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Multi-omic machine learning predictor of 
breast cancer therapy response

Stephen-John Sammut1,2,3, Mireia Crispin-Ortuzar1,15, Suet-Feung Chin1,15, Elena Provenzano3, 
Helen A. Bardwell1, Wenxin Ma4, Wei Cope1, Ali Dariush1,5, Sarah-Jane Dawson6,7, 
Jean E. Abraham2,3, Janet Dunn8, Louise Hiller8, Jeremy Thomas9,10, David A. Cameron9, 
John M. S. Bartlett9,11,12, Larry Hayward9, Paul D. Pharoah3,13, Florian Markowetz1, 
Oscar M. Rueda1,14, Helena M. Earl2,3 & Carlos Caldas1,2,3 ✉

Breast cancers are complex ecosystems of malignant cells and the tumour 
microenvironment1. The composition of these tumour ecosystems and interactions 
within them contribute to responses to cytotoxic therapy2. Efforts to build response 
predictors have not incorporated this knowledge. We collected clinical, digital 
pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast 
tumours from 168 patients treated with chemotherapy with or without HER2 (encoded 
by ERBB2)-targeted therapy before surgery. Pathology end points (complete response 
or residual disease) at surgery3 were then correlated with multi-omic features in these 
diagnostic biopsies. Here we show that response to treatment is modulated by the 
pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in 
predictive models using machine learning. The degree of residual disease following 
therapy is monotonically associated with pre-therapy features, including tumour 
mutational and copy number landscapes, tumour proliferation, immune infiltration 
and T cell dysfunction and exclusion. Combining these features into a multi-omic 
machine learning model predicted a pathological complete response in an external 
validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, 
response to therapy is determined by the baseline characteristics of the totality of the 
tumour ecosystem captured through data integration and machine learning. This 
approach could be used to develop predictors for other cancers.

Neoadjuvant treatment, that is, systemic therapy (chemotherapy 
with or without targeted therapy) administered before surgery, is 
increasingly used in the management of breast cancer to improve 
rates of breast-conserving surgery and increase survival4. However, 
many patients do not have a good response3,5. Features associated with 
response to neoadjuvant therapy have been derived from clinical6, 
molecular7–12 and digital pathology analysis13,14. However, these studies 
have been frequently small, combined data from patients receiving dif-
ferent treatments and used single platform profiling that fails to capture 
the complexity of the tumour ecosystem. Unsurprisingly, physicians 
continue to select patients for neoadjuvant therapies using empirical 
clinical risk-stratification15.

Tumour ecosystems are increasingly recognized as major determi-
nants of treatment response2 and we hypothesized that improved pre-
diction models need to account for tumours as complex ecosystems, 
comprising communities of malignant clones within a microenvironment 
of stromal, vascular and immune cell types that are perturbed by therapy.

Here we characterized biological parameters extracted from a pro-
spective neoadjuvant study that collected detailed pre-therapy tumour 
multi-omic data and associated these with eventual response. We found 
that malignant cell, immune activation and evasion features were asso-
ciated with treatment response. These features, derived from clinico-
pathological variables, digital pathology and DNA and RNA sequencing, 
were used as input into an ensemble machine learning approach to 
generate predictive models. We validated the accuracy of the predictive 
models in independent, external cohorts and demonstrated that the 
best performers integrated clinicopathological and molecular data. 
The overall approach is widely applicable to other cancers and can be 
customized to include both fewer and newer features.

Multi-platform profiling of tumour biopsies
We prospectively enrolled 180 women with early and locally advanced 
breast cancer undergoing neoadjuvant treatment into a molecular 
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profiling study (TransNEO) (Fig. 1, the cohort characteristics are sum-
marized in Supplementary Table 1). Fresh-frozen pre-treatment core 
tumour biopsies were collected from 168 cases using ultrasound guid-
ance (Extended Data Fig. 1). DNA and RNA were extracted and profiled 
by shallow whole-genome sequencing (168 samples), whole-exome 
sequencing (168 samples) and RNA sequencing (162 cases). The diagnos-
tic core biopsy haematoxylin and eosin-stained slides from 166 cases were 
digitized. The tumours sampled (n = 168) included all major subtypes of 
breast cancer. Chemotherapy (block-sequential taxane and anthracy-
cline) was administered for a median of 18 weeks (6 cycles) in 145 cases; 
22 cases received a taxane (in combination with carboplatin in 3 cases 
and cyclophosphamide in 13 cases) and 1 case received an anthracycline 
in combination with cyclophosphamide. Two patients received only one 
cycle owing to drug toxicities (Supplementary Table 1). Patients with 
HER2+ tumours (n = 65) received a median of three cycles of anti-HER2 
therapy in combination with a taxane. Response was assessed at surgery 
using the residual cancer burden (RCB) classification3,5 (Extended Data 
Fig. 2a, b). On completion of neoadjuvant treatment, in the 161 cases 
with RCB assessment, 42 (26%) had a pathological complete response 
(pCR), 25 (16%) had a good response (RCB-I), 65 (40%) had a moderate 
response (RCB-II) and 29 (18%) had extensive residual disease (RCB-III).

Clinical phenotypes are limited predictors
The clinical features individually associated with pCR (Extended Data 
Fig. 2c, d; univariable logistic regression) included tumour grade (odds 
ratio (OR): 4.2, confidence interval (CI): 1.8–11, false discovery rate 
(FDR) = 0.009), ER− receptor status (OR: 4.2, CI: 2–9.1, FDR = 0.002) 
and absence of lymph node involvement at diagnosis (OR: 3, CI: 1.4–6.6, 
FDR = 0.01). When all of these variables were combined by multiple 
logistic regression, only ER− status was associated with pCR (OR: 3.8, 
CI: 1.6–9.2, FDR = 0.009), but there was response heterogeneity  
(for example, 55% of ER− tumours did not attain pCR).

Genomic landscapes associate with response
Whole-exome sequencing (n = 168 tumours) identified 16,134 somatic 
mutations (Supplementary Table 2), with the highest frequency in 
driver genes, including TP53 (n = 96, 57%), PIK3CA (n = 44, 26%), GATA3 
(n = 16, 10%) and MAP3K1 (n = 13, 8%) (Extended Data Figs. 3, 4a). TP53 
mutations were associated with pCR (OR: 2.9, CI: 1.3–6.6, P = 0.01; 

Extended Data Fig. 4a), as previously reported7, whereas PIK3CA 
mutations were associated with residual disease (OR: 2.1, CI: 1.3–3.4, 
P = 0.002).

Tumour mutation burden was higher in tumours that attained 
pCR (median mutations per megabase pCR: 2.3, residual disease: 1.4, 
P = 0.0005) and monotonically associated with RCB class (P = 0.004; 
Fig. 2a). This was independent of computationally estimated tumour 
purity (Extended Data Fig. 4b). In subgroup analysis, the association was 
observed only in HER2− (P = 9 × 10−6) tumours (Extended Data Fig. 4c). 
The clonal status of mutations16 also associated with response: tumours 
that failed to attain pCR had a higher percentage of subclonal mutations 
(Fig. 2b). Accordingly, tumours that attained pCR had higher predicted 
neoantigen burdens (median neoantigens pCR: 28, residual disease: 
17, P = 0.009; Fig. 2c), and after stratification, this was observed only 
in HER2− tumours (P = 0.004; Extended Data Fig. 4d).

Analysis of mutational signatures17 (Fig. 2d) showed homologous 
recombination deficiency (HRD) and APOBEC signatures were associ-
ated with pCR across the entire cohort (HRD OR: 1.1, P = 0.006; APOBEC 
OR: 1.1, P = 0.02; logistic regression). Tumours that attained pCR had a 
greater contribution from non-clock signatures (P = 0.002; Extended 
Data Fig. 4e). Similarly, increasing HRD18 was monotonically associated 
with response (P = 0.00001; Fig. 2e) and associated with pCR in HER2− 
tumours (P = 3 × 10−6; Extended Data Fig. 4f).

