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Breast cancers are complex ecosystems of malignant cells and the tumour
microenvironment'. The composition of these tumour ecosystems and interactions
within them contribute to responses to cytotoxic therapy?. Efforts to build response
predictors have notincorporated this knowledge. We collected clinical, digital
pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast
tumours from168 patients treated with chemotherapy with or without HER2 (encoded
by ERBB2)-targeted therapy before surgery. Pathology end points (complete response
orresidual disease) at surgery> were then correlated with multi-omic featuresin these

diagnostic biopsies. Here we show that response to treatment is modulated by the
pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in
predictive models using machine learning. The degree of residual disease following
therapy is monotonically associated with pre-therapy features, including tumour
mutational and copy number landscapes, tumour proliferation,immune infiltration
and T cell dysfunction and exclusion. Combining these features into a multi-omic
machine learning model predicted a pathological complete response in an external
validation cohort (75 patients) with an area under the curve of 0.87. In conclusion,
response to therapy is determined by the baseline characteristics of the totality of the
tumour ecosystem captured through dataintegration and machine learning. This
approach could be used to develop predictors for other cancers.

Neoadjuvant treatment, that is, systemic therapy (chemotherapy
with or without targeted therapy) administered before surgery, is
increasingly used in the management of breast cancer to improve
rates of breast-conserving surgery and increase survival®. However,
many patients do not have agood response®’. Features associated with
response to neoadjuvant therapy have been derived from clinical®,
molecular’2and digital pathology analysis™". However, these studies
havebeen frequently small, combined data from patients receiving dif-
ferent treatments and used single platform profiling that fails to capture
the complexity of the tumour ecosystem. Unsurprisingly, physicians
continue to select patients for neoadjuvant therapies using empirical
clinical risk-stratification®.

Tumour ecosystems are increasingly recognized as major determi-
nants of treatment response” and we hypothesized thatimproved pre-
diction models need to account for tumours as complex ecosystems,
comprising communities of malignant clones withinamicroenvironment
of stromal, vascular and immune cell types that are perturbed by therapy.

Here we characterized biological parameters extracted from a pro-
spective neoadjuvant study that collected detailed pre-therapy tumour
multi-omic dataand associated these with eventual response. We found
that malignant cell,immune activation and evasion features were asso-
ciated with treatment response. These features, derived from clinico-
pathological variables, digital pathology and DNA and RNA sequencing,
were used as input into an ensemble machine learning approach to
generate predictive models. We validated the accuracy of the predictive
models inindependent, external cohorts and demonstrated that the
best performers integrated clinicopathological and molecular data.
The overall approachis widely applicable to other cancers and can be
customized to include both fewer and newer features.

Multi-platform profiling of tumour biopsies

We prospectively enrolled 180 women with early and locally advanced
breast cancer undergoing neoadjuvant treatment into a molecular
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Fig.1|Overview of the study design. Pre-therapy breast tumours from168
patients were profiled using DNA sequencing and RNA sequencing (RNA-seq)
and digital pathology analysis. Response was assessed on completion of
neoadjuvant therapy using the RCB classification. Individual pre-therapy

profiling study (TransNEO) (Fig. 1, the cohort characteristics are sum-
marized in Supplementary Table 1). Fresh-frozen pre-treatment core
tumour biopsies were collected from 168 cases using ultrasound guid-
ance (Extended Data Fig. 1). DNA and RNA were extracted and profiled
by shallow whole-genome sequencing (168 samples), whole-exome
sequencing (168 samples) and RNA sequencing (162 cases). The diagnos-
tic core biopsy haematoxylinand eosin-stained slides from 166 cases were
digitized. The tumours sampled (n=168) included allmajor subtypes of
breast cancer. Chemotherapy (block-sequential taxane and anthracy-
cline) was administered for amedian of 18 weeks (6 cycles) in145 cases;
22 cases received a taxane (in combination with carboplatinin 3 cases
and cyclophosphamidein13 cases) and1case received ananthracycline
incombination with cyclophosphamide. Two patients received only one
cycle owing to drug toxicities (Supplementary Table 1). Patients with
HER2" tumours (n = 65) received a median of three cycles of anti-HER2
therapyin combination with ataxane. Response was assessed at surgery
using the residual cancer burden (RCB) classification** (Extended Data
Fig.2a, b). On completion of neoadjuvant treatment, in the 161 cases
with RCB assessment, 42 (26%) had a pathological complete response
(pCR), 25 (16%) had a good response (RCB-I), 65 (40%) had a moderate
response (RCB-II) and 29 (18%) had extensive residual disease (RCB-III).

Clinical phenotypes are limited predictors

Theclinical featuresindividually associated with pCR (Extended Data
Fig.2c, d; univariable logistic regression) included tumour grade (odds
ratio (OR): 4.2, confidence interval (Cl): 1.8-11, false discovery rate
(FDR) =0.009), ER receptor status (OR: 4.2, Cl: 2-9.1, FDR = 0.002)
and absence of lymph nodeinvolvement at diagnosis (OR: 3, Cl: 1.4-6.6,
FDR = 0.01). When all of these variables were combined by multiple
logistic regression, only ER™ status was associated with pCR (OR: 3.8,
Cl: 1.6-9.2, FDR = 0.009), but there was response heterogeneity
(for example, 55% of ER” tumours did not attain pCR).

Genomic landscapes associate with response

Whole-exome sequencing (n =168 tumours) identified 16,134 somatic
mutations (Supplementary Table 2), with the highest frequency in
driver genes, including TP53 (n=96,57%), PIK3CA (n = 44,26%), GATA3
(n=16,10%) and MAP3K1 (n =13, 8%) (Extended Data Figs. 3, 4a). TP53
mutations were associated with pCR (OR: 2.9, Cl: 1.3-6.6, P=0.01;
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clinical, molecular and digital pathology features associated with pCR were
identified and integrated within machine learning models to predict
responses, which were thenvalidated in anindependent dataset. sWGS,
shallow whole-genome sequencing; WES, whole-exome sequencing.

Extended Data Fig. 4a), as previously reported’, whereas PIK3CA
mutations were associated with residual disease (OR: 2.1, CI: 1.3-3.4,
P=0.002).

Tumour mutation burden was higher in tumours that attained
pCR (median mutations per megabase pCR: 2.3, residual disease: 1.4,
P=0.0005) and monotonically associated with RCB class (P= 0.004;
Fig.2a). This was independent of computationally estimated tumour
purity (Extended Data Fig.4b). In subgroup analysis, the association was
observed onlyinHER2™ (P=9 x107°) tumours (Extended Data Fig. 4c).
The clonal status of mutations'® also associated with response: tumours
that failed to attain pCR had a higher percentage of subclonal mutations
(Fig.2b). Accordingly, tumoursthat attained pCR had higher predicted
neoantigen burdens (median neoantigens pCR: 28, residual disease:
17, P=0.009; Fig. 2c), and after stratification, this was observed only
inHER2 tumours (P=0.004; Extended Data Fig. 4d).

Analysis of mutational signatures” (Fig. 2d) showed homologous
recombination deficiency (HRD) and APOBEC signatures were associ-
atedwithpCRacrossthe entire cohort (HRD OR: 1.1, P=0.006; APOBEC
OR:1.1,P=0.02; logistic regression). Tumours that attained pCR had a
greater contribution fromnon-clock signatures (P=0.002; Extended
DataFig. 4e).Similarly, increasing HRD'® was monotonically associated
withresponse (P=0.00001; Fig.2e) and associated with pCRin HER2~
tumours (P =3 x 107 Extended Data Fig. 4f).

Tumours that attained pCR had more copy number alterations and
chromosomalinstability was monotonically associated with RCB class
(P=0.0002; Fig. 2f, Extended Data Fig. 4g). To capture the ensemble
of copy number alterations, which dominate the genomiclandscapes,
we stratified the pre-treated tumoursinto the 10 genomic driver-based
integrative cluster (iC) subtypes® (Extended Data Fig. 4h). iC10
tumours, mostly triple-negative with high prevalence of TP53 muta-
tions and copy number alterations, showed the strongest association
with pCR. By contrast, tumours from indolent ER" subtypes, iC3, iC7
andiC8were unlikely to attain pCR. Two of the aggressive ER" subtypes,
iC2 (11q13/14 amplification) and iC6 (amplification of ZNF703 at 8p12),
also associated with lack of treatment response. We had previously
reported a similar association for iC2 tumours®.

