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Detection of Gag C‑terminal 
mutations among HIV‑1 
non‑B subtypes in a subset 
of Cameroonian patients
Georges Teto1,9*, Alex Durand Nka1,2,3,9, Joseph Fokam1,4,5*, Yagai Bouba1,2, Désiré Takou1, 
Lavinia Fabeni6, Luca Carioti2, Daniele Armenia7, Ezéchiel Ngoufack Jagni Semengue1,2,3, 
Béatrice Dambaya1, Samuel Martin Sosso1, Vittorio Colizzi1,2,3, Carlo‑Federico Perno8, 
Francesca Ceccherini‑Silberstein2, Maria Mercedes Santoro2,10 & Alexis Ndjolo1,10

Response to ritonavir-boosted-protease inhibitors (PI/r)-based regimen is associated with some 
Gag mutations among HIV-1 B-clade. There is limited data on Gag mutations and their covariation 
with mutations in protease among HIV-1 non-B-clades at PI/r-based treatment failure. Thus, we 
characterized Gag mutations present in isolates from HIV-1 infected individuals treated with a PI/r-
regimen (n = 143) and compared them with those obtained from individuals not treated with PI/r 
(ART-naïve [n = 101] or reverse transcriptase inhibitors (RTI) treated [n = 118]). The most frequent HIV-1 
subtypes were CRF02_AG (54.69%), A (13.53%), D (6.35%) and G (4.69%). Eighteen Gag mutations 
showed a significantly higher prevalence in PI/r-treated isolates compared to ART-naïve (p < 0.05): 
Group 1 (prevalence < 1% in drug-naïve): L449F, D480N, L483Q, Y484P, T487V; group 2 (prevalence 
1–5% in drug-naïve): S462L, I479G, I479K, D480E; group 3 (prevalence ≥ 5% in drug-naïve): P453L, 
E460A, R464G, S465F, V467E, Q474P, I479R, E482G, T487A. Five Gag mutations (L449F, P453L, 
D480E, S465F, Y484P) positively correlated (Phi ≥ 0.2, p < 0.05) with protease-resistance mutations. 
At PI/r-failure, no significant difference was observed between patients with and without these 
associated Gag mutations in term of viremia or CD4 count. This analysis suggests that some Gag 
mutations show an increased frequency in patients failing PIs among HIV-1 non-B clades.

For several decades, Human Immunodeficiency Virus (HIV) has caused many deaths. In fact, 150,000 
[100,000–210,000] AIDS related deaths were recorded in Western and Central Africa1, making this region the 
most affected by the pandemic, despite the scale-up of antiretroviral therapy (ART). In the current era of "Test 
and Treat" in resource-limited settings (RLS), there is a need to closely monitor and study determinants of poor 
therapeutic outcomes, so as to ensure a sustained long-term efficacy of available drug regimens2. Such goals are 
of paramount importance; as viral suppression remains suboptimal (only 81.1% of adults on ART, below the 
expected 95% target for achieving the elimination goal by 2030)2. Some of the reasons for the poor viral suppres-
sion rate in people on treatment include non-adherence to treatment3, interruptions of treatment4, and very-high 
baseline viremia5, which generally contribute substantially to the emergence of resistant viral strains6. With long-
term exposure to ART and switch of treatment, the number of HIV-infected patients receiving ritonavir boosted 
protease inhibitors (PI/r)-based ART is increasing substantially in RLS. Of note, PI/r represents the backbone of 
first-line ART in children, and is the core-molecule for second-line ART in adolescents/adults, as recommended 
by the World Health Organization for RLS, with essentially regimens containing Lopinavir/ritonavir (LPV/r) 
or ritonavir-boosted Atazanavir (ATV/r)7. Viral resistance to PI/r evolves initially by mutations in the protease 
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region. Mutated residues in HIV protease are classified as either major or minor resistance mutations, according 
to their effect on ART clinical outcomes8. Following the Stanford algorithm (mutation list), minor resistance 
mutations (L10F, V11I, K20TV, L23I, L33F, K43T, F53L, Q58E, A71IL, G73STCA, T74P, N83D, and L89V)9 are 
assumed to have ancillary roles such as compensation for lower efficiency of proteolysis caused by major muta-
tions; major resistance mutations (V32I, M46IL, I47VA, G48VM, I50VL, I54VTALM,L76V,V82ATFS, I84V,N88S, 
L90M)9 tend to confer high levels of resistance to one or multiple PI/r and develop early in patient treatment10.