Tumours that attained pCR had more copy number alterations and 
chromosomal instability was monotonically associated with RCB class 
(P = 0.0002; Fig. 2f, Extended Data Fig. 4g). To capture the ensemble 
of copy number alterations, which dominate the genomic landscapes, 
we stratified the pre-treated tumours into the 10 genomic driver-based 
integrative cluster (iC) subtypes19 (Extended Data Fig. 4h). iC10 
tumours, mostly triple-negative with high prevalence of TP53 muta-
tions and copy number alterations, showed the strongest association 
with pCR. By contrast, tumours from indolent ER+ subtypes, iC3, iC7 
and iC8 were unlikely to attain pCR. Two of the aggressive ER+ subtypes, 
iC2 (11q13/14 amplification) and iC6 (amplification of ZNF703 at 8p12), 
also associated with lack of treatment response. We had previously 
reported a similar association for iC2 tumours20.

In summary, tumours that attained pCR mostly came from 
more-aggressive iC subtypes, were enriched for TP53 mutations, 
had higher tumour mutation burdens and neoantigen loads, had 
less-complex clonal architectures and were enriched for APOBEC and 
HRD signatures.
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Fig. 1 | Overview of the study design. Pre-therapy breast tumours from 168 
patients were profiled using DNA sequencing and RNA sequencing (RNA-seq) 
and digital pathology analysis. Response was assessed on completion of 
neoadjuvant therapy using the RCB classification. Individual pre-therapy 

clinical, molecular and digital pathology features associated with pCR were 
identified and integrated within machine learning models to predict 
responses, which were then validated in an independent dataset. sWGS, 
shallow whole-genome sequencing; WES, whole-exome sequencing.
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HLA class I allelic loss confers resistance
Loss of heterozygosity (LOH) over the HLA class I locus21 was identified 
in 29 cases and associated with residual disease (OR: 3.5, CI: 1.1–14.2, 
P < 0.05; logistic regression) independently of global LOH and copy 
number instability (Extended Data Fig. 4i). HLA LOH events were pre-
dicted to result in inability to present 30% of tumour neoantigens and 
69% of LOH events targeted HLA alleles that presented an equal or 
greater number of neoepitopes than the retained allele. These data sup-
port a model in which some tumours appear to have immune escaped 
by losing copies of the HLA locus and these tumours are less likely to 
respond to treatment.

Tumour proliferation and immune signatures
We modelled response as a binary variable (pCR versus residual dis-
ease) and differential RNA expression analysis showed 2,071 genes 
underexpressed and 2,439 genes overexpressed in tumours attaining 
pCR (FDR < 0.05). pCR associated with overexpression of driver genes 
CDKN2A, EGFR, CCNE1 and MYC and underexpression of CCND1 (iC2), 
ZNF703 (iC6) and ESR1 (Fig. 3a). Gene set enrichment analysis on the 
MsigDB Hallmarks22 and Reactome23 gene sets showed that prolifera-
tion and immune activation strongly associated with response (Fig. 3b, 
Extended Data Fig. 5a, b).

To further explore this association, we performed gene set variation 
analysis using the Genomic Grade Index (GGI) gene set24 (Supplemen-
tary Table 3). The GGI gene set variation analysis score associated with 
tumour grade (Fig. 3c, left panel) and was monotonically associated 

with RCB class (P = 2 × 10−5; Fig. 3c, middle panel). Similar results 
were observed on enriching over an embryonic stem-cell metagene25 
(P = 0.0001; Fig. 3c, right panel), indicating that tumour dedifferen-
tiation associates with response. In a subgroup analysis, this associa-
tion was only observed in HER2− tumours (P = 4 × 10−5; Extended Data 
Fig. 6a), suggesting that efficacy of anti-HER2-targeted therapies is 
independent of proliferation. We also explored the utility of a taxane 
response metagene26, computed as the difference in expression of 
proliferation and ceramide metagenes: HER2− tumours that attained 
pCR had higher enrichment scores (P = 5 × 10−7; Extended Data Fig. 6b).

The role of the tumour immune microenvironment (TiME) in pre-
dicting response was suggested by the automated scoring of digitally 
scanned core biopsy haematoxylin and eosin slides showing that lym-
phocytic density was a good predictor of pCR (P = 0.0006; Fig. 3d, left 
panel), in line with previous reports13,14. The immune cytolytic activity 
score27 was also monotonically associated with response across all 
tumours (P = 0.001; Fig. 3d, middle panel) and correlated with tumour 
lymphocytic density (R2 = 0.4, P = 1 × 10−15).

These results motivated a detailed analysis of the TiME in 
pre-treatment biopsies using three different methods for RNA expres-
sion deconvolution (enrichment over Danaher gene sets28, MCPcounter29 
and Immunophenoscore30; Fig. 3d, right panel, Extended Data Fig. 7a–d). 
These analyses converged to reveal enrichment of both innate and adap-
tive immunity cell populations in ER+HER2− and HER2+ tumours that 
attained pCR. Computationally estimated lymphocyte density also 
strongly correlated with the enrichment of many adaptive and innate 
immune components (Extended Data Fig. 7e). Immunologically active 
tumours were co-enriched for both cytotoxic and immunoinhibitory cell 
types and gene signatures (Extended Data Fig. 7d). The Danaher gene 
set enrichment also showed that mast cells were enriched in resistant 
tumours (enrichment score pCR: 2.1, residual disease: 3.4, P = 0.0001).

We then integrated proliferation (using GGI) and immune response in 
the pre-therapy tumours. We used the STAT1 gene expression module31 
to represent immune response in a single score and computed correla-
tions between GGI and STAT1 scores with RCB classes. Tumours that 
attained pCR mostly had high proliferation and high immune activation, 
with both signatures decreasing in a stepwise manner as the degree of 
residual disease increased (Fig. 3e). Similar findings were observed on 
analysing external data from the ISPY-I and NCT00455533 studies10,11 
(Extended Data Fig. 7f).

In summary, in therapy-naive tumours, proliferation and immune 
response, both innate and adaptive, have combined effects that associ-
ate with sensitivity to treatment. In general, tumours that attain pCR 
tend to be highly proliferative and display evidence of an active TiME.

Immune dysfunction in resistant tumours
We noted that there were 26 of the 45 tumours with high GGI and 
STAT1 scores that failed to attain pCR. Differential gene expression 
analysis in these 45 cases (residual disease versus pCR) showed enrich-
ment of epithelial-to-mesenchymal transition and downregulation of 
immune response pathways in tumours with residual disease (Fig. 3f). 
We hypothesized that an attenuated immune response could explain 
this and derived T cell dysfunction and T cell exclusion metrics using 
TIDE32 (Fig. 3f). This showed that HER2− tumours with residual disease 
had higher T cell dysfunction at diagnosis (P = 0.006) with no difference 
in T cell exclusion scores. The increased dysfunction was associated 
with enrichment of inhibitory natural killer CD56dim cells (P = 0.01) 
and regulatory T cells (P = 0.02; Extended Data Fig. 8a). Across the 
whole cohort, active T cell exclusion (Extended Data Fig. 8b) was asso-
ciated with poorer response: exclusion was higher in residual disease 
(P = 0.02), with increased enrichment of cancer-associated fibroblasts 
(P = 0.009) and M2 tumour-associated macrophages (P = 0.0009).

In summary, some tumours, despite being proliferative and with 
an enriched TiME, display features of T cell dysfunction and tend to 
be resistant to therapy.

0

3

6

9

12

pCR I II III pCR I II III

pCR I II III pCR I II III

RCB class

Tu
m

ou
r 

m
ut

at
io

n 
b

ur
d

en
a

** ***

0

25

50

75

100

RCB class

S
ub

cl
on

al
 m

ut
at

io
ns

 (%
)b

RCB-III
pCR

0

0.5

1.0

0.5 1.0 1.5 2.0

log10 neoantigens

D
en

si
ty

c

10
7

24
2

13
3
6

1.0 1.2 1.4

Odds ratio (pCR)

M
ut

at
io

na
l s

ig
na

tu
re

d

0

25

50

75

RCB class

H
R

D
sc

or
e

e

** ***

** **** * ** ****

0

25

50

75

RCB class

C
N

A
 (%

)

f

*

Fig. 2 | Genomic features monotonically associate with response to 
therapy. a, b, Box plots showing monotonic association between RCB class: 
total tumour mutation burden (a) (P = 0.004, ordinal logistic regression; pCR 
versus RCB-II **P = 0.001 and RCB-III ***P = 0.0002), and the percentage of 
subclonal mutations (b) (P = 0.02, ordinal logistic regression; pCR versus RCB-I 
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RCB-III *P < 0.05). d, Associations between mutational signatures and pCR. 
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estimate, and the error bars represent 95% confidence intervals; the vertical 
dashed line corresponds to an odds ratio of 1. e, f, Box plots showing monotonic 
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****P = 7 × 10−5). In a–f, the number of patients with DNA sequencing data:  
40 (for pCR), 24 (for RCB-I), 64 (for RCB-II) and 27 (for RCB-III). In a, b, e, f, the 
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Machine learning integrates multi-omic features
Above, we identified clinical, digital pathology, genomic and transcrip-
tomic features present in the naive tumour ecosystem that associated 
with response to therapy, although individually none of these features 
performed robustly. This motivated the use of a machine learning 
framework (Fig. 4a) to integrate features into a predictive model of pCR.