In summary, tumours that attained pCR mostly came from
more-aggressive iC subtypes, were enriched for TP53 mutations,
had higher tumour mutation burdens and neoantigen loads, had
less-complex clonal architectures and were enriched for APOBEC and
HRD signatures.
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Fig.2|Genomicfeatures monotonically associate withresponse to
therapy. a, b, Box plots showing monotonic association between RCB class:
total tumour mutation burden (a) (P=0.004, ordinal logistic regression; pCR
versus RCB-11**P=0.001and RCB-III ***P=0.0002), and the percentage of
subclonal mutations (b) (P=0.02, ordinal logistic regression; pCR versus RCB-I
**P=0.007,RCB-11*P=0.04 and RCB-III**P = 0.001). ¢, Density curves showing
distribution of neoantigens in tumours that attained pCR and RCB-III
(monotonicassociation, P=0.03, ordinal logistic regression; pCR versus
RCB-II1*P< 0.05).d, Associations between mutational signatures and pCR.
Statistically significant associations obtained fromlogistic regression are
showninred (HRD:3; APOBEC:13). The measure of the centre is the parameter
estimate, and the error bars represent 95% confidence intervals; the vertical
dashedline corresponds to an odds ratio of 1. e, f, Box plots showing monotonic
associationbetween RCB class and HRD score (e) (P=0.00001, ordinal logistic
regression; pCR versus RCB-11**P=0.006 and RCB-111****P=3 x 107°), and the
percentage of copy number alterations (CNAs; f) (P=0.0002, ordinal logistic
regression; pCR versus RCB-1*P=0.01, RCB-11**P=0.004 and RCB-III

%P =7 x107%). Ina-f, the number of patients with DNA sequencing data:

40 (for pCR), 24 (for RCB-I), 64 (for RCB-II) and 27 (for RCB-III).Ina, b, e, f, the
boxboundstheinterquartile range divided by the median, with the whiskers
extending toamaximum of1.5times theinterquartile range beyond the box.
Outliersare shown as dots. Wilcoxon rank-sum tests; all Pvalues are two-sided.

HLA class I allelic loss confers resistance

Loss of heterozygosity (LOH) over the HLA class I locus* was identified
in 29 cases and associated with residual disease (OR: 3.5, Cl: 1.1-14.2,
P <0.05; logistic regression) independently of global LOH and copy
number instability (Extended Data Fig. 4i). HLA LOH events were pre-
dicted toresultininability to present 30% of tumour neoantigens and
69% of LOH events targeted HLA alleles that presented an equal or
greater number of neoepitopes thantheretained allele. These data sup-
portamodelinwhich some tumours appear to haveimmune escaped
by losing copies of the HLA locus and these tumours are less likely to
respond to treatment.

Tumour proliferation and immune signatures

We modelled response as a binary variable (pCR versus residual dis-
ease) and differential RNA expression analysis showed 2,071 genes
underexpressed and 2,439 genes overexpressed in tumours attaining
pCR(FDR < 0.05). pCR associated with overexpression of driver genes
CDKNZ2A, EGFR, CCNE1 and MYC and underexpression of CCNDI (iC2),
ZNF703 (iC6) and ESRI (Fig. 3a). Gene set enrichment analysis on the
MsigDB Hallmarks* and Reactome? gene sets showed that prolifera-
tionand immune activation strongly associated with response (Fig. 3b,
Extended Data Fig. 5a, b).

Tofurther explore this association, we performed gene set variation
analysis using the Genomic Grade Index (GGI) gene set** (Supplemen-
tary Table 3). The GGl gene set variation analysis score associated with
tumour grade (Fig. 3¢, left panel) and was monotonically associated

with RCB class (P=2x107%; Fig. 3¢, middle panel). Similar results
were observed on enriching over an embryonic stem-cell metagene®
(P=0.0001; Fig. 3¢, right panel), indicating that tumour dedifferen-
tiation associates with response. In a subgroup analysis, this associa-
tion was only observed in HER2™ tumours (P=4 x 10~; Extended Data
Fig. 6a), suggesting that efficacy of anti-HER2-targeted therapies is
independent of proliferation. We also explored the utility of a taxane
response metagene?®, computed as the difference in expression of
proliferation and ceramide metagenes: HER2™ tumours that attained
pCRhad higher enrichmentscores (P=5 x107; Extended Data Fig. 6b).

The role of the tumour immune microenvironment (TiME) in pre-
dicting response was suggested by the automated scoring of digitally
scanned core biopsy haematoxylin and eosin slides showing that lym-
phocytic density wasagood predictor of pCR (P=0.0006; Fig. 3d, left
panel), inline with previous reports*. Theimmune cytolytic activity
score? was also monotonically associated with response across all
tumours (P=0.001; Fig.3d, middle panel) and correlated with tumour
lymphocytic density (R>=0.4, P=1x1075),

These results motivated a detailed analysis of the TiME in
pre-treatment biopsies using three different methods for RNA expres-
siondeconvolution (enrichment over Danaher gene sets®, MCPcounter®
andImmunophenoscore®’; Fig. 3d, right panel, Extended DataFig. 7a-d).
These analyses converged toreveal enrichment of bothinnate and adap-
tive immunity cell populations in ER'HER2™ and HER2" tumours that
attained pCR. Computationally estimated lymphocyte density also
strongly correlated with the enrichment of many adaptive and innate
immune components (Extended Data Fig. 7e). Immunologically active
tumourswere co-enriched for both cytotoxicandimmunoinhibitory cell
types and gene signatures (Extended Data Fig. 7d). The Danaher gene
set enrichment also showed that mast cells were enriched in resistant
tumours (enrichment score pCR: 2.1, residual disease: 3.4, P= 0.0001).

Wethenintegrated proliferation (using GGI) and immune responsein
the pre-therapy tumours. We used the STAT1 gene expression module™
torepresentimmune responseinasingle score and computed correla-
tions between GGl and STAT1 scores with RCB classes. Tumours that
attained pCR mostly had high proliferation and highimmune activation,
with both signatures decreasingin astepwise manner as the degree of
residual disease increased (Fig. 3e). Similar findings were observed on
analysing external data from the ISPY-l and NCT00455533 studies'™"
(Extended Data Fig. 7f).

In summary, in therapy-naive tumours, proliferation and immune
response, bothinnate and adaptive, have combined effects that associ-
ate with sensitivity to treatment. In general, tumours that attain pCR
tend to be highly proliferative and display evidence of an active TiME.

Immune dysfunctioninresistant tumours
We noted that there were 26 of the 45 tumours with high GGI and
STAT1 scores that failed to attain pCR. Differential gene expression
analysisin these 45 cases (residual disease versus pCR) showed enrich-
ment of epithelial-to-mesenchymal transition and downregulation of
immuneresponse pathways in tumours with residual disease (Fig. 3f).
We hypothesized that an attenuated immune response could explain
this and derived T cell dysfunction and T cell exclusion metrics using
TIDE* (Fig. 3f). This showed that HER2” tumours with residual disease
had higher T cell dysfunctionat diagnosis (P= 0.006) with no difference
in T cell exclusion scores. The increased dysfunction was associated
with enrichment of inhibitory natural killer CD56™ cells (P= 0.01)
and regulatory T cells (P=0.02; Extended Data Fig. 8a). Across the
whole cohort, active T cell exclusion (Extended Data Fig. 8b) was asso-
ciated with poorer response: exclusion was higher in residual disease
(P=0.02), withincreased enrichment of cancer-associated fibroblasts
(P=0.009) and M2 tumour-associated macrophages (P=0.0009).
In summary, some tumours, despite being proliferative and with
an enriched TiME, display features of T cell dysfunction and tend to
be resistant to therapy.
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Fig.3 | Transcriptomicfeatures associated with response to neoadjuvant
therapy. a, Expression of breast cancer driver genes associated with pCR. FC,
fold change; RD, residual disease. b, MSigDB Hallmark gene sets associated
with pCR. Response was predominantly associated with proliferative (green)
andimmune (brown) gene sets. ¢, Box plot showing association of GGl score
with histological grade (P=5x10™) (left); density plots showing monotonic
association (P=2x107, ordinal logistic regression) between GGl score and
RCB (pCR versus RCB-11**P=0.01and RCB-11l ****P=3 x 10~°) (middle); and box
plot showing monotonic association (P=0.0001, ordinal logistic regression)
betweenstem-cell enrichmentscoreand RCB (pCR versus RCB-11*P=0.02 and
RCB-11I****P=7 x107) (right). The number of patients with RNA sequencing
data: 39 (for pCR), 23 (for RCB-I), 62 (for RCB-1I) and 25 (for RCB-III).d, Box plots
showing monotonic associations between computationally estimated
lymphocyte density and RCB (P<1x 107", ordinal logistic regression; n=153
cases withdigital pathology data; pCR versus RCB-11**P=0.006 and RCB-III
***p=0,0001) (left); CYTscoreand RCB (P=0.001; n =149 cases with RNA

