep learning networks such as VGGI6,
AlexNet, Inception V3, ResNet 50-152, MobileNet, and
DenseNet pre-trained on the ImageNet dataset. We used the
pre-trained weights provided by Keras library. An Adams opti-
mizer was used to fine-tune the network. Moreover, we fine-
tuned the networks using a learning rate of 10> with a decay
of 107 with an early stopper mechanism with patience equal
to five.

D. Comparison With Benchmark Methods

We performed comprehensive experiments using differ-
ent kinds of deep learning models i.e.,(VGG16, AlexNet,
Inception V3, ResNet 50-152 layers, MobileNet, DenseNet).
We used deep learning models and different layers for compar-
ing the performance models on the COVID-19 dataset, which
is shown in Table IV. We evaluate the performance of the
Capsule Network for the detection of COVID-19 lung CT

TABLE Il
VARIOUS VALUES OF HOUNSFIELD UNIT (HU) FOR DIFFERENT
SUBSTANCES
S/No Substance Hounsfield Unit (HU)
1 Air -1000
2 Bone +700 to +3000
3 Lungs -500
4 Water 0
5 Kidney 30
6 Blood +30 to +45
7 Grey matter +37 to +45
8 Liver +40 to +60
9 ‘White matter +20 to +30
10 Muscle +10 to +40
11 Soft Tissue +100 to +300
12 Fat -100 to -50
13 Cerebrospinal fluid(CSF) 15

image accuracy. Fig. 9(a) shows the deep learning models; the
Capsule Network achieves high sensitivity and less specificity,
we achieved high detection performance through the Capsule
Network. Fig. 9(b) shows the Segcaps based Capsule Network
achieved the best performance and provide the highest sensitiv-
ity and lowest specificity. These models were tested using three
different test lists containing about 11,450 CT scan slices. The
COVID-19 infection segmentation shown in Fig. 8, indicates
our method outperforms the baseline methods. The proposed
techniques’ results are close to the ground truth. In contrast,
U Net++s’ performance is near to our results.

E. Federated Learning Security Analysis

The dataset was gathered from different sources and differ-
ent hospitals having various kinds of machines. To measure the
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TABLE IV
THE PERFORMANCE OF SOME FAMOUS DEEP LEARNING NETWORKS. THE BOLD VALUES REPRESENT THE BEST PERFORMANCE. IT CAN BE
SEEN THAT THE CAPSULE NETWORK EXHIBITED THE HIGHEST SENSITIVITY WHILE RESNET HAS THE BEST SPECIFICITY

Feature extraction network  Learnable node Pre-trained  Precision  Sensitivity / Recall  Specicivity
VGG16 [39] MLP Imagenet 0.8269 0.8294 0.1561
AlexNet [40] MLP Scratch 0.833 0.831 0.191
Xception V1 [41] MLP Imagenet 0.830 0.894 0.110
VGG19 [39] MLP Imagenet 0.827 0.8616 0.128
ResNet50 [42] MLP Imagenet 0.833 0.771 0.249
ResNet50 V2 [43] MLP Imagenet 0.830 0.837 0.166
Resnet152 V2 [43] MLP Imagenet 0.828 0.861 0.134
Inception V3 [44] MLP Imagenet 0.828 0.833 0.159
MobileNet [45] MLP Imagenet 0.830 0.912 0.089
MobileNet V2 [46] MLP Imagenet 0.828 0.873 0.118
DenseNet121 [47] MLP Imagenet 0.832 0.903 0.113
DenseNet169 [47] MLP Imagenet 0.831 0.886 0.126
DenseNet201 [47] MLP Imagenet 0.829 0.844 0.152
Ours (SegCaps) Capsule Network 0.830 0.987 0.004

Accuracy %

Fig. 9. (a) Sensitivity/Recall of the COVID-19 dataset over the decen-
tralized network. (b) Accuracy of the COVID-19 Images.

performance of federated learning, we distribute the datasets
over three hospitals. In this model, multiple hospitals can share
the data and learn from federated learning. The performance
of our proposed distributed model is shown in Fig. 10(a),
accuracy was changed when the hospitals or providers were
increased. It is better to use more data providers for better
results. Fig. 10(b) shows the model loss convergence. As we
can see in Fig. 10(a), the accuracy does not change smoothly
because the samples from different hospitals are not the same.
The accuracy depends on the number of patients or slices.
The same is the process for the model loss. Also, it can be
seen that the number of providers is increasing. The global
model aggregates all the local models where each hospital
uses normalized data for training a local model. The number
of hospitals affects the performance of the collaborative model.

Additionally, the run time is shown in Fig. 10(c). It varies from
dataset to datasets and the number of iteration in different sub-
datasets.

We compare the federated learning with the local model as
shown in Fig. 9(b). The local model is trained on whole dataset
and federated learning model learns from the local models.
Fig. 10(a) and 10(b) indicates that performance increases
significantly when data providers are increasing. However,
federated learning does not affect the accuracy but it achieves
privacy while sharing the data.