A series of six pCR prediction models including different feature combi-
nations were derived using: (1) clinical features only, and adding (2) DNA, 
(3) RNA, (4) DNA and RNA, (5) DNA, RNA and digital pathology, and (6) DNA, 
RNA, digital pathology and treatment. The number of predictive features 
totalled 34 (Fig. 4b, Extended Data Fig. 9a, b, Supplementary Table 4).

The models were based on a multi-step predictor pipeline. Inside the 
pipeline, features were first filtered by univariable selection and collin-
earity reduction, and then fed into an unweighted ensemble classifier33. 
Each ensemble consisted of three algorithms acting in parallel: logistic 
regression with elastic net regularization, a support vector machine 

and a random forest. The three algorithm scores were then averaged to 
form the predictor (Extended Data Fig. 9c). A fivefold cross-validation 
scheme was used to optimize model hyperparameters (Methods and 
Supplementary Methods).

The fully trained models were tested for validation on an inde-
pendent external cohort of 75 patients that received neoadjuvant 
therapy, either cases randomized to the control arm of the ARTemis 
clinical trial34 or cases recruited into the Personalised Breast Cancer 
Programme (details listed in Supplementary Table 5). In the external 
cohort, the models achieved the following areas under the curve:  
0.70 (clinical), 0.80 (clinical and DNA), 0.86 (clinical and RNA), 
0.86 (clinical, DNA and RNA), 0.85 (clinical, DNA, RNA and digital 
pathology), 0.87 (fully integrated model (clinical, DNA, RNA, digital  
pathology and treatment)) (Fig. 4c, d, Extended Data Fig. 9d, e).  
The baseline clinical model, as implemented using our machine 
learning algorithms, performed similarly to other clinical predic-
tors reported in larger datasets35,36.

e f

Tumour grade

G
G

I s
co

re

III

II

I

pCR

GGI score

R
C

B

RCB class

S
te

m
 c

el
l s

co
re

** ***

0

5 × 10–4

1 × 10–3

pCR I II III pCR I II III pCR I II III

pCR I II III

Ly
m

p
ho

cy
te

 d
en

si
ty * **

2

4

6

8

RCB class

lo
g 2 

C
Y

T

* * ***

0

2

4

6

C
D

8 
T 

ce
lls

c

d

2 3 4–log10 FDR Expression (pCR): Up Down

Proliferation

Immune in�ltration and activation

ESR1
FGFR2
GATA3
IGF1R

ZNF703
CCND1

XBP1
TBX3

BUB1B
CDK6
MYC

NOTCH1
CCNE1

EGFR
CDKN2A

−2 10

a

TNF signalling via NF-κB

Mitotic spindle
IL-6–JAK–STAT3 signalling

G2M checkpoint

Oestrogen response early
Oestrogen response late

IFNα response

IFNγ response

Complement

MTORC1 signalling

E2F targets

MYC targets v1

MYC targets v2

In�ammatory response

IL-2–STAT5 signalling

Allograft rejection

−2 −1−1 0 1 2
Normalized enrichment score (pCR)

b

****

****

**

–0.5

0

0.5

2 3 –1 0 1

*****

–0.5

0

0.5

pCR RCB-I

–1 0 1
–1

0

1
RCB-II RCB-III

Im
m

un
e 

sc
or

e 
(S

TA
T1

)

Proliferation score (GGI)
–1 0 1

–1

0

1 8 19

3 9

2 8

4 9

13 17

18 14

6 1

13 5

–0.5

–0.5

0

0

0.5

0.5
GGI

S
TA

T1

EMT
IFNα response
IFNγ response

G2M checkpoint
MTORC1 signalling

E2F targets
TNF signalling via NF-κB

MYC targets v1

2 3 4 5
−log10 FDR (RD)

**

HER2− HER2+

pCR RD pCR RD pCR RD pCR RD

–1

0

1

T 
ce

ll 
d

ys
fu

nc
tio

n

HER2− HER2+

–2

–1

0

1

T 
ce

ll 
ex

cl
us

io
n

High GGI
High STAT1

pCR n = 19
RD n = 26

log FC pCR

Higher in pCRHigher in RD

Fig. 3 | Transcriptomic features associated with response to neoadjuvant 
therapy. a, Expression of breast cancer driver genes associated with pCR. FC, 
fold change; RD, residual disease. b, MSigDB Hallmark gene sets associated 
with pCR. Response was predominantly associated with proliferative (green) 
and immune (brown) gene sets. c, Box plot showing association of GGI score 
with histological grade (P = 5 × 10−11) (left); density plots showing monotonic 
association (P = 2 × 10−5, ordinal logistic regression) between GGI score and 
RCB (pCR versus RCB-II **P = 0.01 and RCB-III ****P = 3 × 10−5) (middle); and box 
plot showing monotonic association (P = 0.0001, ordinal logistic regression) 
between stem -cell enrichment score and RCB (pCR versus RCB-II *P = 0.02 and 
RCB-III ****P = 7 × 10−5) (right). The number of patients with RNA sequencing 
data: 39 (for pCR), 23 (for RCB-I), 62 (for RCB-II) and 25 (for RCB-III). d, Box plots 
showing monotonic associations between computationally estimated 
lymphocyte density and RCB (P < 1 × 10−10, ordinal logistic regression; n = 153 
cases with digital pathology data; pCR versus RCB-II **P = 0.006 and RCB-III 
***P = 0.0001) (left); CYT score and RCB (P = 0.001; n = 149 cases with RNA 

sequencing data; pCR versus RCB-I *P = 0.03 and RCB-III **P = 0.001) (middle); 
and Danaher CD8 T cell enrichment and RCB (P = 0.0002; n = 149 cases; pCR 
versus RCB-I *P = 0.04, RCB-II *P = 0.04 and RCB-III ***P = 0.0003) (right).  
e, 2D density plot showing the relationship between proliferation and immune 
activation across RCB classes. The number of cases in each quadrant is shown 
in white. f, The distribution of GGI and STAT1 scores across cohort (left). The 
shaded area represents samples with proliferation and immune enrichment 
values above the mean (n = 45 cases). The MSigDB Hallmarks pathways 
associated with residual disease in these 45 tumours (red represents 
overexpressed, and blue indicates underexpressed) (top right). Box plots 
showing association between T cell dysfunction (**P = 0.006 HER2−) and 
exclusion with response in these tumours are also shown (bottom right). EMT, 
epithelial-to-mesenchymal transition. In c, d, f, the box bounds the 
interquartile range divided by the median, with the whiskers extending to a 
maximum of 1.5 times the interquartile range beyond the box. Wilcoxon 
rank-sum tests; all P values are two-sided.
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We explored the importance of the features used in the integrated 
training model and found that it used clinical phenotypes in combi-
nation with DNA, RNA and digital pathology features. The dominant 
features were age, lymphocyte density, and expression of PGR, ESR1 
and ERBB2 (Fig. 4b, Extended Data Fig. 9b, Supplementary Table 6).  
In addition, the predictive model also used features associated with pro-
liferation, immune activation and immune evasion. The fully integrated 
model relied on features obtained from all modalities of data, with RNA 
features having the largest contribution (Fig. 4b, Extended Data Fig. 9b).

Despite the models being trained using a binary response variable 
(pCR versus residual disease), an analysis of the predictor scores across 
both training and validation sets showed that these were highly corre-
lated with RCB class, with a monotonic association observed (training: 
P = 3 × 10−10, validation: P = 1 × 10−6; Extended Data Fig. 10).