Machine learning integrates multi-omic features
Above, weidentified clinical, digital pathology, genomic and transcrip-
tomic features presentin the naive tumour ecosystem that associated
with response to therapy, althoughindividually none of these features
performed robustly. This motivated the use of a machine learning
framework (Fig. 4a) tointegrate features into a predictive model of pCR.
Aseries of six pCR prediction modelsincluding different feature combi-
nations were derived using;: (1) clinical features only, and adding (2) DNA,
(3)RNA, (4) DNAandRNA, (5) DNA, RNA and digital pathology,and (6) DNA,
RNA, digital pathology and treatment. The number of predictive features
totalled 34 (Fig. 4b, Extended Data Fig. 9a, b, Supplementary Table 4).
The models were based ona multi-step predictor pipeline. Inside the
pipeline, features were first filtered by univariable selection and collin-
earity reduction, and then fed into an unweighted ensemble classifier™.
Each ensemble consisted of three algorithms acting in parallel: logistic
regression with elastic net regularization, a support vector machine
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sequencing data; pCR versus RCB-1*P=0.03 and RCB-111**P=0.001) (middle);
and Danaher CD8T cell enrichmentand RCB (P=0.0002; n =149 cases; pCR
versus RCB-1*P=0.04, RCB-I1*P=0.04 and RCB-111***P=0.0003) (right).

e, 2D density plot showing the relationship between proliferation and immune
activationacross RCB classes. The number of casesin each quadrantis shown
inwhite. f, The distribution of GGland STAT1scores across cohort (left). The
shaded arearepresents samples with proliferation and immune enrichment
values above the mean (n =45 cases). The MSigDB Hallmarks pathways
associated withresidual disease in these 45 tumours (red represents
overexpressed, and blueindicates underexpressed) (top right). Box plots
showing association between T cell dysfunction (**P=0.006 HER2") and
exclusionwithresponsein these tumours are also shown (bottomright). EMT,
epithelial-to-mesenchymal transition.Inc,d, f, the box bounds the
interquartile range divided by the median, with the whiskers extending toa
maximum of 1.5 times the interquartile range beyond the box. Wilcoxon
rank-sum tests; all P values are two-sided.

andarandom forest. The three algorithm scores were then averaged to
formthe predictor (Extended DataFig. 9c). A fivefold cross-validation
scheme was used to optimize model hyperparameters (Methods and
Supplementary Methods).

The fully trained models were tested for validation on an inde-
pendent external cohort of 75 patients that received neoadjuvant
therapy, either cases randomized to the control arm of the ARTemis
clinical trial** or cases recruited into the Personalised Breast Cancer
Programme (details listed in Supplementary Table 5). In the external
cohort, the models achieved the following areas under the curve:
0.70 (clinical), 0.80 (clinical and DNA), 0.86 (clinical and RNA),
0.86 (clinical, DNA and RNA), 0.85 (clinical, DNA, RNA and digital
pathology), 0.87 (fully integrated model (clinical, DNA, RNA, digital
pathology and treatment)) (Fig. 4c, d, Extended Data Fig. 9d, e).
The baseline clinical model, as implemented using our machine
learning algorithms, performed similarly to other clinical predic-
tors reported in larger datasets®*,
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We explored the importance of the features used in the integrated
training model and found that it used clinical phenotypes in combi-
nation with DNA, RNA and digital pathology features. The dominant
features were age, lymphocyte density, and expression of PGR, ESR1
and ERBB2 (Fig. 4b, Extended Data Fig. 9b, Supplementary Table 6).
Inaddition, the predictive model also used features associated with pro-
liferation,immune activation andimmune evasion. The fully integrated
modelrelied on features obtained fromallmodalities of data, with RNA
features having the largest contribution (Fig. 4b, Extended Data Fig. 9b).

Despite the models being trained using a binary response variable
(pCRyversus residual disease), an analysis of the predictor scores across
bothtraining and validation sets showed that these were highly corre-
lated with RCB class, with amonotonic association observed (training:
P=3x107°,validation: P=1x10"%; Extended Data Fig. 10).

In a clinical workflow, the predictive models could be applied to
candidates for neoadjuvant therapy; any predicted to have chemore-
sistant tumours should be considered for enrolmentinto clinical trials
of novel therapies, as their prognosis is poor if they are treated with
standard-of-care therapies (Fig. 4e). We explored this in a simulation

therapy

B RD, received NAT

dataintegration. The continuousline on the foreground corresponds to the
AUCs obtained from the external validation cohorts (filled markers), with bands
representing the standard deviation estimated withbootstrap. Thefilled band
onthebackground corresponds to the standard deviation of the AUCs obtained
using cross-validation onthe training dataset, with mean values representedbya
dashedline. DigPath, digital pathology. e, Potential clinicalimpact of the pCR
model, using data from the external validation confusion matrix (left). Bar plots
show the number of patients that would be identified to be chemoresistant using
operating thresholds of 0 and 2 false negatives (FN), using either the clinical or
fully integrated models, respectively (right). ML, machine learning; NAT,
neoadjuvant therapy.

study and applied the confusion matrix obtained in the external valida-
tion cohorts on a total of 100 patients about to receive neoadjuvant
therapy. If the criterion was that no patient guaranteed to obtain pCR
should miss out ontreatment (no false negatives), the clinical machine
learning model would identify 15 non-responders, whereas the fully
integrated machine learning model would increase this number to 31. By
relaxing the false-negative threshold and allowing two false negatives,
24 (clinical model) and 52 (fully integrated model) patients who would
not attain pCR would be correctly identified (Fig. 4€).

In summary, we used an ensemble machine learning approach that
inputs multi-omic features from the pre-treatment biopsy to derive
predictors of pCR. The models were externally validated demonstrating
very good discrimination power.

Discussion

Human tumours are complex ecosystems formed in the malignant
compartment by communities of clones and cell phenotypes, and
in the tumour microenvironment by a very diverse array of stromal,
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vascular, innate and adaptive immune cell types***. How these eco-
systems are organized in breast cancer appears to be strongly associ-
ated with their genomic features®. Therapy perturbs these tumour
ecosystems and this is increasingly recognized as one of the main
determinants of treatment response”. Remarkably, efforts to identify
features in untreated tumours that predict response to therapy have
mostly ignored this.

Our findings showed that response is determined to agreat degree
by the baseline characteristics of the totality of the tumour ecosystem.
Tumour proliferation emerged as a key determinant of response as
reported previously”*. Genomic features that associated with response
to chemotherapy in HER2™ tumours, and usually correlated with pro-
liferation, included TP53 mutations, tumour mutation burden, BRCA,
HRD and APOBEC mutational signatures, and chromosomal instabil-
ity. Remarkably, in HER2' tumours, treated with chemotherapy and
HER2-targeted antibodies, response appeared to be independent of
proliferation. This observation was previously reported* and should
motivate asearch forthe underlying mechanism. Clonal diversity and
subclonal mutations were associated withresidual disease. This has also
been reported in oesophageal carcinoma*?, suggesting that clonally
diverse tumours are more likely to contain or be able to select resist-
antsubclones.

A central finding was that the TiME in treatment-naive tumours is
amajor determinant of response to therapy. Previous work in mouse
models had shown that an effective response to chemotherapy requires
animmunocompetent tumour microenvironment*. Deconvolution
ofimmune subpopulations using our RNA expression datasuggested
that both innate and adaptive immunity were already engaged in
tumours that went on to have pCR. We previously reported digital
pathology-derived lymphocytic density as anindependent predictor of
pCR™* and here confirm this and also show that it strongly correlates
with the cytolyticactivity score (asurrogate for CD8 and natural killer
cytotoxic cells). Pathologist-assessed infiltration of tumour lympho-
cytes hasbeenreported by many groups as a predictor of response to
chemotherapy** and immunotherapy*, andinternational guidelines for
scoring exist**. The direct role of theimmune system in killing tumour
cells as aresult of chemotherapy, so-called chemotherapy-induced
immunogenic cell death, has been proposed®. We hypothesize that the
presence of anengaged immune infiltrate in the tumour microenviron-
mentintherapy-naive tumours mediates such chemotherapy-induced
immunogenic cell death.

By contrast, a suppressed immune response in naive tumours
associated with a propensity for poor response. HLA LOH was first
implicated in immune evasion in lung cancer® and we show here
that it predicts poor response to therapy. T cell dysfunction* and
exclusion* showed similar effects. The similarity of features predict-
ing response to cytotoxic therapy compared with those reported
to predict response to immune checkpoint inhibitors*® raises the
intriguing possibility that similar mechanisms of killing tumour cells
are engaged.

We show that machine learning models for prediction of therapy
response that combine clinical, molecular and digital pathology data
significantly outperform those based on clinical variables. The high
accuracy obtained in external validation suggests that the models
are robust and may enable using molecular and digital pathology
to determine therapy choice in future clinical trials, including in the
adjuvant therapy setting. More generally, the framework highlights
the importance of data integration in machine learning models for
response prediction and could be used to generate similar predictors
for other cancers.
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Methods

Study population and tissue collection

We analysed breast tumours from patients with primary invasive cancer
enrolled in the TransNEO study at Cambridge University Hospitals
NHS Foundation Trust between 2013 and 2017. Appropriate ethical
approval from the institutional review board (research ethics refer-
ence:12/EE/0484) was obtained for the use of biospecimens with linked
pseudo-anonymized clinical data. All patients provided informed con-
sent for sample collection and all participants consented to the publica-
tion of research results. Clinical data were collected in Microsoft Excel
(as part of the office 365 suite) by data managers.