Specifically, the emergence of HIV resistance to PI/r requires a stepwise accumulation of primary and com-
pensatory mutations in the viral protease. Additionally, selected Gag (Group of specific antigens) mutations have 
been recently shown to provide compensatory functions for PR resistance mutations, which may contribute 
to poor treatment outcomes on PI/r-containing regimens due to the emergence of Gag-specific drug selected 
mutations among B subtype11,12. As mechanism of resistance may differ between B and non-B mutations, studies 
on non-B mutations are limited.

The HIV protease is essential for cleaving the Gag and Gag-pol polyproteins into their functional protein 
products, leading to the assembly of a mature infectious virus particle13–15. The protease has five cleavage sites 
on the Gag gene: the first cleavage separates the nucleocapsid protein (NC) from the capsid protein (CA) down-
stream of the 14 amino acid binding peptide called spacer peptide 1 (SP1); the capsid is subsequently separated 
from the matrix protein (MA), which remains associated with the virion membrane13–15; this event is almost 
simultaneous to the release of the C-terminal p6 Gag protein, downstream of another linker peptide located 
between NC and p6, termed SP2 (spacer peptide 2, formerly termed p1); finally, the two linker peptides SP1 and 
SP2 are trimmed from the CA and NC proteins, respectively13–15. Of note, mutations in Gag ere reported to be 
contribute substantially to PI/r resistance besides compensating for fitness loss11,12. These potential effects are 
essentially driven by the C-terminal region, with little contribution from MA, CA and SP111.

Some adherent patients failing treatment on PI/r-based ART do not harbor any major protease mutations, 
thus suggesting the detrimental effects of closer genes like Gag on the resulting poor treatment response16. This 
calls for further investigation on Gag genes for a successful scaling-up of PI/r-based ART in RLS like Cameroon. 
Of note, the role of drug resistance mutations in HIV protease has been studied extensively, whereas mutations 
in its substrate Gag have not been thoroughly ascertained.

A better understanding of HIV-1 Gag gene mutations and their co-variation with protease mutations among 
patients failing on PI/r-based regimen might be of great clinical relevance, especially as failure under PI without 
resistance is common.

We therefore sought to determine P7 (NC)-P6 HIV-1 Gag gene mutations selected under PI/r pressure and 
their covariations with protease mutations among HIV-1 non-B clades.

Results
Demographic and clinical characteristics of study participants.  Our study population consisted 
of 362 PLHIV, of whom 101 were ART-naïve, 118 on a regimen containing only RTIs and 143 on a regimen 
containing a PI/r. Females were predominant (57.2%, 207/362), and the median [IQR] age was 41 [33–49] years. 
ART-naïve patients showed a significantly lower age compared to those treated (median [IQR], years: 38 [31–
48] vs. 44 [32–52] in NNRTI-treated patients vs. 41 [33–47] in PI/r-treated patients; p = 0.031). For those on 
treatment, the median duration on ART was 63 [IQR: 35–105] months. The overall median [IQR] CD4 cells 
count was 181 [60–361] cell/mm3, with no statistically significant difference observed among the three groups. 
Regarding viremia, ART-naïve patients had the highest median [IQR] viral load (5.6 [5.4–6.7] log10 copies/
mL), followed by those on RTI-based regimens (5.3 [4.7–5.7] log10 copies/mL; versus on PI/r-based regimens 
(5.1 [4.3–5.6] log10 copies/mL; p < 0.001). According to ART regimen, the majority of patients on RTI received 
TDF + 3TC + EFV (52.5%), followed by AZT + 3TC + NVP (19.5%); of the patients on PI/r, the majority received 
LPV/r or ATV/r containing regimen (65.7% and 32.9%, respectively) (Table 1).