In a clinical workflow, the predictive models could be applied to 
candidates for neoadjuvant therapy; any predicted to have chemore-
sistant tumours should be considered for enrolment into clinical trials 
of novel therapies, as their prognosis is poor if they are treated with 
standard-of-care therapies (Fig. 4e). We explored this in a simulation 

study and applied the confusion matrix obtained in the external valida-
tion cohorts on a total of 100 patients about to receive neoadjuvant 
therapy. If the criterion was that no patient guaranteed to obtain pCR 
should miss out on treatment (no false negatives), the clinical machine 
learning model would identify 15 non-responders, whereas the fully 
integrated machine learning model would increase this number to 31. By 
relaxing the false-negative threshold and allowing two false negatives, 
24 (clinical model) and 52 (fully integrated model) patients who would 
not attain pCR would be correctly identified (Fig. 4e).

In summary, we used an ensemble machine learning approach that 
inputs multi-omic features from the pre-treatment biopsy to derive 
predictors of pCR. The models were externally validated demonstrating 
very good discrimination power.

Discussion
Human tumours are complex ecosystems formed in the malignant 
compartment by communities of clones and cell phenotypes, and 
in the tumour microenvironment by a very diverse array of stromal, 
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vascular, innate and adaptive immune cell types1,2,37. How these eco-
systems are organized in breast cancer appears to be strongly associ-
ated with their genomic features38. Therapy perturbs these tumour 
ecosystems and this is increasingly recognized as one of the main 
determinants of treatment response2. Remarkably, efforts to identify 
features in untreated tumours that predict response to therapy have 
mostly ignored this.

Our findings showed that response is determined to a great degree 
by the baseline characteristics of the totality of the tumour ecosystem. 
Tumour proliferation emerged as a key determinant of response as 
reported previously9,26. Genomic features that associated with response 
to chemotherapy in HER2− tumours, and usually correlated with pro-
liferation, included TP53 mutations, tumour mutation burden, BRCA, 
HRD and APOBEC mutational signatures, and chromosomal instabil-
ity. Remarkably, in HER2+ tumours, treated with chemotherapy and 
HER2-targeted antibodies, response appeared to be independent of 
proliferation. This observation was previously reported39 and should 
motivate a search for the underlying mechanism. Clonal diversity and 
subclonal mutations were associated with residual disease. This has also 
been reported in oesophageal carcinoma40, suggesting that clonally 
diverse tumours are more likely to contain or be able to select resist-
ant subclones.

A central finding was that the TiME in treatment-naive tumours is 
a major determinant of response to therapy. Previous work in mouse 
models had shown that an effective response to chemotherapy requires 
an immunocompetent tumour microenvironment41. Deconvolution 
of immune subpopulations using our RNA expression data suggested 
that both innate and adaptive immunity were already engaged in 
tumours that went on to have pCR. We previously reported digital 
pathology-derived lymphocytic density as an independent predictor of 
pCR13,14, and here confirm this and also show that it strongly correlates 
with the cytolytic activity score (a surrogate for CD8 and natural killer 
cytotoxic cells). Pathologist-assessed infiltration of tumour lympho-
cytes has been reported by many groups as a predictor of response to 
chemotherapy42 and immunotherapy43, and international guidelines for 
scoring exist44. The direct role of the immune system in killing tumour 
cells as a result of chemotherapy, so-called chemotherapy-induced 
immunogenic cell death, has been proposed45. We hypothesize that the 
presence of an engaged immune infiltrate in the tumour microenviron-
ment in therapy-naive tumours mediates such chemotherapy-induced 
immunogenic cell death.

By contrast, a suppressed immune response in naive tumours 
associated with a propensity for poor response. HLA LOH was first 
implicated in immune evasion in lung cancer21 and we show here 
that it predicts poor response to therapy. T cell dysfunction46 and 
exclusion47 showed similar effects. The similarity of features predict-
ing response to cytotoxic therapy compared with those reported 
to predict response to immune checkpoint inhibitors48 raises the 
intriguing possibility that similar mechanisms of killing tumour cells 
are engaged.

We show that machine learning models for prediction of therapy 
response that combine clinical, molecular and digital pathology data 
significantly outperform those based on clinical variables. The high 
accuracy obtained in external validation suggests that the models 
are robust and may enable using molecular and digital pathology 
to determine therapy choice in future clinical trials, including in the 
adjuvant therapy setting. More generally, the framework highlights 
the importance of data integration in machine learning models for 
response prediction and could be used to generate similar predictors 
for other cancers.
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Methods

Study population and tissue collection
We analysed breast tumours from patients with primary invasive cancer 
enrolled in the TransNEO study at Cambridge University Hospitals 
NHS Foundation Trust between 2013 and 2017. Appropriate ethical 
approval from the institutional review board (research ethics refer-
ence: 12/EE/0484) was obtained for the use of biospecimens with linked 
pseudo-anonymized clinical data. All patients provided informed con-
sent for sample collection and all participants consented to the publica-
tion of research results. Clinical data were collected in Microsoft Excel 
(as part of the office 365 suite) by data managers.

Pre-neoadjuvant and post-neoadjuvant chemotherapy speci-
mens were handled following departmental standard operat-
ing procedures in accordance with international guidelines49.  
RCB post-neoadjuvant therapy was assessed by experienced breast 
histopathologists (E.P. and J.T.) using the pathology protocol  
for assessment of RCB as provided on the MD Anderson RCB  
website (https://www.mdanderson.org/education-and-research/
resources-for-professionals/clinical-tools-and-resources/clinical- 
calculators/calculators-rcb-pathology-protocol2.pdf?_ga=2.93785373. 
1680005878.1594213442-1702172112.1568299785). RCB assessment 
was not available in seven cases (Extended Data Fig. 1). pCR was 
defined as the absence of residual invasive cancer on haematoxylin 
and eosin (H&E) evaluation of the complete resected breast specimen  
and all sampled lymph nodes. Results for oestrogen receptor (ER) 
and HER2 status were extracted from pathology reports. ER and HER2 
testing were performed in an accredited diagnostic laboratory and 
scored according to UK guidelines50. ER staining was regarded as posi-
tive if the Allred score was more than 2. HER2 was regarded as positive 
if immunohistochemical staining was 3+, or if there was borderline  
2+ staining with HER2 gene amplification on FISH (HER2 copy number 
≥ 6.0 and/or HER2:CEP17 ratio ≥ 2).

Whole blood from all patients was collected before commencing 
neoadjuvant therapy in S-Monovette 7.5 ml EDTA tubes and centrifuged 
at 820g for 10 min at room temperature to partition plasma, buffy coat 
and erythrocytes. The buffy coat fraction was isolated and suspended 
in 10 ml of red cell lysis buffer (155 mM NH4Cl, 10 mM KHCO3 and 0.1 mM 
EDTA pH 7.4), centrifuged at 3,600g for 10 min at room temperature, 
followed by a further step of resuspension and centrifugation. The 
final cell pellet was suspended in 1 ml of phosphate-buffered saline, 
centrifuged at 10,000 r.p.m. for 5 min, isolated and frozen. Tumour 
tissue was collected before the initiation of neoadjuvant chemotherapy 
via an ultrasound-guided biopsy, flash-frozen in liquid nitrogen and 
stored at −80 °C. Sectioning of the samples was performed on a cryostat 
(CM1520; Leica Biosystems). Following an initial 6-μm section taken 
for H&E staining, 20 30-μm sections were taken and 10 sections were 
placed in each of the two tubes containing either 180 μl ATL buffer or 
700 μl of QIAzol for DNA or RNA extraction, respectively. The histol-
ogy slides were stained with H&E, and tumour, stromal and immune 
infiltrate quantification was performed.

