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Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. It has a high degree of malignancy
and a poor prognosis in developing countries. The doctor manually explained that magnetic resonance imaging (MRI) suffers
from subjectivity and fatigue limitations. In addition, the structure, shape, and position of osteosarcoma are complicated, and
there is a lot of noise in MRI images. Directly inputting the original data set into the automatic segmentation system will bring
noise and cause the model’s segmentation accuracy to decrease. Therefore, this paper proposes an osteosarcoma MRI image
segmentation system based on a deep convolution neural network, which solves the overfitting problem caused by noisy data
and improves the generalization performance of the model. Firstly, we use Mean Teacher to optimize the data set. The noise
data is put into the second round of training of the model to improve the robustness of the model. Then, we segment the
image using a deep separable U-shaped network (SepUNet) and conditional random field (CRF). SepUnet can segment lesion
regions of different sizes at multiple scales; CRF further optimizes the boundary. Finally, this article calculates the area of the
tumor area, which provides a more intuitive reference for assisting doctors in diagnosis. More than 80000 MRI images of
osteosarcoma from three hospitals in China were tested. The results show that the proposed method guarantees the balance of
speed, accuracy, and cost under the premise of improving accuracy.

1. Introduction

Osteosarcoma is the most common primary bone tumor [1],
mostly in children and adolescents. The incidence rate of
osteosarcoma in the world is the highest in all primary
malignant bone tumors (44%). Especially in developing
countries, due to the limitation of medical level, the death
toll accounts for a higher proportion than that in developed
countries. In China, though the overall incidence rate is not
high, the incidence of [2] is more than 2000. Most patients
showed the characteristics of a high degree of malignancy
and poor prognosis. The 5-year survival rate of patients with
advanced osteosarcoma is only about 20% [3]. If it can be
detected early and treated in time, it can greatly improve
the survival rate of patients and reduce the probability of
amputation [4]. Because magnetic resonance imaging

(MRI) has good soft-tissue resolution and very high contrast
resolution and its multiparameter and multiplane slicing
capability can clearly show the location and extent of the
lesion, the damage to the human body during the detection
process is minimal. Therefore, MRI is a common imaging
technique used by doctors to diagnose and evaluate
osteosarcoma.

Most developing countries have encountered obstacles in
the diagnosis, treatment, and prognosis of osteosarcoma due
to the general imperfect medical system. The developing
countries are economically backward, and medical resources
are in short supply [5–8]. The high-priced magnetic reso-
nance imaging equipment and the lack of professional tal-
ents make the early diagnosis of osteosarcoma very difficult
[9–11]. In addition, the diagnosis of osteosarcoma at this
stage relies on manual identification by doctors [12–14].
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Each patient will produce 600-700 MRI images at one diag-
nosis [12]. In a large amount of data, often less than 20
images are valid. A large amount of redundant data brings
a huge workload to doctors, leading to inefficient diagnosis
[13]. Worst of all, the location, structure, size, and shape of
different osteosarcomas vary from person to person, and
their distribution density is uneven [14]. The tumor tissue
is often indistinguishable from the surrounding normal tis-
sue. Especially in imaging, the images of different osteosar-
comas under the same imaging method are also different
[15–17]. Sometimes it is difficult to distinguish between nor-
mal tissues and diseased areas with the naked eye. Image
interpretation is limited by the subjectivity of doctors, doc-
tors’ perceptions of huge differences and fatigue, and the rate
of misdiagnosis by inexperienced doctors has risen [18].

In recent years, medical image processing technology has
to some extent alleviated the difficulties in the diagnosis of
osteosarcoma in developing countries [19]. Accurately mea-
suring the area of the tumor area through computer technol-
ogy can assist doctors in qualitative and even quantitative
analysis of lesions and other areas of interest, thereby greatly
improving the accuracy and reliability of medical diagnosis
[20]. The existing medical image processing technology can
detect the position and edge of the tumor to a certain extent.
However, the position, shape, and scale of the tumor area vary
greatly, and the different degrees of brightness between the
images lead to poor interpretation of the model [21]. There-
fore, the effect of the existing technology on image segmenta-
tion of osteosarcoma has not reached expectations [22].

More and more researches use machine learning
methods to optimize the segmentation effect. Many methods
use many selected features to learn the mapping relationship
from the feature space to the training label, thereby improv-
ing the accuracy of tumor segmentation [22]. However,
these features need to be extracted manually, the implicit
features of the image cannot be considered, and training a
classifier with many features is a time-consuming and costly
task [23, 24]. At the same time, the structure, shape, and
location of osteosarcoma are complex, and there is a lot of
noise in MRI images, which will cause the model to overfit
[25]. Many studies have used complex structures and deeper
levels to optimize their fitting capabilities so that the model
has stronger generalization. Although this method can
improve the accuracy of the model to a certain extent, the
improvement effect of such methods in segmentation accu-
racy is often small. Moreover, an overly complex structure
will make the training of the model slow and inefficient.

Based on the above analysis, this paper proposes an
osteosarcoma-assisted segmentation method (OSDCN) based
on a deep convolutional neural network. First, we expanded
the original data set to reduce the degree of overfitting and
enhance the generalization performance of the model. At the
same time, we use the Mean Teacher algorithm to optimize
the data set to reduce the influence of the difference between
the brightness of MRI images on the model training. Further,
we use the binarization algorithm to screen the effective area
in theMRI image, reducing the waste of resources and compu-
tational cost. In terms of model design, taking into account the
uneven image of osteosarcoma and the complicated tumor

shape, we used a depth-separable U-shaped network (SepU-
Net) to segment tumors of different sizes at multiple scales
according to features of different depths. Moreover, we added
the conditional random field on this basis to further optimize
the segmentation results and solve the problem that the tumor
is more blurred than the boundary. Finally, to provide doctors
with more intuitive analysis results, we calculated the tumor
area of the three sections of the human body in the patient’s
MRI image. The OSDCN method plays an extremely impor-
tant role in the diagnosis, treatment, and prognosis of
osteosarcoma.