« Differences-Privacy: Fig. 5 describes the differences in
privacy analysis, where a principled approach that enables
organizations to learn from most data while ensuring
that these results do not allow data to be distinguished
or re-identified by any individual. On the other hand,
Equation (10) obtains the value in the data to ensure
strong data security.

o Trust: The decentralized trust mechanism of the
blockchain allows everything to run automatically
through a preset program that improves data security.
Relying on a strict set of algorithms, the decentralized
blockchain technology can ensure that the data is true,
accurate, transparent, traceable, and cannot be tampered
with.

o Data security: Data providers have the authority to
control their data. Actual data is uploaded with the
signature of the owner in the blockchain database. The
owner has the right to control and change the policy of
the data using the smart contract. The blockchain uses
cryptographic algorithms that enable the security of the
data.

F. Comparison With Other Methods

A lot of studies have been carried out for detecting the
COVID-19 such as [2], [57]-[60], these techniques do not
consider data sharing to train the better prediction model.
However, some techniques used GAN and data augmentation
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TABLE V
A COMPARISON WITH THE STATE-OF-THE-ART STUDIES RELATED TO COVID-19 PATIENTS’ DETECTION. MOREOVER, S, A, AND SP REPRESENT

SENSITIVITY, SPECIFICITY, AND ACCURACY RESPECTIVELY

Study Backbone method Tasks Number of cases Performance Sharing Privacy
protection

Chen et al. [48] 2D Unet++ COVID-19, viral, baterial and 106 cases 95.2 %(A)100% No No
Pneu. classification (S)93.6%(SP)

Shi et al. [49] Random forest COVID-19, viral/ baterial 2685 cases 87.9 %(A) No No
Pneu. and normal 90.7% (S)
classification 83.3%(SP)

Zheng et al. [50] 2D Unet and 2D CNN COVID-19, viral, baterial and 499 Training / 132 90.7% (S) No No
Pneu. classification Validation 91.1%(SP)

Li et al. [51] 2D-Resnet 50 COVID-19, viral/ baterial 3920 Training/436 Testing 90.0% (S) No No
Pneu. and normal 96.0%(SP)
classification

Jin et al. [52] 2D Unet++ and 2D-CNN COVID-19, viral, baterial and 1136 Training / 282 97.4% (S) No No
Pneu. classification Testing 92.2%(SP)

Song et al [53]. 2D-Resnet 50 COVID-19, baterial Pneu. and 164 Training/ 27 86.0% (A) No No
normal classification Validation/ 83 Testing

Xu et al. [54] 2D-CNN Normal, Influenza-A and 528 Training / 90 Testing 86.7% (A) No No
viral/bacterial Pneu.
classification

Jin et al. [55] 2D-CNN COVID-19, viral, baterial and 312 Training/ 104 94.1% (S) No No
Pneu. classification Validation/ 1255 Testing 95.5%(SP)

Wang et al. [56] 2D-CNN COVID-19 and viral Pneu. 250 cases 82.9% (A) No No
classification

Wang et al. [57] 3D-ResNet + attention COVID-19, viral Pneu. and 3997 5-fold validation / 93.3 %(A) No No
normal classification 60 validation/ 600 testing 87.6% (S)

95.5%(SP)
Ours Federated Bockchain and COVID-19, viral Pneu. and 182 Training/ 45 Testing 98.68%(A) Yes Yes
Capsule Network normal classification (patients per hospital) 98% (S)

for generating fake images. The performance of such methods
is not reliable in the case of medical images. Due to the small
number of data patients [61] the data analytic is difficult. Our
proposed model collects a huge amount of real-time data to
build a better prediction model. Firstly, we compare with the
state of art studies and compare them with the deep learning
models shown in Table V. Moreover, we compare federated
learning with the state-of-art deep learning models such as
VGG, ResNet, MobileNet, DenseNet, Capsule Network, etc.
The results show the accuracy is similar to train the local
model with the whole dataset or divide data into different hos-
pitals and combine the model weights using blockchain-based
federated learning.

Finally, we compare our work with blockchain-based
data sharing techniques. [62] proposed a deep learning and
blockchain-based technique to share the medical images, but

the main weakness of the model is that it is not based on
federated learning and does not aggregate the neural network
weights over the blockchain. Moreover, [13], [19] design a
framework based on federated learning but they only consider
share vehicle data. Our proposed framework trains the global
model to collect data from different hospitals and train a
collaborative global model.

G. Computational Cost

We compare the proposed blockchain-based federated learn-
ing with the local capsule network. However, blockchain-based
federated models exhibit high security and privacy. Fig. 11(a)
shows that the running cost increases with the number of
hospitals or transactions due to the increase in communication
load. Moreover, as it can be seen in Fig. 11(b), our proposed
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Fig. 11.  (a) Proposed blockchain based federated learning cost.
(b) Performance comparison with capsule and federated learning.

scheme outperforms as compared with the local capsule net-
work local model.

VI. CONCLUSION

This paper proposed a framework that can utilize up-to-
date data to improve the recognition of computed tomogra-
phy (CT) images and share the data among hospitals while
preserving privacy. The data normalization technique deals
with the heterogeneity of data. Further, Capsule Network based
segmentation and classification is used to detect COVID-19
patients along with a method that can collaboratively train
a global model using blockchain technology with federated
learning. Also, we collected real-life COVID-19 patients’ data
and made it publically available to the research community.
Extensive experiments were performed on various deep learn-
ing models for training and testing the datasets. The Capsule
Network achieved the highest accuracy. The proposed model
is smart as it can learn from the shared sources or data
among various hospitals. Conclusively, the proposed model
can help in detecting COVID-19 patients using lung screening
as hospitals share their private data to train a global and better
model.
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