Nucleic acid processing and library preparation
Isolation of DNA from all buffy coat and sectioned tumour tissue sam-
ples was performed using the Qiagen DNeasy Blood and Tissue Kit 
(catalogue no. 69506). DNA from tumour tissue was extracted using 
the manufacturer-recommended protocol. DNA quantification was 
performed using the Qubit Fluorometer (Invitrogen) and nucleic 
acid purity was assessed using the NanoDrop 8000 (Thermo Fisher 
Scientific). Normal and tumour DNA samples were normalized to a 
concentration of 5 ng/μl using a fluorescence-based method (Quant-IT 
dsDNA BR, Q33130, Thermo Fisher Scientific) and 50 ng of DNA used 
for exome library preparation. DNA libraries were constructed using 
the Illumina Nextera Rapid Capture Exome Library Preparation kit 
according to the manufacturer’s protocol (Illumina document number: 

15037436). The resulting whole-genome sequencing (WGS) libraries and 
captured whole-exome sequencing (WES) libraries were normalized 
and pooled, with each pool normalized to a molarity of 4 nM. Sequenc-
ing was performed on an Illumina HiSeq4000 instrument in 50-bp 
single-read mode (for shallow WGS (sWGS)) or 75-bp paired-end mode 
(for WES). Demultiplexing was performed using Illumina’s bcl2fastq2 
software using default options. Isolation of RNA from all tumour tis-
sue samples was performed using the Qiagen miRNeasy Mini Kit (cat-
alogue no. 217004). Tissue sections suspended in 700 μl of QIAzol 
were thawed and mixed by vortexing. Chloroform (140 μl) was added 
to each sample, vortexed and transferred to a heavy phase lock tube 
(Qiagen MaXtract, catalogue no. 129056). The samples were then spun 
at 12,000g for 15 min at 4 °C, following which the upper clear phase 
containing RNA was transferred to a 2-ml Eppendorf tube. Subsequent 
extraction was then performed using the Qiagen QIAsymphony using 
the manufacturer-recommended protocol. RNA quantification was 
performed using the Qubit Fluorometer (Invitrogen) and assessment 
of the RNA integrity performed using the high-sensitivity RNA assays on 
the Agilent 4200 TapeStation Instrument. RNA samples were normal-
ized to a concentration of 10 ng/μl and transcriptomic libraries were 
prepared using the Illumina TruSeq Stranded mRNA Library Prepara-
tion kit (catalogue no. 20020595) according to the manufacturer’s 
protocol (Illumina document number: 1000000040498). Of each 
library, 5 nM was prepared and 94 samples were pooled per lane of 
sequencing on an Illumina HiSeq4000 system run in 75-bp paired-end 
mode. Demultiplexing was performed using bcl2fastq2 v.2.17 software 
(Illumina) using default options.

sWGS and WES pre-processing
For each exome paired FASTQ file, sequencing quality metrics were 
generated using the FastQC tool (version 0.11.7) (https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). Alignment to the GRCh37 
decoy assembly of the human genome was performed using Novoalign 
(version 3.2.13) in paired-end mode with the following parameters 
enabled: (1) base quality recalibration, (2) trimming of Nextera adaptor 
sequence CTGTCTCTTATA, and (3) hard clipping of trailing bases with 
quality ≤ 20. sWGS data were processed similarly; however, Novoalign 
was run in single-read mode. Binary aligned sequencing (BAM) file 
merging, coordinate sorting and PCR and optical duplicate marking 
were performed using Novosort (version 3.2.13). Local realignment 
around insertions and deletions was performed using the Genome 
Analysis Toolkit (GATK)51 programs RealignerTargetCreator and Indel-
Realigner. The performance of the library preparation as well as the 
quality of the sequencing data, target coverage metrics within exonic 
regions specified by the Nextera target BED file obtained from Illumina 
(Manifest version 1.2) were generated using Picard (version 2.17.0) 
CalculateHSMetrics. Median WES coverage was ×162 for tumours and 
×137 for normal tissue. Median sWGS coverage was ×0.1.

Variant calling
Germline variants were identified across all tumour and normal samples 
using GATK HaplotypeCaller (version 4.1.4) run in GVCF mode and fil-
tered using GATK VariantRecalibrator. Somatic variant calling was per-
formed using Mutect2 (version 4.1.4). A panel of normals was created 
by running Mutect2 in tumour-only mode on all normal samples and 
the resulting VCF files were merged using CreateSomaticPanelOfNor-
mals. Mutect2 was run on each tumour–normal sample pair using this 
panel of normals and a database of germline variants present within 
gnomAD to improve somatic calling. Variant filtration was performed 
using FilterMutectCalls using default options. Mutations that were 
present at an allelic fraction (AF) of less than 1%, had coverage of less 
than ×25 in both normal and tumour tissue exome data, were present 
in the gnomAD repository with a population prevalence greater than 
1% and identified as lying within repetitive regions by ANNOVAR (ver-
sion 599af129dbcfd4e85a2da9832c4ae59898e2f3a9) were removed. 
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https://www.mdanderson.org/education-and-research/resources-for-professionals/clinical-tools-and-resources/clinical-calculators/calculators-rcb-pathology-protocol2.pdf?_ga=2.93785373.1680005878.1594213442-1702172112.1568299785
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Somatic variants were annotated using Ensembl Variant Effect Predictor 
(version 87)52,53. The tumour mutation burden was computed as the 
sum of all mutations per tumour divided by the total number of bases 
sequenced in the genome (45.54 Mb). Breast cancer driver mutations 
were defined as those genes identified in previous publications54,55.

Copy number calling
Genome binning and segmentation on low-pass sWGS data were per-
formed using the R package QDNAseq (version 1.24)56. Binning was 
performed across 100-kb windows and counts corrected for GC-rich 
regions as well as poorly mappable regions. sWGS data from normal tis-
sues were used to correct for technical and germline artefacts. Segmen-
tation was performed using the circular binary segmentation algorithm 
implemented in the R package DNAcopy (version 1.60)57. Parental copy 
number quantification and estimation of tumour purity and ploidy were 
obtained using ASCAT (version 2.5.1)58 using log ratios derived from 
QDNAseq and germline single-nucleotide polymorphisms obtained 
from HaplotypeCaller as input. As recommended by the authors, the 
technology parameter gamma was set to 1 for WES data.

Clonal reconstruction
The CCF for each mutation was computed using the previously 
derived mathematical framework16:

p
p pCCF =

VAF
× ((1 − )CN + CN )normal tumour

where VAF was the variant allele fraction for each mutation determined 
by exome sequencing, p was the tumour purity (computed using 
ASCAT), CNnormal was the germline copy number state and CNtumour was 
the total copy number state at the mutant locus in the tumour. Point 
estimates for CCF and confidence intervals were computed using a 
binomial distribution modelled by the binconf function from the Hmisc 
R package (version 4.4) and a mutation was classified as clonal if the 
CCF 95% confidence interval overlapped 1, with all other mutations 
classified as subclonal.

Mutational signatures decomposition
Signature decomposition from the bulk exome sequencing mutation 
data was performed using the DeconstructSigs R package (version 1.8)59, 
which uses the Wellcome Trust Sanger Institute Mutational Signature 
Framework as a reference and determines the linear combination of 30 
pre-defined signatures by using a multiple logistic regression model 
with constraints to reconstruct the mutational profile of each tumour. 
Mutational signatures were solely identified in tumours with more than 
10 mutations. To determine signature associations with response, each 
signature was log2 normalized using the exposure of signature 1 (age) 
as a reference. Associations between these normalized exposures and 
response were determined using logistic regression models.

HRD quantification
The scarHRD R package (version 0.1.1)18 was used to determine the 
levels of HRD present in the WES data, using the ASCAT allele-specific 
copy number as input. This tool inferred three components of HRD: 
telomeric allelic imbalance, LOH and the number of large-scale transi-
tions, which were then summarized into an overall HRD score.