The detailed contributions of this research are as follows:

(1) This article optimizes and preprocesses the original
data set. The Mean Teacher optimization algorithm
alleviates the influence of noise tags on model training
and supplements the valuable knowledge of high-loss
blocks. Standardized preprocessing reduces the influ-
ence of image sensitivity caused by external factors
on the model’s segmentation of tumor regions. At
the same time, ineffective areas are shielded to reduce
waste of resources and training costs

(2) This article integrates the deep separable U-shaped
network and conditional random field as the image
segmentation model, which can not only accurately
lock the tumor regions of different sizes in the MRI
image but also further locate the tumor boundary,
improving the accuracy of segmentation and model
training.

(3) In the calculation method of tumor area, this paper
uses particle filter technology to fit the boundary
curve, which improves the accuracy of boundary posi-
tioning. At the same time, the complex Newton-Cotes
algorithm is applied to area calculation, which avoids
the rounding error of high-order interpolation and
further subdivides the area interval to improve the
accuracy of area calculation

(4) We used more than 80,000 samples collected from
the Second Xiangya Hospital of Central South Uni-
versity for experimental analysis. The results show
that our proposed osteosarcoma segmentation
method is superior to other methods. This method
plays a significant role in the diagnosis, treatment,
and prognosis of osteosarcoma. Doctors use the
result of diagnosis as an auxiliary basis for diagnosis
and treatment, which can reduce workload and time
without affecting the accuracy of diagnosis

The content of the other chapters of this article is orga-
nized as follows: In Section 2, we give a brief introduction
to the relevant work in the research process. In Section 3,
we design a segmentation method for osteosarcoma
(OSDCN), then describe and analyze each submodule. In
Section 4, we report the process and results of the experi-
ment and conduct evaluation and analysis. In the last Sec-
tion 5, we summarized the full text and looked forward to
future work.
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2. Related Works

There are already many artificial intelligence decision sys-
tems and image processing methods used to assist in the
diagnosis of diseases. In the diagnosis of osteosarcoma, pro-
cessing images through computer technology to analyze the
health of patients has become a research hotspot. Some
mainstream algorithms are introduced below.

Osteosarcoma cells have multiple morphologies, and
pathologists disagree on the classification of osteosarcoma
(surviving tumor, necrotic tumor, nontumor). Chang et al.
[26] proposed a deep model with Siamese network (DS-
Net) for automatic classification in Hematoxylin and Eosin
(H&E) stained histological images of osteosarcoma, which
in turn helps pathologists to improve diagnostic accuracy.
To further achieve zero-error classification, Zhan et al. [27]
proposed a novel convolutional neural network architecture
consisting of multiple CNNs in series, called C-Net. The
architecture is divided into outer, middle, and inner parts.
Among them, the outer and middle parts of the architecture
contain six CNNs as feature extractors to feed the internal
network to achieve the classification of malignant and
benign tumor images. Similarly, Anisuzzaman et al. [28]
provided a solution for automatic detection of osteosarcoma
through transfer learning techniques using a CNN pre-
trained on a public data set of histological images of osteo-
sarcoma. This allows patients with osteosarcoma to be
treated at an early stage and avoid more extensive metastases
in other bones and soft tissues.

However, the borderline cases of Ewing’s sarcoma and
osteosarcoma remain a challenging task for medical diagno-
sis. A Huang et al. [29] used diffusion-weighted imaging
(DWI) to achieve precise delineation of Ewing’s sarcoma
and osteosarcoma by evaluating the apparent diffusion coef-
ficient (ADC) values. And in the past decade of applying
deep learning to medical images, convolutional object detec-
tion (COD) has also become a successful method for cancer
analysis. D’Acunto et al. [30] used a method based on con-
volutional object detection for differentiating osteosarcoma
cells from osteoblasts (MSC). This method shows an accu-
racy close to 1 on the available data set, which is conducive
to effective analysis of single cells, while avoiding traditional
biochemical methods that are time-consuming and may
require a large number of cells.

To evaluate the grade of osteosarcoma in patients, Gou
and Wu [20] proposed a sequential recurrent convolutional
neural network (RCNN) model combining convolutional
neural network and bidirectional gated recurrent unit
(GRU), but the model is prone to an overfitting problem.
Similarly, to estimate the case-level necrosis rate, Ho et al.
[31] proposed Deep Interactive Learning (DIaL), an effective
labeling method for training CNNs. Treatment response,
measured as the ratio of necrotic tumor area to the whole
tumor area, is a known prognostic factor for overall survival.
The DIaL method is mainly used for multiclass tissue seg-
mentation of histopathological images and treatment reflec-
tive assessment of osteosarcoma. The main idea is to
calculate the number of pixels predicted as live and necrotic
tumors by the segmentation model and compare it with the

rate in the pathology report, then estimate the case level
necrosis rate to provide a more accurate and effective treat-
ment plan for patients. This method can assist doctors in
effectively improving the survival rate of patients.

There are also many methods in the literature that use
image processing and computer techniques to predict the
response to osteosarcoma treatment and its corresponding
indicators. To predict chemotherapy response in osteosar-
coma and to determine treatment plans for osteosarcoma
patients as early as possible, Jeong et al. [32] used baseline
18-FDG positron emission tomography (PET) combined
with a machine learning approach for texture feature predic-
tion of the scanned images and then assessed the ability to
respond to chemotherapy by the area under the operating
characteristic curve (AUC). Im et al. [33] used Otsu (MO-
PET), gradient-based method (PETedge), relative threshold
method, and background threshold method to segment arti-
ficial lesions in the phantom. The metabolic tumor volumes
(MTV) using MO-PET and PETedge were named MTV
(MO-PET) and MTV (PETedge), respectively. MTV (MO-
PET) shows excellent reproducibility and can predict EFS
in patients with osteosarcoma.

In addition, Kayal et al. [25] used diffusion-weighted
imaging (DWI) to segment osteosarcoma, which plays a cru-
cial role in the diagnosis and prognosis of osteosarcoma.
Alge et al. [34] used X-rays to detect the size and location
of tumors and combined images and RNA-seq data to dis-
tinguish osteosarcoma from benign tumors. Shuai et al.
[35] proposed a network architecture W-net++ based on
two cascaded U-Nets and dense jump connections to realize
automatic segmentation of osteosarcoma lesions in CT
images. Huang et al. [36] proposed a fully automated MRI
segmentation and recognition method for osteosarcoma.
This method mainly uses conditional random fields to iden-
tify tumors with various shapes and irregular structures and
has achieved good results.