Viral subtypes distribution and protease drug resistance mutations profile among PI/r treated 
patients.  Out of the overall 362 study participants, a broad diversity of HIV-1 non-B clades was found, 
driven by CRF02_AG (198, 54.69%), followed by pure subtypes A (49, 13.53%), D (23, 6.35%) and G (17, 4.69%). 
Among the 143 PI/r treated patients, the most represented subtype was also CRF02_AG subtype (87, 60.83%), 
follow by subtype A1 (22, 13.98%); G (12, 8.39%); CRF_11.cpx (9, 6.29%); F2 (6, 4.19%); D (2, 1.39%); C (2, 
1.39%); CRF06_cpx (1, 0.69%), A2 (1, 0.69%); CRF01_AE (1, 0.69%) (Fig. 1).

The overall prevalence of the presence of at least one protease drug resistance mutation among PI/r-experi-
enced patients was 19.5% (n = 28). The most frequent mutations were M46I (21; 14.69%), I84V (11, 7.69%) and 
I54V (11, 7.69%) (Fig. 2).

P7 (NC)‑P6 Gag mutations associated to PI/r exposure.  By evaluating the last 56 amino acids of Gag 
sequences derived from 101 drug-naïve and 143 patients on PI/r containing regimen, we identified 18 mutations 
associated to PI/r exposure, based on the assumption that these mutations occurred with different frequencies 
in ART-naïve patients compared to patients on PI/r-based regimen.

These mutations were grouped into three classes, based on their prevalence in isolates from treatment naïve 
and PI/r treated individuals (Fig. 3).

Class I included five mutations (L449F, D480N, L483Q, Y484P, T487V) that were completely absent or 
occurred with a frequency of < 1% in isolates from drug-naïve patients and showed a significant increase in 
isolates from patients on PI/r-based regimen (5.59–11.18%).
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Table 1.   Socio-demographic characteristics of the study population. IQR: Interquartile range; NRTIs: 
Nucleoside reverse transcriptase inhibitors; EFV: Efavirenz; NVP: Nevirapine; LPV/r: Lopinavir; ATV/r: 
Atazanavir; IDV/r: Indinavir; PI/r: ritonavir boosted protease inhibitors; RTI: Reverse transcriptase inhibitors. 
a Chi-squared of independence test was used to estimate the potential differences.

Naïve (n = 101) RTI-treated (n = 118) PI/r-treated (n = 143) p-valuea

Gender

Female n (%) 59 (28.5) 73 (35.3) 75 (36.2)
0.516

Male n (%) 42 (27.1) 45 (29.0) 68 (43.9)

Age (years), median [IQR] 38 [31–48] 44 [35–52] 41 [33–47] 0.031

CD4 (cells/μl), median [IQR] 231 [60–340] 169 [58–393] 167 [61–362] 0.760

Viral load (Log10/copies/mL), median [IQR] 5.61 [5.4–6.7] 5.3 [4.7–5.7] 5.1 [4.3–5.6]  < 0.0001

ART regimen n (%)

2NRTIs + EFV – 69 (58.4) –

2NRTIs + NVP – 49 (41.5) –

2 NRTIs + LPV/r – – 94 (65.7)

2 NRTIs + ATV/r – – 47 (32.9)

2 NRTIs + IDV/r – – 2 (1.4)

Figure 1.   Phylogenetic tree of the 143Viral subtypes distribution among HIV-1 infected patients failing PI/r 
treatment, inferred using MEGA version 5.0 software (https://​www.​megas​oftwa​re.​net/); the scale bar represents 
2% genetic distance.

https://www.megasoftware.net/
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Class II included four mutations (S462L, I479G, I479K, D480E) already present in isolates from drug naïve 
patients at a frequency between 1 and 5% but with a significant increase in isolates from patients on PI/r-based 
regimen (5.59–37.76%).