HLA typing, identification of HLA LOH and neoantigen calling
HLA typing was performed on the normal tissue sequencing data using 
the Polysolver tool (version 4)60, which inferred the four-digit HLA type 
for each sample by using a Bayesian classifier to determine genotype. 
LOH over the HLA class I locus was determined by using the LOHHLA 
tool (downloaded from https://bitbucket.org/mcgranahanlab/lohhla/
src/master/ commit: 9d58c99)21, using as input ASCAT tumour purity 
and HLA genotyping data from PolySolver (version 4). Statistically 

significant HLA alleles with a copy number of less than 0.5 were assumed 
to be undergoing LOH. Neoantigen calling was performed by using the 
pVAC-tools (version 1.5.4) cancer immunotherapy suite61. Mutations 
identified on exome sequencing were translated into corresponding 
mutant proteins and a list of potential neoantigenic fragments contain-
ing the mutant protein generated by using a sliding window approach 
across the mutated locus, retaining epitopes of lengths 8–11 amino 
acids. These potentially antigenic fragments were analysed for bind-
ing affinity to the HLA class I molecules using the prediction software 
NetMHCPan version 362, NetMHC version 463 and PickPocket version 
1.164 bundled within the Immune Epitope Database resource65. Neoan-
tigens with a binding affinity score of less than 500 nM and that had a 
higher binding affinity than the corresponding wild-type sequences 
were retained. Further downstream filtering was done by retaining 
neoepitopes generated by transcripts that had an expression greater 
than 1 TPM.

iC10 classification
Classification of all tumours into one of the ten iC10 clusters19,66 
was performed using the iC10 R package (version 1.5)20, which took 
cellularity-corrected copy number log ratios obtained from QDNAseq 
and voom-normalized gene expression counts derived from the RNA 
sequencing (RNA-seq) data as input. The iC10 classification of tumours 
that did not have RNA-seq data was determined using the copy number 
data only. Associations with response were visualized using the mosaic 
function from the vcd R package (version 1.4-7).

RNA-seq pre-processing
FASTQ files for each sample generated from multiple sequencing lanes 
were merged and aligned using STAR version 2.5.2b67, using an index 
generated from the GRCh37 decoy assembly of the human genome 
and a transcriptomic Gene Transfer Format (GTF) guide obtained from 
Ensembl Release 87. STAR was run in two-pass mode for sensitive novel 
junction discovery, in which the first pass performed a default map-
ping, and the second pass used the splice junctions detected in the first 
pass to perform a further round of alignment enhancement. This STAR 
BAM file was used for differential expression and transcript counting. 
For variant calling, the BAM files generated by STAR were processed as 
per GATK best practices guidelines: PCR and optical duplicates were 
marked using Picard MarkDuplicates and following this, the GATK tool 
SplitNCigarReads was used to split reads having N CIGAR elements in 
separate sequence reads. Local realignment around insertions and dele-
tions was performed using RealignerTargetCreator and IndelRealigner, 
using a calibration set derived from the 1000 Genomes project68–70. Base 
quality recalibration across all variant sites was then performed using 
BaseRecalibrator. The tumour samples were sequenced to a median 
of 87 million reads.

RNA variant calling
Germline variants identified on exome sequencing were filtered by 
removing multi-allelic variants, indels, as well as mutations for which 
the minimum depth was less than 30× across all samples. The remaining 
germline variants were subsequently genotyped across all RNA samples 
and comparisons were done across homozygous germline variants only. 
The percentage median concordance across samples derived from a 
matched patient was 100%, whereas unrelated samples had a median 
concordance of 60%. Somatic variants detected on exome sequencing 
were genotyped in the RNA GATK BAM by using HaplotypeCaller in 
GENOTYPE_GIVEN_ALLELES mode. Mutations present in all samples 
for one patient were concatenated together, and a VCF was generated 
to guide HaplotypeCaller local reassembly and variant calling.

Gene and transcript abundance estimation
Gene expression estimation was performed on the STAR aligned 
BAM file using HTSeq (version 0.6.1p1)71 in read strand-aware union 
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overlap resolution mode, where a read would only be assigned to 
a gene if it only overlapped within an exonic region of one gene, 
rather than multiple genes. Gene counts across all samples were 
merged into one counts matrix using R, and a trimmed mean of 
M-value (TMM) normalization performed across all samples using 
the edgeR R package (version 3.32.1)72 to correct for composition 
biases and make the transcript counts comparable across all sam-
ples73,74. The library normalized counts were then transformed into 
fragment per kilobase millions (FPKMs) and then scaled to a total 
of a million counts, changing the unit of measure to transcripts per 
million (TPM)75.

Differential expression
To identify sets of genes that were highly or lowly expressed given a 
set of experimental conditions (such as pCR versus residual disease) 
(Fig. 3a), differential expression was performed on the gene raw counts 
data obtained as described above using edgeR72,73. The output of each 
model was a list of differentially expressed genes. Following the genera-
tion of a ranked list of differentially expressed genes for any compari-
son of interest, gene set enrichment was performed using the camera 
statistical method in edgeR; in brief, this method performed a com-
petitive gene set test accounting for inter-gene correlation and tested 
whether genes were highly ranked relative to other genes in terms of 
differential expression76. As input to this gene set enrichment analysis 
(GSEA) method, the annotated gene sets provided within the MSigDB 
version 6.1 were used22,77 (Fig. 3b). In addition, further enrichment over 
the Reactome database23 (Extended Data Fig. 5) was performed using 
the ReactomePA R package (version v1.34)78.

GSEA
GSVA and ssGSEA were performed using the GSVA R package (version 
1.34)79 on (1) the GGI gene set24, (2) the core embryonic stem-cell-like 
module25 and (3) the STAT1 immune signature31. The log-transformed 
TMM normalized TPM counts were used as input to the GSVA package. 
A high GSVA score (Fig. 3f, Extended Data Fig. 8a) was defined as any 
score above the mean value. We computed the paclitaxel response 
metagene26, as the difference in expression of a mitotic metagene 
(geometric mean of BUB1B, CDK1, AURKB and TTK TPM expression) 
and a ceramide metagene (geometric mean of UGCG and CERT1 
expression).

Immune microenvironment characterization
The cytolytic activity score27 was computed as the geometric mean of 
GZMA and PRF1 (as expressed in TPM, 0.01 offset). Immune cell enrich-
ment was performed using (1) MCPcounter29 using voom-normalized 
RNA-seq counts as input, (2) enrichment over 14 cell types using  
60 genes28, using the log-transformed geometric mean of the TPM 
expression of cell-specific genes as input, and (3) z-score scaling of 
cancer immunity parameters30 to classify four different immune 
processes (MHC molecules, immunomodulators, effector cells and 
suppressor cells), by generating z-score-normalized TPM gene expres-
sion for an input list of 162 genes. Heatmaps used to visualize the data 
were generated using the pheatmap R package (version 1.0.12) and 
unsupervised column hierarchical clustering based on the Euclidean 
distance performed. We used the TIDE algorithm (http://tide.dfci.
harvard.edu)32 to derive T cell dysfunction and exclusion metrics.  
The input to TIDE was a log2-transformed TPM matrix of counts, which 
was normalized by subtracting the average log2 expression of all genes. 
The interplay between proliferation and immune activation across the 
four RCB classes (shown in Extended Data Fig. 7f) was validated by 
performing GGI and STAT1 enrichment using a combined microarray 
dataset from the ISPY-I10 (GSE25066 and GSE32603) and NCT00455533 
(ref. 11) (GSE41998) trials, which were chosen for similar neoadjuvant 
therapy regimens, availability of core biopsy gene expression and 
RCB classification.

Digital pathology analysis
Whole-slide H&E images (scanned at a magnification of ×20) were ana-
lysed using CellExtractor v1.0, an open-source platform developed for 
high-throughput analyses of histopathological images. The code was 
written in Python and used the OpenCV and OpenSlide library. Initially, 
full-face H&E scanned images were divided into several subregions. 
Each subregion was processed to remove the background using an 
adaptive threshold method. A distance matrix was calculated for indi-
vidual foreground objects to de-blend overlapping objects during the 
watershed segmentation process. The latter produced binary images 
of cell masks from which cellular features such as centroids, shape 
descriptors, and pixel intensities were estimated. These features were 
used to train a two-level support vector machine-based classifier. Dur-
ing the first level, spurious detections such as artefacts, dirt and pen 
marks were separated from genuine detections. This was followed by a 
second level of classification to identify cancer cells, stromal cells and 
lymphocytes based on a training set of objects selected by a patholo-
gist (W.C.) of approximately 1,000 objects for each category. Finally, 
on the basis of these classes, descriptive statistical parameters such 
as cellular fractions and densities were estimated. For each detected 
cell, density was obtained based on counting the number of nearest 
neighbours approach, that is, the density within the distance to the 
Nth nearest neighbour calculated as follows: SigmaN (pixel−2) = N/ 
(pi × dN

2) where dN was the distance to the Nth nearest neighbour within 
a density-defining population. A value of N = 50 was used to estimate 
the density parameter13. To ensure that the estimated density was not 
biased towards our choice of density parameter (N = 50), we calculated 
the density for N in range of 40–60, with 5-step increments. The results 
remained the same and were therefore independent of the choice of 
the number of neighbours.