The above analysis shows that artificial intelligence tech-
nology has played an increasingly important role in the diag-
nosis and prognosis of diseases. However, MRI images of
osteosarcoma are susceptible to noise, and the edge features
are still difficult to maintain well. The segmentation accuracy
needs to be further improved. To make up for the lack of
segmentation accuracy, we propose an osteosarcoma MRI
image segmentation method based on a deep convolutional
neural network. This method improves the accuracy of oste-
osarcoma detection through strategies such as data set opti-
mization, preprocessing, model segmentation, and edge
optimization.

3. Methods

Due to the serious imbalance of the doctor-patient ratio in
developing countries, it is difficult for doctors to provide
one-to-one services to patients. At the same time, the diag-
nosis and treatment cycle of osteosarcoma is long, and the
cost is high. Many families cannot afford the high medical
expenses, and some people even choose to stop treatment.
Most developing countries face economic and technical
challenges in the diagnosis and treatment of osteosarcoma.
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In particular, the MRI images of osteosarcoma are complex,
and the amount of data is large. It is very challenging to rely
on doctors for manual screening and detection. With the
development of smart medicine, image processing is playing
an increasingly important role in the diagnosis, treatment,
and prognosis of diseases. The system decision-making
results can be used as an auxiliary basis for doctors’ clinical
diagnosis, reduce the doctor’s ineffective workload, improve
the doctor’s work efficiency, and provide more quality ser-
vices to patients. While improving the efficiency and accu-
racy of model segmentation, our method should have
broader practicability and hardware requirements. In addi-
tion, we hope that the system can provide doctors with more
intuitive analysis results. Based on this, this paper proposes
an osteosarcoma segmentation method (OSDCN) based on
a deep convolutional neural network, which is mainly used
to assist doctors in identifying MRI images of osteosarcoma,
to diagnose osteosarcoma more efficiently and accurately. It
can not only accurately identify the MRI image of osteosar-
coma and delineate the tumor area in the picture but also
calculate the area of the tumor area to provide doctors with

more intuitive results. The overall design of this article is
shown in Figure 1.

This paper is divided into two sections: Section 3.1 is the
segmentation of osteosarcoma MRI images, and Section 3.2
is the calculation of the tumor region area in the model seg-
mentation results. In Section 3.1, we input the MRI images
of osteosarcoma patients into the segmentation network,
through which we can obtain the location and range of sus-
picious tumors. It has good effects for subsequent doctors to
determine the degree of soft tissue invasion and determine
the therapeutic effect.

After processing the MRI images of osteosarcoma in Sec-
tion 3.1, in Section 3.2, the boundary curve was fitted using
the particle filter algorithm, and then, the tumor region area
was calculated using the multiplexing Newton-Cotes
algorithm.

We list some of the symbols used in this paper in
Table 1.

3.1. Osteosarcoma Image Segmentation. The overall design of
segmentation of osteosarcoma is shown in Figure 1, which is
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Figure 1: Framework diagram of the general plan.
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mainly divided into three major structures: optimized data
set, preprocessing, image analysis, and segmentation.

To further improve the accuracy of detection, we have
set up three strategies:

(1) Data Set Optimization. Using the Mean-Teacher
model to divide the data set into Useful-Slices (US)
and Normal-Slices (NS) and input them into the net-
work for training

(2) Pretreatment. We further preprocess the filtered
MRI image to reduce the effective segmentation area
and reduce the waste of resources caused by the
invalid area

(3) Image Analysis and Segmentation. The segmentation
model in this paper includes two parts: a deeply sep-
arable U -shaped model (SepUNet) and a condi-
tional random field (CRF). When training the
model, the four perspectives of the same MRI image
are input to the network to reduce the false detection
rate of the algorithm

3.1.1. Data Set Optimization. The initial data set has a large
amount of data. We observe the data set and find that not all
slices in a series are good for training, and there are some
images with very small tumor regions (some even do not
contain tumor regions). Although these samples contain
noisy labels, they can also contribute to the model. There-
fore, it is not feasible to discard this part of the data directly.
However, since deep neural networks can memorize all
training samples, directly using these slices may lead to a
sharp decline in model performance. Therefore, we need a
way to divide useful slices (US) and difficult slices (NS)
and can continuously process newly added slice sets.

To solve the first problem, we set ResNet-7 to divide the
data set, as shown in Figure 2. ResNet-7 is composed of 6
layers of residual modules plus a layer of fully connected mod-
ules. The residual module uses the residual idea to avoid the
disappearance of gradients. The final fully connected layer is
responsible for classification. A 3 × 3maximum pooling layer
is set between each layer to reduce the size of the feature map.

In addition, to further improve the accuracy and robust-
ness of the division and to better adapt to the newly added slice
set, we use the Mean-Teacher semisupervised algorithm. The
overall architecture of dividing the network includes two parts:
student model and teacher model; that is, there are two
ResNet-7 models. Their parameter groups are θs and θt ,
respectively. The original data set is randomly divided into
X1 (70%) andX2 (30%), whichX1 have label Y1, X2 no labels.
The training process of the algorithm is as follows:

(1) InputX1 and X2input into the student model, output
the predicted probability Ps1, Ps2; input X2 into the
teacher model, output the predicted probability Pt2

(2) Calculate loss values l1 according to Ps1, Pt1, and the
loss function L1. According to the literature [37], the
calculation formula of the loss value is

L1 = −
1
N
〠
N

i=0
yi∙log pið Þ + 1 − yið Þ∙log 1 − pið Þ, yiϵY1, piϵPs1:

ð1Þ

(3) Calculate loss values l2 according to Ps2, Pt2, and the
loss function L2

Table 1: Some of the symbols and their definitions in this chapter.

Symbol Paraphrase

xi The i-th training sample

yi The i-th output samples

X1, X2 Original data set

Ps1 The output probability when the original data is X1 input to the student model

Pt2 The output probability when the original data is X2 input to the teacher model

l Loss value

L1 Cross-entropy loss function

L2 Relative entropy loss function

L Total loss function

g Grayscale value

X = x1, x2,⋯, xnf g The feature point of each pixel on the probability map

Y = y1, y2,⋯, ynf g Probability prediction label for each point.