Pre-neoadjuvant and post-neoadjuvant chemotherapy speci-
mens were handled following departmental standard operat-
ing procedures in accordance with international guidelines®.
RCB post-neoadjuvant therapy was assessed by experienced breast
histopathologists (E.P. and J.T.) using the pathology protocol
for assessment of RCB as provided on the MD Anderson RCB
website (https://www.mdanderson.org/education-and-research/
resources-for-professionals/clinical-tools-and-resources/clinical-
calculators/calculators-rcb-pathology-protocol2.pdf?_ga=2.93785373.
1680005878.1594213442-1702172112.1568299785). RCB assessment
was not available in seven cases (Extended Data Fig. 1). pCR was
defined as the absence of residual invasive cancer on haematoxylin
and eosin (H&E) evaluation of the complete resected breast specimen
and all sampled lymph nodes. Results for oestrogen receptor (ER)
and HER2 status were extracted from pathology reports. ERand HER2
testing were performed in an accredited diagnostic laboratory and
scored according to UK guidelines®. ER staining was regarded as posi-
tiveifthe Allred score was more than 2. HER2 was regarded as positive
ifimmunohistochemical staining was 3°, or if there was borderline
2*staining with HER2 gene amplification on FISH (HER2 copy number
> 6.0 and/or HER2:CEP17 ratio > 2).

Whole blood from all patients was collected before commencing
neoadjuvant therapyin S-Monovette 7.5 ml EDTA tubes and centrifuged
at820gfor10 minat roomtemperature to partition plasma, buffy coat
and erythrocytes. The buffy coat fraction was isolated and suspended
in10 mlofred celllysis buffer (155 mMNH,CI, 10 MM KHCO;and 0.1mM
EDTA pH 7.4), centrifuged at 3,600g for 10 min at room temperature,
followed by a further step of resuspension and centrifugation. The
final cell pellet was suspended in 1 ml of phosphate-buffered saline,
centrifuged at 10,000 r.p.m. for 5 min, isolated and frozen. Tumour
tissue was collected before the initiation of neoadjuvant chemotherapy
via an ultrasound-guided biopsy, flash-frozen in liquid nitrogen and
stored at -80 °C. Sectioning of the samples was performed onacryostat
(CM1520; Leica Biosystems). Following an initial 6-pum section taken
for H&E staining, 20 30-pum sections were taken and 10 sections were
placed in each of the two tubes containing either 180 pl ATL buffer or
700 pl of QIAzol for DNA or RNA extraction, respectively. The histol-
ogy slides were stained with H&E, and tumour, stromal and immune
infiltrate quantification was performed.

Nucleic acid processing and library preparation

Isolation of DNA from all buffy coat and sectioned tumour tissue sam-
ples was performed using the Qiagen DNeasy Blood and Tissue Kit
(catalogue no. 69506). DNA from tumour tissue was extracted using
the manufacturer-recommended protocol. DNA quantification was
performed using the Qubit Fluorometer (Invitrogen) and nucleic
acid purity was assessed using the NanoDrop 8000 (Thermo Fisher
Scientific). Normal and tumour DNA samples were normalized to a
concentration of 5ng/pl using afluorescence-based method (Quant-IT
dsDNA BR, Q33130, Thermo Fisher Scientific) and 50 ng of DNA used
for exome library preparation. DNA libraries were constructed using
the Illumina Nextera Rapid Capture Exome Library Preparation kit
according to the manufacturer’s protocol (Illuminadocument number:

15037436). The resulting whole-genome sequencing (WGS) libraries and
captured whole-exome sequencing (WES) libraries were normalized
and pooled, witheach pool normalized to amolarity of 4 nM. Sequenc-
ing was performed on an lllumina HiSeq4000 instrument in 50-bp
single-read mode (for shallow WGS (sWGS)) or 75-bp paired-end mode
(for WES). Demultiplexing was performed using Illumina’s bcl2fastq2
software using default options. Isolation of RNA from all tumour tis-
sue samples was performed using the Qiagen miRNeasy Mini Kit (cat-
alogue no. 217004). Tissue sections suspended in 700 pl of QIAzol
were thawed and mixed by vortexing. Chloroform (140 pl) was added
to each sample, vortexed and transferred to a heavy phase lock tube
(Qiagen MaXtract, catalogue no.129056). The samples were then spun
at12,000g for 15 min at 4 °C, following which the upper clear phase
containing RNA was transferred to a2-mlEppendorftube. Subsequent
extractionwas then performed using the Qiagen QIAsymphony using
the manufacturer-recommended protocol. RNA quantification was
performed using the Qubit Fluorometer (Invitrogen) and assessment
ofthe RNA integrity performed using the high-sensitivity RNA assays on
the Agilent 4200 TapeStation Instrument. RNA samples were normal-
ized to a concentration of 10 ng/pl and transcriptomic libraries were
prepared using the lllumina TruSeq Stranded mRNA Library Prepara-
tion kit (catalogue no. 20020595) according to the manufacturer’s
protocol (Illumina document number: 1000000040498). Of each
library, 5nM was prepared and 94 samples were pooled per lane of
sequencingon an lllumina HiSeq4000 system runin 75-bp paired-end
mode. Demultiplexing was performed using bcl2fastq2 v.2.17 software
(Illumina) using default options.

sWGS and WES pre-processing

For each exome paired FASTQ file, sequencing quality metrics were
generated using the FastQC tool (version 0.11.7) (https://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). Alignment to the GRCh37
decoy assembly of the human genome was performed using Novoalign
(version 3.2.13) in paired-end mode with the following parameters
enabled: (1) base quality recalibration, (2) trimming of Nexteraadaptor
sequence CTGTCTCTTATA, and (3) hard clipping of trailing bases with
quality <20.sWGS data were processed similarly; however, Novoalign
was run in single-read mode. Binary aligned sequencing (BAM) file
merging, coordinate sorting and PCR and optical duplicate marking
were performed using Novosort (version 3.2.13). Local realignment
around insertions and deletions was performed using the Genome
Analysis Toolkit (GATK)* programs RealignerTargetCreator and Indel-
Realigner. The performance of the library preparation as well as the
quality of the sequencing data, target coverage metrics within exonic
regions specified by the Nexteratarget BED file obtained from Illumina
(Manifest version 1.2) were generated using Picard (version 2.17.0)
CalculateHSMetrics. Median WES coverage was x162 for tumours and
x137 for normal tissue. Median sWGS coverage was x0.1.

Variant calling

Germline variants wereidentified across alltumour and normal samples
using GATK HaplotypeCaller (version 4.1.4) runin GVCF mode and fil-
tered using GATK VariantRecalibrator. Somatic variant calling was per-
formed using Mutect2 (version 4.1.4). A panel of normals was created
by running Mutect2 in tumour-only mode on all normal samples and
theresulting VCF files were merged using CreateSomaticPanelOfNor-
mals. Mutect2 was run on each tumour-normal sample pair using this
panel of normals and a database of germline variants present within
gnomAD toimprove somatic calling. Variant filtration was performed
using FilterMutectCalls using default options. Mutations that were
present at an allelic fraction (AF) of less than 1%, had coverage of less
than x25in both normal and tumour tissue exome data, were present
inthe gnomAD repository with a population prevalence greater than
1% and identified as lying within repetitive regions by ANNOVAR (ver-
sion 599af129dbcfd4e85a2da9832c4ae59898e2f3a9) were removed.
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Somatic variants were annotated using Ensembl Variant Effect Predictor
(version 87)°%3, The tumour mutation burden was computed as the
sum of all mutations per tumour divided by the total number of bases
sequenced in the genome (45.54 Mb). Breast cancer driver mutations
were defined as those genes identified in previous publications®*.

Copy number calling

Genome binning and segmentation on low-pass SWGS data were per-
formed using the R package QDNAseq (version 1.24)%. Binning was
performed across 100-kb windows and counts corrected for GC-rich
regions as well as poorly mappable regions. sWGS data from normal tis-
sues were used to correct for technical and germline artefacts. Segmen-
tation was performed using the circular binary segmentation algorithm
implemented in the R package DNAcopy (version1.60). Parental copy
number quantification and estimation of tumour purity and ploidy were
obtained using ASCAT (version 2.5.1)*® using log ratios derived from
QDNAseq and germline single-nucleotide polymorphisms obtained
from HaplotypeCaller as input. As recommended by the authors, the
technology parameter gamma was set to 1 for WES data.