Validation dataset
An external dataset comprising 75 patients treated with neoadjuvant 
therapy recruited to the Personalised Breast Cancer Programme (PBCP; 
research ethics reference: 18/EE/0251) study and the control arm of 
the ARTemis trial (research ethics reference: 08/H1102/104, EudraCT 
number: 2008-002322-11) was collated. All patients provided informed 
consent for sample collection and all participants consented to the pub-
lication of research results. These cases were selected due to the avail-
ability of DNA, RNA and digital pathology data. Clinical and molecular 
details for these 75 cases are summarized in Supplementary Table 5.

Statistical testing
All statistical tests in the exploratory analysis were performed using 
R version 4.0.3 and associated packages. All statistical tests described 
in this work were two-sided. Unless otherwise specified, all statistical 
comparisons were performed using cases that attained pCR as a com-
parator. Tests involving comparisons of distributions were done using 
‘wilcox.test’ unless otherwise specified. Ordinal logistic regression 
models used the ordered RCB variable (pCR > RCB-I > RCB-II > RCB-III) 
as a response variable to determine monotonic associations and were 
modelled using the polr function from the MASS R package (version 
7.3-54). To determine features associated with response, only cases 
that received at least one cycle of neoadjuvant chemotherapy and one 
cycle of anti-HER2 therapy (if HER2+) were used in the comparisons to 
avoid the confounding effect of suboptimal exposure to neoadjuvant 
therapy on response.

Derivation of a predictive model for relapse
Dataset and model training. The TransNEO dataset was used to train 
the machine learning pCR classification models. Hyperparameters 
were optimized using fivefold cross-validation in the training set to 
maximize the area under the receiver operating characteristic (AUC 
ROC) curve. The rest of the parameters were determined by setting 
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the hyperparameters to their optimal values and refitting to the entire 
training cohort. To ensure robustness, we repeated the optimization 
process five times with different cross-validation seeds, effectively 
training five alternative predictors. Together, these five predictors 
constituted what we call the ‘model’: model predictions for new data 
are obtained by averaging the scores produced by the five predictors. 
Once trained and frozen, models were independently validated on 
an external dataset composed of n = 75 patients from the PBCP and 
ARTemis cohorts described previously.

Predictor architecture. The machine learning framework was built on 
Python (version 3.7.4) using the following libraries: scikit-learn (ver-
sion 0.21.2), numpy (version 1.16.4), scipy (version 1.3), pandas (version 
0.24.2) within a Singularity container (version 2.4.6-dist). Each predictor 
was built as an ensemble of three scikit-learn pipelines; in other words, 
the response prediction was calculated as the average of the scores 
produced by the three classification pipelines. Each pipeline contained 
four steps: collinearity removal, k-best feature selection, scaling and 
classification. The first step removed all features with a mutual Pearson 
correlation above 0.8, retaining only the one with the highest correlation 
with the response variable. The second step removed all features that 
were not ranked within the top k according to their ANOVA F-value with 
respect to the binary response variable. The third step applied z-score 
scaling to the remaining features. The fourth step was the classification 
step, which consisted of a logistic regression80 in the first pipeline, a 
support vector classifier81 in the second pipeline, and a random for-
est82 in the third pipeline. All hyperparameters were optimized using 
a randomized 1,000-step fivefold cross-validation search to maximize 
the AUC ROC curve. Logistic regression was implemented with elastic 
net regularization and SAGA solver, with C parameters between 10−3 and 
103, and L1 ratios between 0.1 and 1. The support vector classifier was al-
lowed to have either radial basis function, sigmoid or linear kernels, with 
gamma parameters between 10−9 and 10−2, and C parameters between 
10−3 and 103. Finally, the random forests were allowed to have between  
5 and 100 (or the maximum number of) estimators, maximum features 
between 5% and 70% of the total, and minimum samples per split between 
2 and 15. The final values of the hyperparameters obtained through the 
optimization procedure can be found in the Supplementary Material.

Feature definitions. Models were trained on a combination of clinical, 
DNA, RNA, digital pathology and treatment features, as shown in Fig. 4a. 
Differences in treatment were captured using one-hot-encoded vari-
ables assessing whether the patient did or did not receive anthracycline 
or anti-HER2 treatment. A further set of variables captured whether 
taxane or anthracycline were given first. The complete list of features 
and their Spearman correlation matrix can be found in Supplementary 
Table 4 and Extended Data Fig. 9a, respectively. The order in which fea-
tures were added in successive models was determined by how widely 
available they typically are. Although the information required for 
treatment variables is normally accessible, they are highly correlated 
with HER2 status, and are therefore included mainly as a cautionary 
control mechanism. For the sake of the simplicity of the models, they 
were the last features to be added.

Data cleaning. In the training set, one patient who had clinically un-
evaluable tumour size was assumed to have a volume 10% larger than 
the largest present in the cohort. Four patients who were HER2+ who 
only received one cycle of trastuzumab, and two patients who were 
HER2− who had only received one chemotherapy cycle were removed 
from the training set. In the external validation datasets, missing treat-
ment features were set to zero.

Testing. Models were applied on the test cohort and their respective 
ROC curves and AUCs were evaluated. In Fig. 4d, the standard deviation 
of the AUCs obtained in the training cross-validation (included as an 

optimistic performance estimation) was compared to the nominal test 
AUCs and the standard deviation of the AUCs obtained from 100 boot-
strap replicas of the test datasets. In addition, 95% confidence intervals 
on each test AUC were obtained using the DeLong test83 (Extended Data 
Fig. 9e). Adding digital pathology introduced a slight degradation of 
the performance due to the significant difference in the lymphocytic 
density observed in the training versus the external validation cohorts 
(Extended Data Fig. 9f). Precision-recall curves, average precision 
scores and areas under the precision-recall curve were obtained using 
standard sklearn implementations (Extended Data Fig. 9g).

Feature importance. Feature importances were determined for each 
algorithm (random forest, support vector classifier and logistic regres-
sion) after refitting on the full training cohorts. For consistency, we 
used an algorithm-agnostic methodology based on dropping each of 
the input features. We quantified the resulting change in AUC by means 

of a z-score, 
( )

z = ,i
σ

|AUC − AUC |

AUC − AUC

i
nominal drop

nominal drop
where zi represents the z-score 

significance of the ith feature, and σ is the standard deviation of all the 
AUC changes. In Fig. 4b, we show the average z-score significances 
averaged across the three algorithms. In Extended Data Fig. 9b, we 
calculate signed z-score significances by removing the absolute value 
from the definition. The sign indicates whether the feature was adding 
value to the prediction (negative sign) or harming it (positive sign). In 
addition, the full list of features selected after the collinearity reduction 
and univariable selection steps for all the different models, as well as 
the logistic regression coefficients, can be found in the Supplemen-
tary Material.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
DNA and RNA sequencing data have been deposited at the European 
Genome-Phenome Archive (EGA), which is hosted by the EBI and the 
CRG, under accession number EGAS00001004582.

Code availability
The R and Python source code used to run the analyses described in 
the article and to generate all figures is available at: https://github.com/
cclab-brca/neoadjuvant-therapy-response-predictor.
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Extended Data Fig. 1 | Summary of cases analysed within this study. 180 
women were recruited to the TransNEO neoadjuvant breast cancer study. 
Tumour profiling was performed in 168 cases and associations with response 
identified in 155 cases who received more than one cycle of neoadjuvant 
chemotherapy or targeted therapy. 147 cases had a complete molecular/digital 

pathology dataset, received more than one cycle of chemotherapy and 
targeted therapy and had an RCB assessment available: data from these cases 
were used to build a machine learning predictor of response to neoadjuvant 
therapy. Validation was performed across a cohort of 75 cases recruited to the 
ARTemis and Personalised Breast Cancer (PBCP) studies.
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Extended Data Fig. 2 | Calculation of the Residual Cancer Burden index and 
associations between clinical features and response. a, Tumour and lymph 
node histological features used to calculate the continuous Residual Cancer 
Burden (RCB) index and categorical RCB class. Increasing RCB index denotes 
increasing burden of residual disease post-neoadjuvant therapy and increasing 
chemoresistance. b, Top: Box plots showing distribution of tumour and lymph 
node histological features in n = 161 cases with clinical data and RCB 
assessment across the RCB classes. The box bounds the interquartile range 
divided by the median, with the whiskers extending to a maximum of 1.5 times 
the interquartile range beyond the box. Outliers are shown as dots. Bottom: 
distribution of primary tumour score and lymph node score across RCB 
classes. c, Associations of clinical variables with pCR using simple and multiple 

logistic regression. Significant associations (P < 0.05, logistic regression) are 
shown in red. The measure of centre is the parameter estimate and error bars 
represent 95% confidence intervals. d, Distribution of tumour features across 
RCB classes: pre-operative staging (blue), pre-operative histological features 
(green), neoadjuvant therapy (red, T: taxane, A: anthracycline, aHER2: 
anti-HER2 therapy), surgical approach (red, WLE: wide local excision), 
post-operative tumour (ypT) and nodal (ypN) staging and lymphovascular 
invasion (purple) and PAM50 subtypes (yellow, A: Luminal A, B: Luminal B, Ba: 
Basal, H: HER2-enriched, N: Normal-like, U: Unknown). Tumours with RCB 
assessment and adequate therapy exposure only included (more than 1 cycle of 
chemotherapy or anti-HER2 therapy received, n = 155).