T Algorithm threshold

GT Real osteosarcoma area

Pos Predict the area of osteosarcoma

Sos The area of the tumor area of osteosarcoma
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(4) The loss value of the student model is l = l1 + l2, with
this gradient descent and updated the parameter to
θs′. The teacher model [38] updates the parameters
θt′by moving average (as shown in formula (2)).

θt′= αθt + 1 − αð Þθs′: ð2Þ

Among them, because of the existence of the label X1,
the loss function L1 is a cross-entropy loss function, as
shown in formula (1). AndX2 has no label, so L2 needs to
use the Kullbac-Leibler (KL) Divergence relative entropy
loss function [39]. Relative entropy is often used to describe
the degree of overlap of two distributions. If it completely
overlaps, its value is 0, and if it does not overlap, its value
is 1. The KL formula is shown below:

KL QkPð Þ =〠p xð Þ∙log p xð Þ
q xð Þ : ð3Þ

However, the KL function has always had a problem of
asymmetry. We hope that the prediction distributions of
the teacher model and the student model are as consistent
as possible, but it is impossible to judge whose prediction
is more accurate. Therefore, we quoted the Jenson-
Shannon (JS) algorithm [23] to compensate for the asymme-
try problem, which is L2 calculated as:

L2 =
1
2
KL Ps2kPt2ð Þ + 1

2
KL Pt2kPs2ð Þ: ð4Þ

Finally, the original data set is divided into two parts, the
proportion of US is 41.7%, and the proportion of NS is
58.3%, and they are successively input to the segmentation
network. The purpose of this is to let the deep network learn
simple samples first and get a lower loss value. Research shows
that an easy sample is more beneficial to network training.

3.1.2. Pretreatment. In an MRI image of osteosarcoma, we
found that the effective area containing bones and flesh only
occupies a part of the image, and the other part of the area
does not contain any effective information, which is
undoubtedly a waste of network segmentation for subse-
quent images. In addition, it may also interfere with the final
result because the gray value of the tumor area after T1-
weighted is similar. Therefore, we chose to block this type
of area.

As shield invalid region in Figure 3 shown, it is divided
into the following three steps:

(1) Binarization

In MRI images, the gray value of the body structure is
often brighter, while the background pixels that do not con-
tain useful information are often darker. To better distin-
guish them at the beginning of the experiment, we used a
binarization algorithm [40] to classify the pixels according
to their gray values. The threshold formula for the algorithm
is as follows:

T = argmax 〠
255

i=0
ρ0 ∗ nval<g ∗ μ − μval<g

� �2� 

+ ρ1 ∗ nval≥g ∗ μ − μval≥g

� �2�Þ,
ð5Þ

where i represents the gray value, ρ0 and ρ1 are both
hyperparameters, ρ0= 0.67 and ρ1= 0.33. nval<g represents
the number of pixels with a gray value less than g. μval≥g rep-
resenting all gradation values equal to or greater than g the
average gray value of the pixel.

When we obtain the threshold of the original image, we
set the pixels in the original image that are greater than or
equal to the T value as bright spots and the pixels less than
the T value as dark spots.

Student model

Teacher model

Resblock Resblock Resblock Resblock Resblock Resblock
Maxpool Maxpool Maxpool Maxpool Maxpool Maxpool

Full
connection

Jenson-
shannon

Loss function

True,True,False,True,F
alse,True,False

Cross-entropy
loss function

Update Θs 

Update Θl 

ps1

pl2

ps2

1×512×512 16×256×256 32×128×128 64×64×64 128×32×32 256×16×16 512×8×8 32768 1

Probability

L1

L2

Y1
L

x1

x2

Figure 2: (a) The flow chart of the Mean-Teacher data set optimization algorithm. (b) The ResNet-7 structure view, teacher model, and
student model structure of Figure 1.
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(2) Deleting isolated bright spots and making up the
hollow area

After the binarization of the image, there are sporadic
small bright spots in some areas, which increases the diffi-
culty of preprocessing (these small bright spots do not exist
in the osteosarcoma area), so the closed operation is used to
remove them.

In addition, we found that some dark spots close to the
bright spot may also belong to the tumor area, so we started
the calculation to set this part of the pixel as the bright spot.

(3) Determining the credible area

The osteosarcoma data set roughly has three types of
slices: cross-section, coronal plane, and sagittal plane. Their
gray value distribution, lesion area, and shape are all differ-
ent, so to meet the premise that the lesion area must be
included, we set MAX − X/MIN − X as the bright spot coor-
dinate The maximum/minimum value in the horizontal
direction, MAX − Y/MIN − Y is the maximum/minimum
value in the vertical direction, and finally, ½MIN − X : MAX
− X, MIN − Y : MAX − Y � is set as the credible area, and
there is no tumor in the noncredible area.

3.1.3. Image Analysis and Segmentation. Osteosarcoma
tumor network model for segmentation is based on a multi-
layer deep separable full convolution neural U Network
(SepUNet) [36], as in Figure 4. In the neural network, the
deeper the feature receptive field, the larger the area with
the larger size. SepUNet can segment tumor regions of dif-
ferent sizes at multiple scales based on features of different
depths. This is why it can accurately segment objects. SepU-
Net is mainly composed of the following three structures:

(1) Encoder. It is the main structure for extracting image
features, with a total of 4 layers. There is a 3 × 3
maximum pooling layer between each layer, which
can reduce the size of the feature map to extract fea-
tures more deeply. Each layer is composed of a Dou-
bleConv and a SeparableBlock. The SeparableBlock
is mainly composed of depth separable convolution.
Compared with ordinary convolution, it can have
higher depth and accuracy under the premise of
the same amount of parameters

(2) Decoder. It is mainly responsible for multiscale fea-
tures, and there are 4 layers in total. The feature
map size between each layer will be enlarged by 2
times through interpolation. Each layer consists of

a DoubleConv, which is used to process the com-
bined context characteristics

(3) Skip-Connection. It is responsible for combining the
shallow features of the same-level Encoder with the
deep features of the Decoder. This method of com-
bining contextual features is the key to a good seg-
mentation effect of the UNet network