Class III included nine mutations (P453L, E460A, R464G, S465F, V467E, Q474P, I479R, E482G, T487A) 
already present in isolates from drug naïve patients at a frequency ≥ 5% but with a significant increase in isolates 
from PI/r-based patients (15.38–99.31%).

Gag P7(NC)‑P6 mutations significantly associated to both reverse transcriptase inhibitors 
(RTI) and PI/r exposure.  Four Gag P7(NC)-P6 mutations significantly associated to RTI exposure com-
pared to naïve patients were also significantly associated to PI/r exposure (L449F, p = 0.032; I479R, p = 0.002; 
E482G, p = 0.012; Y484P, p < 0.0001) (Fig. 3). Other Gag mutations P453L, E460A, S462L, R464G, S465F, V467E, 
Q474P, I479G, I479K, D480E, D480N, L483Q, T487A and T487V were only associated with PI/r exposure and 
not RTI when compared to ART naïve patients. Among the 18 Gag mutations significantly associated to PI/r 

Figure 2.   Distribution of major protease drug resistance mutation. Resistance mutations were defined 
according to the Stanford algorithm.

Figure 3.   HIV-1 Gag gene mutations with significant increase in frequency from isolates between drug-naive 
and NRTI/NNRTI and/or PI/r treated patients. Statistical differences were assessed by chi-squared tests of 
independence (PI/r vs. ART-naïve and RTI vs. ART-naïve). p-values were significant at a false discovery rate of 
0.05 following correction for multiple comparison. *p < 0.05; **p < 0.001; ***p < 0.0001 for PI/r treated patients 
vs. those ART naïve. Δ p < 0.05 for the comparison between NRTI/NNRTI vs. ART naïve. NNRTI: non-NRTI, 
NRTI: nucleoside reverse transcriptase inhibitor, PI/r: ritonavir boosted protease inhibitors, RTI: reverse 
transcriptase inhibitor.
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exposure, ten mutations (P453L; E460A; R464G; V467E; I479K; Q474P; I479K; D480E; T487A; T487V) signifi-
cantly differed between isolates from PI/r-treated vs RTI-treated (p < 0.05, Fig. 3).

Gag P7(NC)‑P6 mutations according to HIV‑1 viral subtypes.  Of the 18 mutations significantly 
associated to PI/r exposure, seven mutations were statistically different among HIV-1 subtypes. Indeed, in class 
1, mutations L483Q, Y484P and T487V showed a significantly higher prevalence among subtype A1 infected 
individuals, when compared to other subtypes (p < 0.001, Table 2). Of note, all the mutations with significantly 
varying frequencies of class 1 were found only in subtype A1 and other (mainly made of CRF11_cpx which has a 
portion of A subtype in Gag region). Regarding class 2, I479K was significantly more frequent in subtype catego-
rized as other and D480E in subtype G, p < 0.001. for class 3, S465F was significantly more frequent in subtype 
categorized as other and E482G in CRF02_AG, p < 0.001.

Covariation of Gag mutations with protease mutations.  Another goal of our study was to assess the 
covariation of HIV Gag P7(NC)-P6 mutations with other mutations observed in the protease gene of 143 PI/r-
treated patients, focusing on PI/r major and/or accessory drug resistance mutations according to the Stanford 
list of mutations9.

To identify significant patterns of pairwise correlations between Gag P7 (NC)-P6 mutations and protease 
mutations observed in isolates from PI/r-treated patients, we calculated the binomial correlation coefficient (phi) 
and its statistical significance for each pair of mutations (Table 3).