Extended Data Fig. 3 | The somatic mutational driver landscape of tumours 
prior to neoadjuvant therapy. Oncoprint showing somatic mutations in 
breast cancer driver gene identified using WES. Cases classified by RCB class. 
Multiple mutations in a case are denoted by a white × . Truncating mutations 

(red) include nonsense, splice site and frame shift insertions and deletions. 
In-frame mutations (yellow) include in-frame insertions and deletions. Other 
mutations (green) include silent exonic mutations, 3’ and 5’ UTR flank 
mutations and intronic mutations.
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Extended Data Fig. 4 | Further associations between genomic features and 
response to neoadjuvant therapy. a, Interaction plot showing co-occurrence 
of non-silent driver gene mutations and response. Associations between TP53 
and PIK3CA mutations and response shown in inset (logistic regression, red: 
positive, blue: negative, grey: not significant, error bars represent 95% 
confidence intervals). b, Pearson’s product-moment correlations (R) between 
tumour purity and (left) tumour mutation burden and (right) %CNAs. The 
shaded area, in grey, represents the 95% confidence interval. c, Box plots 
showing associations between TMB and response, stratified by HER2 status.  
d, Box plots showing association between expressed neoantigen (NAg) load 
and response, stratified by HER2 status. e, Box plot showing monotonic 
association (P = 0.005, ordinal logistic regression) between exposure of 
non-clock signatures and RCB class. f, Box plots showing associations between 

HRD score and response, stratified by HER2 status. g, Box plots showing 
associations between %CNA and response, stratified by HER2 status. c–g, The 
box bounds the interquartile range divided by the median, with the whiskers 
extending to a maximum of 1.5 times the interquartile range beyond the box. 
Outliers are shown as dots. Wilcoxon rank sum tests, all P values two-sided. 
Number of cases analysed (n) = 155 (HER2- pCR = 22, RD (residual disease) = 76; 
HER2+ pCR = 18, RD = 39)). h, Associations between RCB class and iC10: Pearson 
residuals indicate overrepresentation of iC10 subtype with response (blue: 
overrepresentation, red: underrepresentation). i, Associations between HLA 
LOH, global LOH and global copy number alterations with pCR (logistic 
regression, red: positive association, blue: negative association). The measure 
of centre is the parameter estimate and error bars represent 95% confidence 
intervals.



Extended Data Fig. 5 | Reactome pathways associated with response to neoadjuvant therapy. a, b, Reactome pathway enrichment showing pathways 
associated with (a) pCR versus residual disease, (b) degree of residual disease following neoadjuvant therapy.
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Extended Data Fig. 6 | Associations between tumour proliferation and 
response. a, Box plots showing associations between proliferation (GGI) GSVA 
scores across ER/HER subtypes. b, Top: Scatter plots showing the distribution 
of the mitotic and ceramide score components of a taxane response metagene 
within the HER2- and HER2+ cohorts. Bottom: Box plots showing association of 
the combined taxane response metagene score within the HER2- and HER2+ 
cohorts. In a, b, the box bounds the interquartile range divided by the median, 
with the whiskers extending to a maximum of 1.5 times the interquartile range 
beyond the box. Outliers are shown as dots. Two-tailed Wilcoxon rank sum 
tests. Number of cases (n): ER-HER2-: 37, ER+HER2-: 57, HER2+: 55.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | The relationship between tumour immune 
microenvironment and response. a, PCA analysis on the abundance of 
tumour immune microenvironment components obtained through the 
deconvolution of RNA-seq data using Danaher’s immune signatures (number  
of cases (n): pCR (green) = 39, RD (orange) = 110). b, c, Box plots showing 
associations between response and (b) Danaher immune cell enrichment and 
(c) MCPcounter immune cell enrichment across ER/HER subtypes. The box 
bounds the interquartile range divided by the median, with the whiskers 
extending to a maximum of 1.5 times the interquartile range beyond the box. 
Outliers are shown as dots. Two-tailed Wilcoxon rank sum tests. Number of 

cases (n): ER-HER2-: 37, ER+HER2-: 57, HER2+: 55. d, Heatmap showing 
unsupervised clustering of cancer immunity parameters across n = 149 cases 
with RNA sequencing data. e, Scatter plot showing association between 
computationally derived lymphocyte density and immune cell enrichment 
using Danaher’s immune signatures across n = 147 cases with digital pathology 
and RNA sequencing data. Pearson’s product-moment correlations (R) shown. 
The shaded area, in grey, represents the 95% confidence interval. f, 2D density 
plot validating relationship between GGI and STAT1 GSVA across RCB 
subgroups in two external microarray gene sets comprising 457 cases.



Extended Data Fig. 8 | T-cell dysfunction and exclusion. a, Box plots showing 
enriched inhibitory immune cell types (Danaher gene sets) in HER2- tumours 
with high GGI and STAT1 (number of cases (n): pCR = 12, RD = 16). b, Box plots 
showing association between components of T-cell exclusion score and 
response (number of cases (n): pCR = 39, RD = 110). CAF: Cancer associated 
fibroblasts, MDSC: Myeloid-derived suppressor cells. In a, b, the box bounds 
the interquartile range divided by the median, with the whiskers extending to a 
maximum of 1.5 times the interquartile range beyond the box. Outliers are 
shown as dots. Two-tailed Wilcoxon rank sum tests.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Machine learning model performance. a, Correlation 
plot showing the results of unsupervised clustering between all the features 
explored. b, Signed feature importance split by algorithm. Negative numbers 
(blue) signify a decrease in AUC as a result of dropping, and therefore indicate 
that the feature improves the performance. c, Correlation of the three 
classification pipeline scores across the training dataset. Two-sided P values of 
all correlations < 2.2 x 10−16. d, Receiver-operating characteristic curves for the 
clinical and integrated models applied on the external validation cohort.  
e, Comparison between AUCs of the clinical model and models with different 
levels of data integration. The measure of centre is the parameter estimate and 
error bars represent 95% DeLong confidence intervals. f, Association between 

lymphocyte density and treatment response in ARTemis patients with digital 
pathology and sequencing data (right, n = 38 cases) vs. patients with only 
digital pathology available (left, n = 313 cases). The box bounds the 
interquartile range divided by the median, with the whiskers extending to a 
maximum of 1.5 times the interquartile range beyond the box. Outliers are 
shown as dots. P values obtained from Wilcoxon rank sum tests. g, Precision-
recall curves of the clinical and fully integrated models applied on the test 
cohorts. The average precision values are 0.46 (clinical model) and 0.68 (fully 
integrated model). The areas under the precision-recall curves are 0.43 (clinical 
model) and 0.67 (fully integrated model).
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Extended Data Fig. 10 | Predictor score ordinally associated with RCB class. 
Box plots showing the distribution of predictor scores obtained by the six 
models across RCB classes in both training (n = 147 cases) and validation (n = 75 
cases) sets. The box bounds the interquartile range divided by the median, with 

the whiskers extending to a maximum of 1.5 times the interquartile range 
beyond the box. Outliers are shown as dots. P values two-sided and obtained 
from FDR-corrected Wilcoxon rank sum tests.
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