Clonal reconstruction

The CCF for each mutation was computed using the previously
derived mathematical framework™:

VAF

CCF= X (1= p)CNyormal * PCNeumour)

where VAF was the variant allele fraction for each mutation determined
by exome sequencing, p was the tumour purity (computed using
ASCAT), CN,;;ma Was the germline copy number state and CNy 0. Was
the total copy number state at the mutant locus in the tumour. Point
estimates for CCF and confidence intervals were computed using a
binomial distribution modelled by the binconf function fromthe Hmisc
R package (version 4.4) and a mutation was classified as clonal if the
CCF 95% confidence interval overlapped 1, with all other mutations
classified as subclonal.

Mutational signatures decomposition

Signature decomposition from the bulk exome sequencing mutation
datawas performed using the DeconstructSigs R package (version1.8)”,
which uses the Wellcome Trust Sanger Institute Mutational Signature
Frameworkas areference and determines the linear combination of 30
pre-defined signatures by using a multiple logistic regression model
with constraints to reconstruct the mutational profile of each tumour.
Mutational signatures were solely identified in tumours with more than
10 mutations. To determine signature associations with response, each
signature was log, normalized using the exposure of signature 1 (age)
asareference. Associations between these normalized exposures and
response were determined using logistic regression models.

HRD quantification

The scarHRD R package (version 0.1.1)® was used to determine the
levels of HRD present in the WES data, using the ASCAT allele-specific
copy number as input. This tool inferred three components of HRD:
telomericallelicimbalance, LOH and the number of large-scale transi-
tions, which were then summarized into an overall HRD score.

HLA typing, identification of HLA LOH and neoantigen calling

HLAtyping was performed on the normal tissue sequencing datausing
the Polysolvertool (version 4)°, which inferred the four-digit HLA type
for each sample by using a Bayesian classifier to determine genotype.
LOH over the HLA class I locus was determined by using the LOHHLA
tool (downloaded from https://bitbucket.org/mcgranahanlab/lohhla/
src/master/ commit: 9d58¢99)%, using as input ASCAT tumour purity
and HLA genotyping data from PolySolver (version 4). Statistically

significant HLA alleles with a copy number of less than 0.5 were assumed
tobe undergoing LOH. Neoantigen calling was performed by using the
pVAC-tools (version 1.5.4) cancer immunotherapy suite®’. Mutations
identified on exome sequencing were translated into corresponding
mutant proteins and alist of potential neoantigenic fragments contain-
ing the mutant protein generated by using a sliding window approach
across the mutated locus, retaining epitopes of lengths 8-11 amino
acids. These potentially antigenic fragments were analysed for bind-
ing affinity to the HLA class I molecules using the prediction software
NetMHCPan version 3%2, NetMHC version 4% and PickPocket version
1.1%bundled within the Immune Epitope Database resource®. Neoan-
tigens with a binding affinity score of less than 500 nM and that had a
higher binding affinity than the corresponding wild-type sequences
were retained. Further downstream filtering was done by retaining
neoepitopes generated by transcripts that had an expression greater
than1TPM.

iC10 classification

Classification of all tumours into one of the ten iC10 clusters
was performed using the iC10 R package (version 1.5)*°, which took
cellularity-corrected copy number log ratios obtained from QDNAseq
and voom-normalized gene expression counts derived from the RNA
sequencing (RNA-seq) dataasinput. TheiC10 classification of tumours
thatdid not have RNA-seq data was determined using the copy number
dataonly. Associations with response were visualized using the mosaic
function from the vcd R package (version1.4-7).
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RNA-seq pre-processing

FASTQfiles for each sample generated from multiple sequencing lanes
were merged and aligned using STAR version 2.5.2b%, using an index
generated from the GRCh37 decoy assembly of the human genome
and atranscriptomic Gene Transfer Format (GTF) guide obtained from
Ensembl Release 87. STAR was runin two-pass mode for sensitive novel
junction discovery, in which the first pass performed a default map-
ping, and the second pass used the splice junctions detected in the first
passto performafurther round of alignment enhancement. This STAR
BAM file was used for differential expression and transcript counting.
For variant calling, the BAM files generated by STAR were processed as
per GATK best practices guidelines: PCR and optical duplicates were
marked using Picard MarkDuplicates and following this, the GATK tool
SplitNCigarReads was used to split reads having N CIGAR elements in
separate sequence reads. Local realignment around insertions and dele-
tions was performed using RealignerTargetCreator and IndelRealigner,
usinga calibration set derived from the 1000 Genomes project®® 7°. Base
quality recalibration across all variant sites was then performed using
BaseRecalibrator. The tumour samples were sequenced to a median
of 87 million reads.

RNA variant calling

Germline variants identified on exome sequencing were filtered by
removing multi-allelic variants, indels, as well as mutations for which
the minimum depth was less than 30x across all samples. The remaining
germline variants were subsequently genotyped across all RNA samples
and comparisons were done across homozygous germline variants only.
The percentage median concordance across samples derived from a
matched patient was 100%, whereas unrelated samples had a median
concordance of 60%. Somatic variants detected on exome sequencing
were genotyped in the RNA GATK BAM by using HaplotypeCaller in
GENOTYPE_GIVEN_ALLELES mode. Mutations present in all samples
for one patient were concatenated together, and a VCF was generated
to guide HaplotypeCaller local reassembly and variant calling.

Gene and transcript abundance estimation
Gene expression estimation was performed on the STAR aligned
BAM file using HTSeq (version 0.6.1p1)” in read strand-aware union
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overlap resolution mode, where a read would only be assigned to
agene if it only overlapped within an exonic region of one gene,
rather than multiple genes. Gene counts across all samples were
merged into one counts matrix using R, and a trimmed mean of
M-value (TMM) normalization performed across all samples using
the edgeR R package (version 3.32.1)”> to correct for composition
biases and make the transcript counts comparable across all sam-
ples’™. Thelibrary normalized counts were then transformed into
fragment per kilobase millions (FPKMs) and then scaled to a total
of amillion counts, changing the unit of measure to transcripts per
million (TPM)”.

Differential expression

To identify sets of genes that were highly or lowly expressed given a
set of experimental conditions (such as pCR versus residual disease)
(Fig. 3a), differential expression was performed on the gene raw counts
data obtained as described above using edgeR’>”*. The output of each
model was alist of differentially expressed genes. Following the genera-
tion of aranked list of differentially expressed genes for any compari-
son of interest, gene set enrichment was performed using the camera
statistical method in edgeR; in brief, this method performed a com-
petitive gene set test accounting for inter-gene correlation and tested
whether genes were highly ranked relative to other genes in terms of
differential expression™. Asinput to this gene set enrichment analysis
(GSEA) method, the annotated gene sets provided within the MSigDB
version 6.1were used?” (Fig. 3b). Inaddition, further enrichment over
the Reactome database® (Extended Data Fig. 5) was performed using
the ReactomePA R package (version v1.34)™,

GSEA

GSVA and ssGSEA were performed using the GSVA R package (version
1.34)” on (1) the GGl gene set*, (2) the core embryonic stem-cell-like
module*and (3) the STATlimmune signature®. The log-transformed
TMM normalized TPM counts were used as input to the GSVA package.
Ahigh GSVA score (Fig. 3f, Extended Data Fig. 8a) was defined as any
score above the mean value. We computed the paclitaxel response
metagene?®, as the difference in expression of a mitotic metagene
(geometric mean of BUBIB, CDK1, AURKB and TTK TPM expression)
and a ceramide metagene (geometric mean of UGCG and CERT1
expression).

Immune microenvironment characterization

The cytolytic activity score?” was computed as the geometric mean of
GZMA and PRF1I (as expressed in TPM, 0.01 offset). Immune cell enrich-
mentwas performed using (1) MCPcounter® using voom-normalized
RNA-seq counts as input, (2) enrichment over 14 cell types using
60 genes®, using the log-transformed geometric mean of the TPM
expression of cell-specific genes as input, and (3) z-score scaling of
cancer immunity parameters® to classify four different immune
processes (MHC molecules, immunomodulators, effector cells and
suppressor cells), by generating z-score-normalized TPM gene expres-
sionforaninputlist of 162 genes. Heatmaps used to visualize the data
were generated using the pheatmap R package (version 1.0.12) and
unsupervised column hierarchical clustering based on the Euclidean
distance performed. We used the TIDE algorithm (http://tide.dfci.
harvard.edu)® to derive T cell dysfunction and exclusion metrics.
Theinputto TIDE was alog,-transformed TPM matrix of counts, which
was normalized by subtracting the average log, expression of all genes.
Theinterplay between proliferation and immune activation across the
four RCB classes (shown in Extended Data Fig. 7f) was validated by
performing GGl and STAT1 enrichment using a combined microarray
dataset from the ISPY-I' (GSE25066 and GSE32603) and NCT00455533
(ref.™) (GSE41998) trials, which were chosen for similar neoadjuvant
therapy regimens, availability of core biopsy gene expression and
RCB classification.