Gag P7(NC)‑P6 mutations involved in positive correlations with PI/r major resistance mutations.  In Class I, 
two mutations were positively correlated (phi > 0, p  < 0.001) as pairs with protease major resistance mutations: 
L449F correlated with the major resistance mutations V32I (phi = 0.38, p = 0.008), I54V (phi = 0.27, p = 0.015) 
and L90M (phi = 0.32, p = 0.015); Y484P correlated with the major mutations I54V (phi = 0.33, p = 0.003) and 
V82A (phi = 0.26, p = 0.016). In Class II, D480E positively correlated with the major mutations I54V (phi = 0.31, 
p =  p < 0.001) and V82A (phi = 0.26, p = 0.044). In Class III, only the Gag mutation P453L positively correlated 
with some major mutations as follows: L33F (phi = 0.28, p = 0.004), M46I (phi = 0.30, p = 0.001), I54L (phi = 0.27, 
p = 0.022), I54V (phi = 0.38, p < 0.001), V82A (phi = 0.20, p = 0.031), V82T (phi = 0.27, p = 0.021), and I84V 
(phi = 0.38, p < 0.001), (Table 3).

Gag P7(NC)‑P6 mutations involved in negative correlations with PI/r major resistance mutations.  In Class I 
Gag mutations, L449F showed a significant negative correlation (phi < 0 and p < 0.05) with M46I (phi = − 0.07, 
p = 0.019); in Class II, I479G correlated with I64M (phi = − 0.09, p = 0.011); in class III, E482G correlated with 
I54V (phi = − 0.19, p = 0.027), Q474P with M46I (phi = − 0.03, p = 0.044) and T487A with M46I (phi = − 0.21, 
p = 0.016) (Table 3).

Table 2.   Gag P7(NC)-P6 mutations according to HIV-1 viral subtypes. a Eighteen (18) Gag mutations 
significantly associated to PI/r exposure. b Chi-squared of independence test was used to estimate the overall 
potential differences among types. The subtypes categorized as “other” included: CRF11_cpx (9), F2 (6), D (2), 
C (2), CRF06_cpx (1), A2 (1) and CRF01_AE (1).

Class Mutations Overall n (%)

Subtypes n (%)