For the artificial intelligence model, the rotated image is
a brand new image. The network will focus on different fea-
tures for segmentation. Therefore, to make the model seg-
mentation result more accurate and robust, we put a
picture into the network segmentation after being rotated
by 90°, 180°, and 270°. The final segmentation probability
is the probability-weighted average of the four images. The
calculation formula is as follows shown:

Result = 〠
h

i=0
〠
w

j=0
α0p0,ij + α1p1,ij + α2p2,ij + α3p3,ij
� �

, 〠
3

k=0
αk = 1:

ð6Þ

After testing, the weight parameter a0 = 0:4, a1
= a2 = a3 = 0:2. Segmenting fuzzy boundaries has always
been a big problem in image segmentation tasks. By observ-
ing the MRI image of osteosarcoma, we can find that the
edema area, muscle area, and tumor area in the image are
very close, and the gray value at the junction is also similar.
Even experienced doctors may admit mistakes, which will
affect the judgment of the disease. To further reduce the false
detection rate, we use a CRF (CRF) to further optimize the
boundary of the results after network segmentation.

For the probability map output by the neural network U ,
we can use the following formula (7) to describe the pre-
dicted value of each pixel [36]. X = fx1, x2,⋯, xng represents
the feature point of each pixel on the probability map, and
Y = fy1, y2, y3,⋯, yng represents the label predicted by each
point based on its texture, gray value, and other attributes,
and the probability of the surrounding points.

P y ∣ xð Þ = 1
Z xð Þ exp 〠

iϵU

〠
j∈U xið Þ

Ti,j yj, yi, xi, i
� �

+〠
iϵU

Si yi, xið Þ
 !

:

ð7Þ

Among them, UðxiÞ represents the points around xi, Ti,j
is the function of the feature transfer between the i-th point
and the surrounding points, Si is the state feature function

Origin slice Binarization Remove and fill
dark-spots

Establish
trusted areas

Preprocessing
result

Figure 3: Flow chart of slice image preprocessing.
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about the i-th point, and ZðxÞ is the normalized function.
According to the literature [36], its calculation is as follows:

Z xð Þ = 〠
yϵY

P y ∣ xð Þ: ð8Þ

3.1.4. Loss Function. Segmentation of osteosarcoma is a two-
class segmentation task. The log loss function is a classic loss
function. The log loss function (BCE) formula [41] is shown
below, where the probability of each pixel belonging to the
osteosarcoma region is pi,j; the label is yi,j.

LBCE =
1

h ∗w
〠
h

i=0
〠
w

j=0
− yi,j ∗ log pi, j

� �
+ 1 − yi, j
� �

∗ log 1 − pi,j
� �� �

:

ð9Þ

Osteosarcoma segmentation is a small target segmenta-
tion task. There is often only one target area in an image,
and the corresponding area ratio is not large. If only the log-
arithmic loss function is used, then the loss gradient pays
more attention to the category with a larger area, because
this function has the same degree of attention to each pixel,
which will eventually make the model lose its predictive abil-
ity. So we also need to use the Dice loss function [41], which
calculates the loss value for each category and can solve the
problem of sample imbalance. The Dice loss function is as
follows:

LDice = 1:0 −
2:0 ∗ GT ∩ Posð Þ

GTj j + Posj j : ð10Þ

Among them, GT represents the real osteosarcoma
region, Pos represents the predicted osteosarcoma region,
and ∣X| represents the area of the X region. However, if we
only use the Dice loss function because of the small area,
the prediction bias at several pixels in osteosarcoma may
cause unstable gradient changes.

After weighing the stability and accuracy of training, we
choose to use the two-loss functions together to alleviate the
problems caused by the other loss function. Therefore, the
total loss function formula for training is as follows:

L = α1LBCE + α2LDice, α1 + α2 = 1: ð11Þ

After experiments, we set the weight parameters α1 = 0:5
and α2 = 0:5.

3.2. Calculation of Tumor Area. In the imaging of osteosar-
coma, MRI can clearly understand the extent of tumor inva-
sion. To provide doctors with more references, we calculated
the area of the tumor area of the osteosarcoma segmentation
result in the MRI image, as shown in Figure 1.

3.2.1. Introduction to Complex Newton-Cotes. The complex
of Newton-Cotes algorithm [42] to calculate the area, both
to avoid higher-order interpolation rounding error, in turn
further subdivided area range, to improve the area calcula-
tion accuracy. Therefore, we use the complex Newton-costs
algorithm to calculate the area of the tumor area.

The detailed description of the complex Newton-Cotes
algorithm is as follows:

(1) Fitting the Unknown Curve. Input the initial value
u0, u1,⋯, un of the node and its corresponding func-
tion value f ðurÞðr = 0, 1,⋯, nÞðr = 0, 1,⋯, nÞ, and
obtain the unknown curve fitting equation FðxÞ by
the following interpolation formula

Ln uð Þ = 〠
n

r=0
f urð Þlr′ uð Þ: ð12Þ

Among them, l′rðuÞ is the interpolation basis function
[42]:

Input

Upsample
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Downsample

CBR

CBR CBR

CBR

CBR
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Doubleconv Doubleconv

Doubleconv

Doubleconv

Doubleconv

Doubleconv

Doubleconv

Doublecon

Doublecon

Doublecon

Separableblock

Separableblock

Separableblock

Separableblock

Separable
block

SConv
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Conv2Groupconv2

Add

Merge

CRF

1 2 3 4origin 90º 180º 270º
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Figure 4: Architecture design diagram of osteosarcoma segmentation neural network.
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lr′ uð Þ =
Yn
j=0,j≠r

u − ur
ur − uj

: ð13Þ

(2) Dividing the Integrand Interval. Divide the integral
interval ½a, b� into ten equal parts, divide points ur
= a + rhðr = 0, 1, 2, 3,⋯, 10Þ, take a step size of h =
ðb − aÞ/10; then divide each subinterval into ½ur ,
ur+1� equal part points; the interior points are
recorded as: ur+ð1/4Þ, ur+ð1/2Þ, ur+ð3/4Þ. According to
the interpolation type quadrature formula [42], the
specific calculation is as follows:

In uð Þ = b − að Þ〠
n

r=0
c nð Þ
r f urð Þ: ð14Þ

Among them, cðnÞr is the Cotes coefficient.