Digital pathology analysis

Whole-slide H&E images (scanned at a magnification of x20) were ana-
lysed using CellExtractor v1.0, an open-source platform developed for
high-throughput analyses of histopathological images. The code was
writtenin Python and used the OpenCV and OpenSlide library. Initially,
full-face H&E scanned images were divided into several subregions.
Each subregion was processed to remove the background using an
adaptive threshold method. A distance matrix was calculated for indi-
vidual foreground objects to de-blend overlapping objects during the
watershed segmentation process. The latter produced binary images
of cell masks from which cellular features such as centroids, shape
descriptors, and pixel intensities were estimated. These features were
used totrainatwo-level support vector machine-based classifier. Dur-
ing the first level, spurious detections such as artefacts, dirt and pen
marks were separated from genuine detections. This was followed by a
second level of classification to identify cancer cells, stromal cells and
lymphocytes based on a training set of objects selected by a patholo-
gist (W.C.) of approximately 1,000 objects for each category. Finally,
on the basis of these classes, descriptive statistical parameters such
as cellular fractions and densities were estimated. For each detected
cell, density was obtained based on counting the number of nearest
neighbours approach, that is, the density within the distance to the
Nth nearest neighbour calculated as follows: Sigmay (pixel?) = N/
(pi x dy?) where dy was the distance to the Nth nearest neighbour within
adensity-defining population. A value of N=50 was used to estimate
the density parameter. To ensure that the estimated density was not
biased towards our choice of density parameter (N =50), we calculated
the density for Ninrange of 40-60, with 5-step increments. The results
remained the same and were therefore independent of the choice of
the number of neighbours.

Validation dataset

An external dataset comprising 75 patients treated with neoadjuvant
therapy recruited to the Personalised Breast Cancer Programme (PBCP;
research ethics reference: 18/EE/0251) study and the control arm of
the ARTemis trial (research ethics reference: 08/H1102/104, EudraCT
number: 2008-002322-11) was collated. All patients provided informed
consent for sample collectionand all participants consented to the pub-
lication of researchresults. These cases were selected due to the avail-
ability of DNA, RNA and digital pathology data. Clinical and molecular
details for these 75 cases are summarized in Supplementary Table 5.

Statistical testing

All statistical tests in the exploratory analysis were performed using
Rversion4.0.3 and associated packages. All statistical tests described
inthis work were two-sided. Unless otherwise specified, all statistical
comparisons were performed using cases that attained pCRasacom-
parator. Tests involving comparisons of distributions were done using
‘wilcox.test” unless otherwise specified. Ordinal logistic regression
modelsused the ordered RCB variable (pCR >RCB-1>RCB-I1>RCB-III)
asaresponse variable to determine monotonic associations and were
modelled using the polr function from the MASS R package (version
7.3-54). To determine features associated with response, only cases
thatreceived at least one cycle of neoadjuvant chemotherapy and one
cycle of anti-HER2 therapy (if HER2") were used in the comparisons to
avoid the confounding effect of suboptimal exposure to neoadjuvant
therapy on response.

Derivation of a predictive model for relapse

Dataset and model training. The TransNEO dataset was used to train
the machine learning pCR classification models. Hyperparameters
were optimized using fivefold cross-validation in the training set to
maximize the area under the receiver operating characteristic (AUC
ROC) curve. The rest of the parameters were determined by setting
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the hyperparameters to their optimal values and refitting to the entire
training cohort. To ensure robustness, we repeated the optimization
process five times with different cross-validation seeds, effectively
training five alternative predictors. Together, these five predictors
constituted what we call the ‘model’: model predictions for new data
areobtained by averaging the scores produced by the five predictors.
Once trained and frozen, models were independently validated on
an external dataset composed of n =75 patients from the PBCP and
ARTemis cohorts described previously.

Predictor architecture. The machine learning framework was built on
Python (version 3.7.4) using the following libraries: scikit-learn (ver-
sion 0.21.2), numpy (version1.16.4), scipy (version1.3), pandas (version
0.24.2) withina Singularity container (version 2.4.6-dist). Each predictor
wasbuiltas an ensemble of three scikit-learn pipelines; in other words,
the response prediction was calculated as the average of the scores
produced by the three classification pipelines. Each pipeline contained
four steps: collinearity removal, k-best feature selection, scaling and
classification. The first step removed all features withamutual Pearson
correlation above 0.8, retaining only the one with the highest correlation
with the response variable. The second step removed all features that
were notranked within the top kaccording to their ANOVA F-value with
respect to the binary response variable. The third step applied z-score
scalingto the remaining features. The fourth step was the classification
step, which consisted of a logistic regression®® in the first pipeline, a
support vector classifier® in the second pipeline, and a random for-
est®in the third pipeline. All hyperparameters were optimized using
arandomized1,000-step fivefold cross-validation search to maximize
the AUCROC curve. Logistic regression was implemented with elastic
netregularization and SAGA solver, with C parameters between 10 and
10% and L1ratios between 0.1and 1. The support vector classifier was al-
lowed to have either radial basis function, sigmoid or linear kernels, with
gamma parameters between 10~° and 102, and C parameters between
1072 and 10°. Finally, the random forests were allowed to have between
5and100 (or the maximum number of ) estimators, maximum features
between 5% and 70% of the total, and minimumsamples per split between
2and15. The final values of the hyperparameters obtained through the
optimization procedure can be found in the Supplementary Material.

Feature definitions. Models were trained on acombination of clinical,
DNA, RNA, digital pathology and treatment features, as shownin Fig. 4a.
Differences in treatment were captured using one-hot-encoded vari-
ables assessing whether the patient did or did not receive anthracycline
or anti-HER2 treatment. A further set of variables captured whether
taxane or anthracycline were given first. The complete list of features
and their Spearman correlation matrix can be found in Supplementary
Table 4 and Extended DataFig. 9a, respectively. The order inwhich fea-
tures were added in successive models was determined by how widely
available they typically are. Although the information required for
treatment variables is normally accessible, they are highly correlated
with HER2 status, and are therefore included mainly as a cautionary
control mechanism. For the sake of the simplicity of the models, they
were the last features to be added.

Data cleaning. In the training set, one patient who had clinically un-
evaluable tumour size was assumed to have a volume 10% larger than
the largest present in the cohort. Four patients who were HER2* who
only received one cycle of trastuzumab, and two patients who were
HER2" who had only received one chemotherapy cycle were removed
fromthetraining set. Inthe external validation datasets, missing treat-
ment features were set to zero.

Testing. Models were applied on the test cohort and their respective
ROC curves and AUCs were evaluated. In Fig. 4d, the standard deviation
of the AUCs obtained in the training cross-validation (included as an

optimistic performance estimation) was compared to the nominal test
AUCs and the standard deviation of the AUCs obtained from 100 boot-
strap replicas of the test datasets. In addition, 95% confidence intervals
oneachtest AUC were obtained using the DeLong test® (Extended Data
Fig. 9e). Adding digital pathology introduced a slight degradation of
the performance due to the significant difference in the lymphocytic
density observed inthe training versus the external validation cohorts
(Extended Data Fig. 9f). Precision-recall curves, average precision
scores and areas under the precision-recall curve were obtained using
standard sklearnimplementations (Extended Data Fig. 9g).

Feature importance. Feature importances were determined for each
algorithm (random forest, support vector classifier and logistic regres-
sion) after refitting on the full training cohorts. For consistency, we
used an algorithm-agnostic methodology based on dropping each of
theinput features. We quantified the resulting change in AUC by means
|AUC iominal = AUCQ,OD‘
U(AUC nominal ~ AUCdrop)
significance of the ith feature, and o is the standard deviation of all the
AUC changes. In Fig. 4b, we show the average z-score significances
averaged across the three algorithms. In Extended Data Fig. 9b, we
calculate signed z-score significances by removing the absolute value
fromthe definition. The signindicates whether the feature was adding
valuetothe prediction (negative sign) or harming it (positive sign).In
addition, the fulllist of features selected after the collinearity reduction
and univariable selection steps for all the different models, as well as
the logistic regression coefficients, can be found in the Supplemen-
tary Material.

ofaz-score, 7/ = , where Z represents the z-score

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

DNA and RNA sequencing data have been deposited at the European
Genome-Phenome Archive (EGA), which is hosted by the EBl and the
CRG, under accession number EGAS00001004582.