CRF02_AG (n = 87) A1 (n = 22) G (n = 12) Others (n = 22) p-valueb

I

L449F 8 (5.59) 3 (3.44) 1 (4.54) 1 (8.33) 3 (13.63) 0.305

D480N 8 (5.59) 3 (3.44) 2 (9.09) 0 (0.00) 3 (13.63) 0.450

L483Q 16 (11.18) 0 (0.00) 11 (50.00) 0 (0.00) 5 (22.72)  < 0.001

Y484P 10 (6.99) 0 (0.00) 6 (27.27) 0 (0.00) 4 (18.18)  < 0.001

T487V 14 (9.79) 0 (0.00) 11 (50.00) 0 (0.00) 3 (13.63)  < 0.001

II

S462L 8 (5.59) 4 (4.59) 3 (13.63) 0 (0.00) 1 (4.54) 0.273

I479G 22 (15.38) 18 (20.68) 3 (13.63) 1 (8.33) 0(0.00) 0.161

I479K 54 (37.76) 25 (28.73) 7 (31.81) 4 (33.33) 18(81.81)  < 0.001

D480E 36 (25.17) 16 (18.39) 1 (4.54) 9 (75.00) 10(45.45)  < 0.001

III

P453L 22 (15.38) 10 (11.49) 6 (27.27) 5 (41.66) 1 (4.54) 0.190

E460A 142 (99.30) 86 (98.85) 22 (100.00) 12 (100.00) 22 (100.00) 1.000

R464G 138 (96.50) 87 (100.00) 18 (81.81) 11 (91.66) 22 (100.00) 0.403

S465F 24 (16.78) 0 (0.00) 0 (0.00) 8 (66.66) 16 (72.72)  < 0.001

V467E 135 (94.40) 87 (94.25) 17 (77.27) 12 (66.66) 19 (86.36) 0.576

Q474P 99 (69.23) 57 (65.51) 16 (72.72) 4 (33.33) 22 (100.00) 0.320

I479R 63 (44.05) 39 (44.82) 10 (45.45) 5 (41.66) 9 (40.90) 0.162

E482G 74 (51.74) 68 (78.16) 2 (9.09) 2 (16.66) 2 (9.09)  < 0.001

T487A 52 (36.36) 36 (41.37) 3 (13.63) 5 (41.66) 8 (36.36) 0.139
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Gag P7(NC)‑P6 mutations involved in correlations with PI/r non polymorphic accessory resistance muta‑
tions.  Three Gag C-terminal mutations significantly associated with PI/r exposure showed significant positive 
correlations with specific PI/r non polymorphic accessory resistance mutations. In particular L449F correlated 
with L10F (phi = 0.25, p = 0.036); P453L with L10F (phi = 0.20, p = 0.046), Q58E (phi = 0.20, p = 0.046) and L89V 
(phi = 0.31, p = 0.002); Y484P with three PI/r accessory resistance mutations K20T (phi = 0.28, p = 0.024), and 
L89V (phi = 0.29, p = 0.011) (Table 3).

Clusters of correlated mutations.  Because pairwise analysis suggested that Gag mutations are associated 
with specific evolutionary pathways of known resistance-conferring mutations, we performed average linkage 
hierarchical agglomerative cluster analysis17 to investigate this hypothesis in more detail.

The dendrogram (Fig. 4) shows that Gag mutation L449F and P453L significantly correlated to PI/r major 
resistance mutations. Specifically, P453L clustered (bootstrap value = 0.33) with major PI/r resistance mutations 
M46I and I84V (covariation frequency: 40.9% and 31.8%, respectively). Likewise, another cluster was formed 
by L449F and L90M (bootstrap value = 0.75, covariation frequency: 25.0%).

Association of Gag P7(NC)‑P6 mutations positively correlated to PI/r major resistance muta‑
tion with viral load and CD4 cell count at failure..  A further step in our study was to assess the differ-
ence in HIV viral load and CD4 cell count at the time of genotypic test between the patients harboring the Gag 
P7(NC)-P6 mutations positively correlated to PI/r major resistance mutations and those with wild type amino 
acids. Despite the slightly high median viremia in presence of two Gag mutations (L449F and Y484P) when com-
pared to individuals with a wild-type residues, no significant variation was found in terms of viremia. Similarly, 
even though the median CD4 cells count was lower in all patients with Gag mutations when compared to wild 
type residues, no significant difference was found between the two groups in term of CD4 cell count (Table 4).

Table 3.   Significantly correlated pairs of HIV-1 Gag mutations with protease major or accessory resistance 
mutations. a The frequency was determined in 143 isolates from PI/r-treated patients. b Percentages were 
calculated for patients containing each specific mutation. c All P values for covariation were significant at a false 
discovery rate of 0.05. Mutations in bold represents major protease resistance mutations.

Class Gag mutations Frequency (%)a Covariated mutations Frequency (%)b
Covariation frequency 
(%) phi p-valued