(3) Calculate the Tumor Area. Calculate the area of the
tumor area

C10 =
h
90

7f að Þ + 32〠
9

r=1
f ur+ 1/4ð Þ
� �

+ 2〠
9

r=0
f ur+ 1/2ð Þ
� �"

+ 32〠
9

r=0
f ur+ 3/4ð Þ
� �

+ 14〠
9

r=1
f urð Þ + 7f bð Þ

#
:

ð15Þ

3.2.2. Tumor Area Calculation. We calculate the area of the
patient’s tumor area, to provide a reference for the doctor’s
clinical diagnosis. The specific calculation steps are as
follows:

Step 1. Measuring the boundary coordinates of the tested
tumor area. Subsequently, the MCMC particle filter algo-
rithm is used to smooth the filtered output and further
improve the accuracy. Under conditions precision can be
measured at intervals of the boundary region is 1mm the
stippling marked, and identify each tumor region under
extreme points left, and right directions, to determine the
irregular region located the smallest circumscribed rectangle.
As shown in the irregular tumor area in the lower half of
Figure 5.

Step 2. Determining the size of the divided squares. We use a
small square of 4mm × 4mm to divide the circumscribed
rectangular coordinate plane into some small squares of
equal size, as shown in the small squares divided in the lower
half of Figure 5.

Step 3. Using the improved grid method to calculate the area
of the lesion area. Through the above division method, three
types of small squares can be obtained: no overlap, partial
overlap, and complete overlap with the measured area.

Situation 1. Grids that do not overlap with the measured
area will not be considered when calculating the area.

Situation 2. The overlap area of the M1 squares that
completely overlap the measured area is known, and it is
recorded as Sc = 16mm2.

Situation 3. For thoseM2 squares that partially overlap
with the measured area, the area calculation should be per-
formed using the complex Newton-Cotes algorithm. Bound-
ary curve f ðxÞ in Figure 5 on the upper part shown, to a side
of the square equal intervals segment 10 parts. Then, use the
Newton-Cotes formula once in each cell (i.e., subdivide 4
parts again, at this time, the square is equivalent to 40 parts,
and the distance between each split node is 0.01mm).
Finally, the size of the overlapping area with the region can
be obtained by the compound Newton-Cotes formula, which
is recorded as Si. Figure 5 in the upper half, boundary curve
f ðxÞ, and the area enclosed by the axes.

Sos = 〠
M2

i=0
Si +M1∙Sc: ð16Þ

Step 4. Finally, summing the overlapping areas of the small
squares in the area to get the total area of the irregular oste-
osarcoma area, which is calculated as follows. The schematic
diagram of the segmentation and fitting process is shown in
Figure 5.

After training the model using the MRI images of the
cross-section, coronal, and sagittal planes of patients with
osteosarcoma, we will finally obtain three types of image seg-
mentation results and the tumor area of the three sections of
the human body. In the clinical diagnosis of osteosarcoma,
the size of the tumor (T), the presence or absence of regional
lymph node invasion (N), and the presence or absence of
distant metastasis (M) are all the focus of doctors’ attention.
Our segmentation system can not only accurately classify
osteosarcoma, and it can provide the tumor area of different
sections of osteosarcoma in MRI images. Doctors use the
results of the segmentation and the final lesion area as an
auxiliary basis for diagnosing osteosarcoma, which helps to
improve the accuracy of diagnosis.

4. Results

4.1. Data Set. The data in this article is provided by the Min-
istry of Education Mobile Health Information-China Mobile
Joint Laboratory and the Second Xiangya Hospital of Cen-
tral South University. In addition, we have collected statistics
on images and indicators of hospitals in recent years. From
osteosarcoma patients, we have compiled more than 80,000
MRI osteosarcoma images and other index data from 204
patients. To make the model segmentation result more accu-
rate and robust, we put a picture into the network segmenta-
tion after being rotated by 90°, 180°, and 270° to obtain the
final segmentation result. The specific number of patient
information items is shown in Table 2. We choose 80% of
the data as the training set and 20% of the data as the test
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set. There are a total of 204 cases, 164 in the training set, and
40 in the test set.

4.2. Evaluation Indexes. To evaluate the performance of the
model, we use accuracy, precision, recall, F1-score, Intersec-
tion of Union (IOU), and Dice Similarity Coefficient (DSC)
as the measurement indicators. A confusion matrix com-
posed of true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) is used to explain the

performance of the network. Among them, TP indicates that
it is determined to be an osteosarcoma area, which is an
osteosarcoma area. FP indicates that it is judged to be a nor-
mal area, but it is also a normal area. FP means that it is
judged to be a tumor area, but in fact, it is a normal area.
FN indicates that it is judged to be a normal area, but in fact,
it is a tumor area. The relevant indicators we defined are
introduced as follows:

Accuracy (Acc) is the proportion of all samples that are
correctly judged. It is defined as follows:

Acc = TP + TN
TP + TN + FP + FN

: ð17Þ

Precision (Pre) indicates the proportion of true positive
samples among the judged positive samples. It is defined as
follows:

Pre =
TP

TP + FP
: ð18Þ

Recall (Re) represents the proportion of correctly pre-
dicted positive samples to actual positive samples, and it is
defined as follows:

Re =
TP

TP + FN
,

F1 =
2 ∗ Pre ∗ Re
Pre + Re

:

ð19Þ

F1-score (F1) is based on Precision and Recall. The
higher the value of F1, the better the robustness of the
model. Its calculation formula is as follows: IOU represents
the similarity between the predicted tumor area and the real
tumor area. Dice Similarity Coefficient (DSC) is the similar-
ity of the sample; the range is 0-1. When DSC is 1, the seg-
mentation result is the best. We set I1 as the judged tumor
area and I2 as the real tumor area. Then, IOU represents
the ratio of the intersecting area in the two areas. DSC rep-
resents the ratio of twice the area of the intersecting area
to the sum of the areas of I1 and I2.