Code availability

The R and Python source code used to run the analyses described in
thearticle and to generate all figures is available at: https://github.com/
cclab-brca/neoadjuvant-therapy-response-predictor.
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Discovery dataset

180 women recruited to
the TransNEO study

Excluded (n=12)

- No research biopsy:

- Metastatic disease:

- Recruited to clinical trials:
- Died during treatment:

=NwWwo®

Y

Tumour profiling (n=168)

WES + sWGS: 168
RNA-seq: 162
Digital pathology: 166

Short therapy exposure (n=6)

- One cycle of chemotherapy: 2
- One cycle of targeted therapy: 4

No RCB assessment (n=7)

| - Surgery not undertaken:
- Incomplete surgery:
- External surgery:

=N

\
Associations with RCB (n=155)

WES + sWGS: 155
RNA-seq: 149
Digital pathology: 153

Extended DataFig.1|Summary of cases analysed within this study. 180
women were recruited to the TransNEO neoadjuvant breast cancer study.
Tumour profiling was performed in168 cases and associations withresponse
identified in155 cases who received more than one cycle of neoadjuvant
chemotherapy or targeted therapy. 147 cases had acomplete molecular/digital

Validation dataset

75 women identified
ARTemis: 38, PBCP: 37

Tumour profiling (n=75)

WES + sWGS: 75
RNA-seq: 7
Digital pathology: 75

\

Associations with response (n=75)

WES + sWGS: 75
RNA-seq: 75
Digital pathology: 75

pathology dataset, received more than one cycle of chemotherapy and
targeted therapy and had an RCB assessment available: data fromthese cases
were used to build amachine learning predictor of response to neoadjuvant
therapy. Validation was performed across acohort of 75 cases recruited to the
ARTemis and Personalised Breast Cancer (PBCP) studies.
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Extended DataFig. 2| Calculation of the Residual Cancer Burdenindex and
associationsbetween clinical features and response. a, Tumour and lymph
node histological features used to calculate the continuous Residual Cancer
Burden (RCB) index and categorical RCB class. Increasing RCB index denotes
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logistic regression. Significant associations (P<0.05, logistic regression) are
showninred. The measure of centreis the parameter estimate and error bars
represent 95% confidenceintervals. d, Distribution of tumour features across
RCBclasses: pre-operative staging (blue), pre-operative histological features
(green), neoadjuvant therapy (red, T: taxane, A: anthracycline, aHER2:
anti-HER2 therapy), surgical approach (red, WLE: wide local excision),
post-operative tumour (ypT) and nodal (ypN) staging and lymphovascular
invasion (purple) and PAMS50 subtypes (yellow, A: Luminal A, B: Luminal B, Ba:
Basal, H: HER2-enriched, N: Normal-like, U: Unknown). Tumours with RCB
assessmentand adequate therapy exposure only included (more than1cycle of
chemotherapy oranti-HER2 therapy received, n =155).
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Extended DataFig. 4 |Furtherassociationsbetween genomicfeaturesand
response toneoadjuvant therapy. a, Interaction plot showing co-occurrence
of non-silent driver gene mutations and response. Associations between TP53
and PIK3CA mutations and response shownininset (logistic regression, red:
positive, blue: negative, grey: not significant, error bars represent 95%
confidenceintervals). b, Pearson’s product-moment correlations (R) between
tumour purity and (left) tumour mutation burden and (right) %CNAs. The
shaded area, in grey, represents the 95% confidence interval. ¢, Box plots
showingassociations between TMB and response, stratified by HER2 status.
d, Box plots showing association between expressed neoantigen (NAg) load
andresponse, stratified by HER2 status. e, Box plot showing monotonic
association (P=0.005, ordinal logistic regression) between exposure of
non-clock signatures and RCB class. f, Box plots showing associations between

HRDscoreandresponse, stratified by HER2 status. g, Box plots showing
associationsbetween %CNA and response, stratified by HER2 status. c-g, The
boxboundstheinterquartile range divided by the median, with the whiskers
extending toamaximum of 1.5times the interquartile range beyond the box.
Outliers are shown as dots. Wilcoxon rank sum tests, all P values two-sided.
Number of cases analysed (n) =155 (HER2- pCR =22, RD (residual disease) = 76;
HER2+pCR=18,RD =39)).h, Associations between RCB class and iC10: Pearson
residualsindicate overrepresentation of iC10 subtype with response (blue:
overrepresentation, red: underrepresentation). i, Associations between HLA
LOH, global LOH and global copy number alterations with pCR (logistic
regression, red: positive association, blue: negative association). The measure
of centreis the parameter estimate and error bars represent 95% confidence
intervals.
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Extended DataFig. 6 | Associations between tumour proliferation and
response. a, Box plots showing associations between proliferation (GGI) GSVA
scoresacross ER/HER subtypes. b, Top: Scatter plots showing the distribution
ofthe mitoticand ceramide score components of ataxane response metagene
within the HER2-and HER2+ cohorts. Bottom: Box plots showing association of
the combined taxane response metagene score within the HER2- and HER2+
cohorts.Ina, b, theboxbounds theinterquartile range divided by the median,
with the whiskers extending to amaximum of1.5 times the interquartile range
beyond the box. Outliers are shown as dots. Two-tailed Wilcoxon rank sum
tests. Number of cases (n): ER-HER2-: 37, ER+HER2-: 57, HER2+: 55.
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Extended DataFig.7|Therelationship between tumourimmune
microenvironmentand response. a, PCA analysis on the abundance of
tumour immune microenvironment components obtained through the
deconvolution of RNA-seq data using Danaher’simmune signatures (number
of cases (n): pCR (green) =39, RD (orange) =110).b, ¢, Box plots showing
associations between response and (b) Danaherimmune cell enrichmentand
(c) MCPcounterimmune cell enrichment across ER/HER subtypes. The box
boundstheinterquartile range divided by the median, with the whiskers
extending toamaximum of 1.5times the interquartile range beyond the box.
Outliers are shown as dots. Two-tailed Wilcoxon rank sum tests. Number of

cases (n): ER-HER2-:37, ER+HER2-: 57, HER2+: 55. d, Heatmap showing
unsupervised clustering of cancerimmunity parameters across n =149 cases
with RNA sequencing data. e, Scatter plot showing association between
computationally derived lymphocyte density and immune cell enrichment
using Danaher’simmune signatures across n =147 cases with digital pathology
and RNA sequencing data. Pearson’s product-moment correlations (R) shown.
Theshadedarea, ingrey, represents the 95% confidence interval.f, 2D density
plotvalidating relationship between GGland STAT1 GSVA across RCB
subgroupsin two external microarray gene sets comprising 457 cases.
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Extended DataFig. 8| T-cell dysfunction and exclusion. a, Box plots showing
enrichedinhibitoryimmune cell types (Danaher gene sets) in HER2- tumours
with high GGland STAT1 (number of cases (n): pCR =12, RD =16). b, Box plots
showing association between components of T-cell exclusion score and
response (number of cases (n): pCR =39, RD =110). CAF: Cancer associated
fibroblasts, MDSC: Myeloid-derived suppressor cells.Ina, b, the box bounds
theinterquartile range divided by the median, with the whiskers extending toa
maximum of 1.5 times the interquartile range beyond the box. Outliers are
shownas dots. Two-tailed Wilcoxon rank sum tests.
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Extended DataFig. 9|See next page for caption.




Extended DataFig. 9 |Machinelearning model performance. a, Correlation
plotshowingtheresults of unsupervised clustering between all the features
explored.b, Signed feature importance split by algorithm. Negative numbers
(blue) signify adecreasein AUC as aresult of dropping, and therefore indicate
that the featureimproves the performance. ¢, Correlation of the three
classification pipeline scores across the training dataset. Two-sided Pvalues of
all correlations <2.2x107. d, Receiver-operating characteristic curves for the
clinicaland integrated models applied on the external validation cohort.

e, Comparisonbetween AUCs of the clinical model and models with different
levels of dataintegration. The measure of centre is the parameter estimate and
error barsrepresent 95% DeLong confidenceintervals.f, Associationbetween

lymphocyte density and treatment response in ARTemis patients with digital
pathology and sequencing data (right, n =38 cases) vs. patients with only
digital pathology available (left, n =313 cases). The box bounds the
interquartile range divided by the median, with the whiskers extending to a
maximum of 1.5 times the interquartile range beyond the box. Outliers are
shownas dots. P values obtained from Wilcoxon rank sum tests. g, Precision-
recall curves of the clinical and fully integrated models applied on the test
cohorts. The average precision values are 0.46 (clinical model) and 0.68 (fully
integrated model). The areas under the precision-recall curves are 0.43 (clinical
model)and 0.67 (fully integrated model).
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Extended DataFig.10|Predictor score ordinally associated with RCB class.
Box plots showing the distribution of predictor scores obtained by the six
models across RCB classes in both training (n =147 cases) and validation (n =75
cases) sets. Thebox bounds theinterquartile range divided by the median, with

the whiskers extending to amaximum of1.5 times theinterquartile range
beyond the box. Outliers are shown as dots. Pvalues two-sided and obtained
from FDR-corrected Wilcoxon rank sum tests.
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I:] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Clinical data was collected in Microsoft Excel (as part of the office 365 suite) by data managers, and then converted into R objects using the R
statistical framework (v 4.0.3)

Data analysis List of software used:

ANNOVAR: version 599af129dbcfd4e85a2da9832c4ae59898e2f3a9

ASCAT: version 2.5.1

bcl2fastq2: version 2.17

CellExtractor: version v1.0

Ensembl Variant Effect Predictor: version 87

FastQC: version 0.11.7

Genome Analysis Toolkit (GATK): version 4.1.4. Tools used: BaseRecalibrator, CreateSomaticPanelOfNormals, FilterMutectCalls,
HaplotypeCaller, IndelRealigner, Mutect2, RealignerTargetCreator, SplitNCigarReads, VariantRecalibrator
HTSeq: version 0.6.1p1

LOHHLA: https://bitbucket.org/mcgranahanlab/lohhla/src/master/ commit 9d58c99

Microsoft Excel: office 365 version

Novoalign and Novosort: version 3.2.13

NetMHC: version 4

NetMHCPan: version 3

Picard: version 2.17.0. Tools used: CalculateHSMetrics, MarkDuplicates

PickPocket: version 1.1
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pVAC-tools: version 1.5.4
Singularity: version 2.4.6-dist
STAR: version 2.5.2b

TIDE: http://tide.dfci.harvard.edu

R version 4.0.3 and associated packages:
e DeconstructSigs: version 1.8
* DNAcopy: version 1.60

e edgeR: version 3.32.1

* GSVA: version 1.34

* Hmisc version 4.4

¢ iC10: version 1.5

e MASS: version 7.3-54

e MCPcounter: version 1.2.0
¢ pheatmap: version 1.0.12

e QDNAseq: version 1.24

* ReactomePA: version 1.34

e scarHRD: version 0.1.1

e vcd: version 1.4-7

Python version 3.7.4 and associated packages:
* Numpy: version 1.16.4

¢ Scipy: version 1.3

e Scikit-learn: version 0.21.2

e Pandas: version 0.24.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

DNA and RNA sequence data have been deposited at the European Genome-phenome Archive (EGA), which is hosted by the EBI and the CRG, under accession
number EGAS00001004582 (https://ega-archive.org).

Individual raw data sets are available in Supplementary Tables 1-4.

The R and Python source code used to run the analyses described in the manuscript and to generate all figures is available at: https://github.com/cclab-brca/
neoadjuvant-therapy-response-predictor

The following gene sets are referenced within the manuscript:

1. Molecular Signatures Database (MSigDB) Hallmarks gene set (version 6.1). Downloaded from: https://www.gsea-msigdb.org/gsea/msigdb/

2. Genomic Grade Index (GGI) gene set. Reference: Sotiriou, C. et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic
grade to improve prognosis. J. Natl. Cancer Inst. 98, 262—72 (2006).

3. Core Embryonic stem cell (ESC)-like module. Reference: Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem
Cell 2, 333-44 (2008).

4. STAT1 immune signature. Reference: Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes.
Clin. Cancer Res. 14, 5158-65 (2008).

5. Paclitaxel response metagene. Reference: Juul, N. et al. Assessment of an RNA interference screen-derived mitotic and ceramide pathway metagene as a
predictor of response to neoadjuvant paclitaxel for primary triple-negative breast cancer: a retrospective analysis of five clinical trials. Lancet. Oncol. 11, 358—65
(2010).

6. Cytolytic activity (CYT) score. Reference: Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated
with local immune cytolytic activity. Cell 160, 48—61 (2015).

7. Danaher immune gene sets. Reference: Danaher, P. et al. Gene expression markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 5, 18 (2017).

8. Immunoscore gene sets. Reference: Charoentong, P. et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and
Predictors of Response to Checkpoint Blockade. Cell Rep. 18, 248-262 (2017).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 180 women with early and locally advanced breast cancer planned to undergo neoadjuvant treatment were prospectively enrolled the
molecular profiling study described (TransNEO). Of these, 12 were excluded and not sequenced (reasons: no research biopsy taken (n=6), co-
diagnosis of metastatic disease (n=3), recruited to early stage clinical trials (n=2), died early during therapy (n=1)). Tumours from the 168
remaining women were molecularly profiled, of which 155 had associations with RCB and received adequate therapy exposure (defined as
more than 1 cycle of chemotherapy and, if HER2+, more than 1 cycle of targeted therapy). This is summarised in Extended Data Figure 1 and
in the Methods section.
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For the validation dataset, sequenced cases within the control arm of the ARTemis trial (n=38) and cases within the PBCP study (n=37) that
received neoadjuvant therapy and had DNA, RNA, and digital pathology data were used for validation (summarised in Extended Data Figure 1).

Data exclusions To determine associations between response, only cases which had molecular/digital pathology data and received more than 1 cycle of
chemotherapy and, if HER2+, received more than one cycle of targeted therapy were included (n=155 as described in Extended Data Figure 1
and Methods). These exclusion criteria were pre-established prior to commencing analysis to ensure that associations with response were
only derived using data from patients treated with adequate therapy exposure (defined as more than one cycle of therapy).

Replication The findings were validated in an independent dataset comprising 75 cases with DNA, RNA and digital pathology data.
Randomization Randomization not applicable - all cases were treated with standard of care therapy regimens.
Blinding Blinding not applicable - no group allocations.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [x]|[] chip-seq
Eukaryotic cell lines E] D Flow cytometry
Palaeontology and archaeology E] D MRI-based neuroimaging
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Human research participants

Policy information about studies involving human research participants

Population characteristics All participants within the TransNEO and PBCP studies were women diagnosed with early/locally advanced breast cancer and
treated with neoadjuvant chemotherapy (and anti-HER2 therapy if HER2+) between 2013-2018. Participant characteristics
are included within Supplementary data table 1.

The population characteristics of the patients used in the control arm of the ARTemis Study are described in Earl, H. M. et al.
Efficacy of neoadjuvant bevacizumab added to docetaxel followed by fluorouracil, epirubicin, and cyclophosphamide, for
women with HER2-negative early breast cancer (ARTemis): an open-label, randomised, phase 3 trial. Lancet. Oncol. 16, 656—
66 (2015). Link to article: https://doi.org/10.1016/51470-2045(15)70137-3

Recruitment Within the TransNEO and PBCP studies, all women with early/locally advanced breast cancer presenting to Cambridge
University Hospitals NHS Foundation Trust and planned to undergo pre-operative chemotherapy were approached by the
Cambridge Breast Cancer Unit research team and offered participation within the study.
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Inclusion criteria included:

1. Patient with histological diagnosis of invasive breast cancer

2. Patient receiving neoadjuvant therapy (chemotherapy and/or hormonal therapy)
3. Able to give informed consent

4. ECOG 0-2

In the ARTemis trial, key inclusion and exclusion criteria are available at https://www.clinicaltrialsregister.eu/ctr-search/
search?query=2008-002322-11 and the trial description and results have been previously published https://doi.org/10.1016/
S1470-2045(15)70137-3

There is no selection bias within this study: any patient identified in standard of care clinical practice to benefit from
neoadjuvant therapy was approached to take part in the study, and all those who consented and donated tumour tissue
were included in the study if they received more than one cycle of therapy and response assessment was available post
therapy (Extended data figure 1).

Ethics oversight East of England Research Ethics Committee: 12/EE/0484 (TransNEOQ), 18/EE/0251 (PBCP)
South East Research Ethics Committee: 08/H1102/104 (ARTemis)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJEguidelines for publication of clinical research and a completedCONSORT checklist must be included with all submissions.

Clinical trial registration ARTemis clinical trial: EudraCT Number 2008-002322-11, UK South East REC Number: 08/H1102/104, https://
www.clinicaltrialsregister.eu/ctr-search/search?query=2008-002322-11

Study protocol ARTemis clinical trial protocols:
https://www.clinicaltrialsregister.eu/ctr-search/trial/2008-002322-11/GB
https://warwick.ac.uk/fac/sci/med/research/ctu/trials/cancer/artemis/

Data collection The ARTemis clinical trial collected data recruited women with early invasive breast cancer (radiological tumour size >20 mm, with or
without axillary involvement), at 66 centres in the UK between May 7, 2009, and Jan 9, 2013. Full details of the trial have been
published and are available within the supplementary material of the trial publication in Lancet Oncology: https://doi.org/10.1016/
$1470-2045(15)70137-3

Outcomes In the ARTemis trial, the primary endpoint was defined as complete pathological response rates after neo-adjuvant chemotherapy
defined as no residual invasive carcinoma within the breast (DCIS permitted) AND no evidence of metastatic disease within the lymph
nodes. The secondary endpoints were:

1. Disease-Free Survival

2. Overall Survival

3. Complete pathological response rates rate in the breast alone

4. Radiological (ultrasound) response after 3 and after 6 cycles of chemotherapy. Rate of breast conservation
Toxicities, including in particular cardiac safety and surgical complications (wound healing, bleeding, and thrombosis).

The results and assessment of these endpoints have already been published in Lancet Oncology: https://doi.org/10.1016/S1470-2045
(15)70137-3
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