Coronal plane Sagittal plane Transverse plane

Size (mm) Size (mm) Size (mm)

Figure 5: Schematic diagram of tumor area calculation.

Table 2: The baseline of patient characteristics.

Characteristics Total N = 204 Training set
N = 164 (80.4%)

Test set
N = 40 (16.9%)

Age

<15 48 (23.5%) 38 (23.2%) 10 (25%)

15-25 131 (64.2%) 107 (65.2%) 24 (60.0%)

>25 25 (12.3%) 19 (11.6%) 6 (15.0%)

Sex

Female 92 (45.1%) 69 (42.1%) 23 (57.5%)

Male 112 (54.9%) 95 (57.9) 17 (42.5%)

Marital status

Married 32 (15.7%) 19 (11.6%) 13 (32.5%)

Unmarried 172 (84.3%) 145 (88.4%) 27 (67.5%)

SES

Low SES 78 (38.2%) 66 (40.2%) 12 (30.0%)

High SES 126 (61.8%) 98 (59.8%) 28 (70.0%)

Surgery

Yes 181 (88.8%) 146 (89.0%) 35 (87.5%)

No 23 (11.2%) 18 (11.0%) 5 (12.5%)

Grade

Low grade 41 (20.1%) 15 (9.1%) 26 (65%)

High grade 163 (79.9%) 149 (90.9%) 14 (35%)

Location

Axial 29 (14.2%) 21 (12.8%) 8 (20%)

Extremity 138 (67.7%) 109 (66.5) 29 (72.5%)

Other 37 (18.1%) 34 (20.7%) 3 (7.5%)
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IOU =
I1 ∩ I2
I1 ∪ I2

,

DSC =
2 ∗ I1 ∩ I2j j
I1j j + I2j j :

ð20Þ

In addition, we use Params to represent the number of
model parameters, The larger the value, the more storage
space the model needs. Floating point operation (FLOP) is
used to measure the computational complexity of the model.
In the segmentation of MRI images of osteosarcoma, we try
to increase the recall rate (Recall) as much as possible to
avoid the occurrence of missed diagnosis.

4.3. Comparison Algorithm. We used FCN [43], PSPNet
[44], MSFCN [45], MSRN [24], Unet [46], FPN [47] algo-
rithms, and our proposed OSDCN for comparative experi-
mental analysis. Here is a brief introduction to these
methods:

(1) Fully convolutional network (FCN) classifies images
at the pixel level and uses skip structures to achieve
fine segmentation [43]. It can accept input images
of any size and use the deconvolution layer to
upsample the feature map of the last convolution
layer. This article uses FCN-8s and FCN-16s net-
works with 8 times upsampling and 16 times
upsampling

(2) The core of Pyramid Scene Parsing Network
(PSPNet) is the pyramid pooling module, which
can aggregate the context information of different
regions, so as to have a good effect in obtaining
global information [44]

(3) MSFCN is an automatic tumor segmentation net-
work based on a multisupervised output layer full
convolutional network [45]. It uses multiple feature
channels in the upsampling part to capture more
contextual information, thereby ensuring accurate
tumor segmentation

(4) Multiscale Residual Network (MSRN) [24] based on
the residual block introduces convolution kernels of
different sizes, adaptively detects image features of
different scales, and obtains the most effective image
information at the same time. It makes full use of the
characteristics of low-resolution images

(5) U-net is a U-shaped structure that uses convolution
to encode (used below) and then decode (upsam-
pling) [46]. It includes two parts: feature extraction
and upper adoption. Compared with other segmen-
tation models, it is simple and efficient

(6) Feature pyramid networks (FPN) use both the high-
resolution of low-level features and the high-
semantic information of high-level features to
achieve prediction effects by fusing these features of
different layers [47]. And the prediction is performed
separately on each fusion feature layer, which is dif-

ferent from the conventional feature fusion method.
The results show that FPN has better performance in
small object detection

4.4. Training Strategy. Before training the segmentation
model, to enhance the robustness of the model and avoid
excessive attention to meaningless features, we need to
enhance the data set. We expanded the data set by zooming
in (reducing) the image, rotating the image, and flipping the
image.

The training segmentation neural network has been
trained for a total of 300 epochs. During training, we set
Adam as the optimizer, the initial learning rate is set to
0.001, when the training reaches 200 epochs, the learning
rate is changed to 0.0001, and finally, CosineAnnealingLR
is used to dynamically adjust the learning rate in the process.

4.5. Evaluation of Segmentation Effect. In our model, we
divide the data set into Useful-Slices (US) and Normal-
Slices (NS). As illustrated in Figure 6, the right figure is the
NS image. The boundary between tumor tissue and normal
tissue is not clear enough, and the training process is time-
consuming and laborious, so we divide it into the NS data
set. The left figure clearly shows the segmentation boundary
between different organizations, so it is classified as the US
data set.

The comparison of model segmentation effect before and
after data set processing is shown in Figure 7. The left col-
umn is ground truth, the middle column is the segmentation
effect diagram of the model before data optimization, and

Figure 6: Partition of the data set.

Figure 7: Comparison of model segmentation effects before and
after data set processing.

11Computational and Mathematical Methods in Medicine



the right column is the segmentation effect of the optimized
model. Before optimization, as the middle column shows,
there is an incomplete and inaccurate segmentation. After
optimization, as the right column shows, the result is closer
to the real label, and the completeness and accuracy of the
predicted result are both improved. It can be seen that after
the optimization of the data set, the performance of the
model is significantly promoted.

Figure 8 shows the effect of segmenting MRI images of
osteosarcoma by each model. Columns (B)-(H) are the min-
iature images in the red boxes in column (A). In the images
in columns (B)-(H) of Figure 8, the green curve is the truth
ground, the red curve is the model-predicted lesion area
curve, and the yellow curve is fitted by the green curve and
the red curve. We can intuitively analyze the segmentation
performance of the model through the proportion of the yel-
low curve. According to five osteosarcoma segmentation
examples, we can find that OSDCN can better segment oste-
osarcoma and best fit the segmentation standard.

To evaluate the performance of different methods more
clearly, we quantify the segmentation results. We use differ-
ent evaluation indicators for comparative analysis. Table 3
compares the performance of different methods on the oste-
osarcoma data set. According to the data in Table 3, the
SepUNet model shows good performance in segmenting
osteosarcoma tasks, and the model is higher than other
models in evaluation indicators such as DSC, IOU, Recall,
and F1-score. The model can segment the results more accu-
rately and robustly. While the accuracy of the model is
improved, the number of parameters does not increase too
much, which also ensures that doctors can get accurate

results while the hospital does not need to be equipped with
expensive hardware facilities, such as graphics processing
units and memory.

Besides, according to Table 3 and Figure 9, we can get that
CRF, image preprocessing, and data set optimization are ben-
eficial to improve the prediction results, and it is proved that
optimizing the data set can significantly improve the final
result and optimize SepUNet’s boundary segmentation. Pr
increased by about 0.01%, and F1, IOU, and DSC increased
by about 0.005% on average. After Prop optimization, the
most important DSC index increased by about 0.020%, and
Pr, Re, F1, and IOU increased by 0.001%, 0.006%, 0.007%,
and 0.014%, respectively.

Figure 10 shows the comparison between the number
of parameters of different model methods and DSC. The
results show that the segmentation model of osteosarcoma
presented by us has the best accuracy with a 2% higher
accuracy than the second place. In addition, in terms of
the number of parameters, while increasing the accuracy,
our model kept a relatively small number of parameters,
only 20.32M, far less than 134.3M of FCN-16s and only
slightly higher than 17.26M of UNet, which reduced the
difficulty of training.

Figure 11 shows the comparison between the FLOPs of
different model methods and DSC. The results show that
the SepUNet can significantly improve the accuracy and
does not need to increase the calculation cost too much
and realizes the accuracy-speed trade-off. The performance
of Unet model is slightly weaker than our proposed method.
But compared with several other models, its performance is
also better. Although the segmentation accuracy of MSFCN

Origin image FCN16 FCN8 FPN MSFCN MSRN UNet Our

DSC

DSC

DSC

DSC

DSC

0.9845 0.9872 0.9857 0.9352 0.9865 0.9795 0.9935

0.8571 0.8870 0.8940 0.8208 0.9108 0.7504 0.9535

0.8718 0.9016 0.9282 0.8537 0.9099 0.8934 0.9727

0.7740 0.7049 0.9699 0.9578 0.9830 0.9686 0.9866

0.7051 0.8494 0.8771 0.8622 0.8892 0.8189 0.9365

Figure 8: Comparison of segmentation effects of different methods.
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and MSRN is also high, these two models require very large
computational costs.

The changes in the accuracy of each model are shown in
Figure 12. We trained a total of 300 rounds, randomly
selected 50 rounds (one round per 6 rounds randomly) for

display, comparative analysis. It can be seen that after 100
epochs, the accuracy of each model is stable. In numerical
value, SepUnet (ours) is the highest, reaching more than
95% stability. The accuracy ranking is SepUnet (ours)>U-
Net > FPN>FCN-8 s≈FCN-16 s>MSRN > MSFCN. At

0.95

0.94

0.92

0.9

0.88

0.86

0.85

SepUNet
SepUNet+CRF
SepUNet+CRF+Prop

Pr Re F1 IOU DSC

Figure 9: The performance of the three models proposed by us in different indicators.
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Figure 10: Parameters of osteosarcoma model and DSC comparison chart.

Table 3: Comparison of performance of different methods in MRI images of patients with osteosarcoma.

Model Pr Re F1 IOU DSC Params FLOPs

FCN-16s 0.922 0.882 0.900 0.824 0.859 134.3M 190.35G

FCN-8s 0.941 0.873 0.901 0.830 0.876 134.3M 190.08G

PSPNet 0.856 0.888 0.872 0.772 0.870 49.07M 101.55G

MSFCN [3] 0.881 0.936 0.906 0.841 0.874 20.38M 1524.34G

MSRN [4] 0.893 0.945 0.918 0.853 0.887 14.27M 1461.23G

FPN 0.914 0.924 0.919 0.852 0.888 88.63M 141.45G

UNet 0.922 0.924 0.923 0.867 0.892 17.26M 160.16G

Our (SepUNet) 0.927 0.932 0.930 0.869 0.896 20.32M 199.26G

Our (SepUNet+CRF) 0.939 0.926 0.932 0.874 0.901 20.32M 200.07G

Our (SepUNet+CRF+Prop) 0.937 0.938 0.937 0.883 0.914 20.32M 200.07G
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the same time, we selected several models to compare recall
rates. As shown in Figure 13, it can be seen from the figure
that around 120 epochs before training, the recall rate of

Unet, FPN, and MSFCN models fluctuates greatly. After
that, all models except the MSRN model have reached a
steady state. The data of the MSRN model will fluctuate to
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Figure 12: Accuracy changes of each model.
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Figure 13: Recall changes of each model.
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Figure 11: FLOPs of osteosarcoma model and DSC comparison chart.
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a certain extent during the training process. In general, the
recall rate of our proposed method is always the highest. It
can better avoid the occurrence of missed diagnoses.

Subsequently, we selected four models in the same way
and compared F1-score with our method. As shown in
Figure 14, it can be seen from the figure that, although the
method we proposed has large fluctuations, its F1 value is
always the highest. It shows that our model has better
robustness. Compared with the segmentation performance
of each model in Table 3, the proposed method has a better
effect on the MRI data set of osteosarcoma patients. This
method can provide a reference for clinical doctors.

5. Conclusion

In this paper, more than 80,000 osteosarcoma MRI images
from three hospitals in China are used as data sets to pro-
pose an osteosarcoma MRI image segmentation model
(OSDCN) based on a deep convolutional neural network.
The method includes data set optimization, image prepro-
cessing, model segmentation, edge optimization, and tumor
area calculation. We compare this method with the classical
segmentation model. The experimental results show that our
proposed method can significantly improve the accuracy
rate and does not need to increase the calculation cost too
much. It achieves a trade-off between accuracy and speed.

In the future, with the development of computer tech-
nology, we will introduce other information into the
method, such as boundary and texture, to solve the segmen-
tation error caused by the small gray difference between
tumor tissue and surrounding tissue, and further improve
the segmentation accuracy.
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