I

L449F 8 (5.59) L10F 6 (4.19) 2 (25.00) 0.25 3.69E−02

V32I 3 (2.09) 2 (25.00) 0.38 8.04E−03

M46I 22 (15.38) 4 (50.00) − 0.07 1.98E−02

I54V 11 (7.69) 3 (37.5) 0.27 1.55E−02

L90M 4 (2.79) 2 (25.00) 0.32 1.56E−02

Y484P 10 (6.99) K20T 4 (2.79) 2 (20.00) 0.28 2.46E−02

L33F 9 (6.29) 3 (30.00) 0.26 1.68E−02

I54V 11 (7.69) 4 (40.00) 0.33 3.23E−03

V82A 9 (6.29) 3 (30.00) 0.26 1.68E−02

L89V 8 (5.59) 3 (30.00) 0.29 1.16E−02

II
I479G 22 (15.38) I64M 19 (13.28) 7 (31.81) − 0.09 1.18E−02

D480E 36 (25.17) V82A 9 (6.29) 5 (13.88) 0.18 4.47E−02

III

P453L 22 (15.38) L10F 6 (4.19) 3 (13.63) 0.20 4.68E−02

L33F 9 (6.29) 5 (22.72) 0.28 4.62E−03

M46I 22 (15.38) 9 (40.90) 0.30 1.35E−03

I54L 2 (1.39) 2 (9.10) 0.27 2.28E−02

I54V 11 (7.69) 7 (31.81) 0.38 1.79E−04

Q58E 6 (4.19) 3 (13.63) 0.20 4.68E−02

V82A 9 (6.29) 4 (18.18) 0.20 3.19E−02

V82T 2 (1.39) 2 (9.10) 0.27 2.28E−02

I84V 11 (7.69) 7 (31.81) 0.38 1.79E−04

L89V 8 (5.59) 5 (22.72) 0.31 2.29E−03

S465F 24 (16.78) I54V 11 (7.69) 5 (20.83) 0.22 2.03E−02

V82A 9 (6.29) 4 (16.67) 0.19 4.35E−02

Q474P 99 (69.23) M46I 22 (15.38) 11 (11.11) − 0.03 4.46E−02

E482G 74 (51.74) I54V 11 (7.69) 2 (2.70) − 0.19 2.71E−02

T487A 52 (36.36) M46I 22 (15.38) 3 (5.76) − 0.21 1.64E−02
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Discussion
In this study we identified eighteen HIV-1 Gag mutations which are significantly associated with exposure to 
PIs. These findings suggest that HIV-1 Gag P7(NC)-P6 mutations was associated to PI/r regimen among HIV-1 
non-B subtypes.

Some HIV-1 Gag P7 (NC)-P6 mutations (L449F, D480N, L483Q, Y484P, T487V) which were rare or com-
pletely absent in isolates from ART-naïve patients had a significantly increased frequency among PI/r treated 
isolates at virological failure. This suggests that these mutations might be selected under PI/r pressure. These 
mutations have also been documented by previous studies as being associated with PI/r regimen11,16,18. Moreover, 
class I mutations (e.g., L449F and Y484P) occurred principally in combination with several major PI/r resistance 
mutations, suggesting that they emerge after a prolonged PI/r exposure, when the virus has already accumulated 

Figure 4.   Clusters of correlated mutations. Dendrogram obtained from average linkage hierarchical 
agglomerative clustering, showing clusters of Gag mutations and protease resistance mutations. The length of 
branches reflects distances between mutations in the original distance matrix. Bootstrap values, indicating the 
significance of clusters (≥ 0.2), are reported in the boxes. Gag mutations start with ‘Gag’ and protease mutations 
with ‘PR’.

Table 4.   Comparison of viremia and CD4 count of patients with wild type and mutated (positive correlated) 
amino acid. a The frequency was determined in 143 PI-treated patients. b Viremia and CD4 cell count values are 
contextual (± 30 days) to the genotype resistance testing and were available for 110 PI/r treated patients (77% 
of samples). c p-values were determined by Mann–Whitney test. d The wild-type amino acid in consensus B.

Position Residue Frequency n (%) a
Viremia, median [IQR] 
copies/mlb Ratio p-valuec

CD4 count, median 
[IQR] cells/mm3b Ratio p-valuec

449
Ld 18 (12.68) 162,116 [3725–186,450]

3.31 0.468
166 [46–443]

0.71 0.653
F 8 (5.59) 537,857 [2689–720,471] 118 [35–322]

484
Yd 23 (16.08) 90,407 [4172–119,019]

2.46 0.388
126 [74–467]

0.60 0.851
P 10 (6.99) 222,565 [6093–298,322] 107 [32–306]

480
Dd 88 (61.53) 255,855 [3747–318872]

0.20 0.184
178 [78–489]

0.69 0.736
E 36 (25.17) 51,807 [2226–74,908] 124 [69–436]

453
Pd 116 (81.11) 172,291 [6785–245,815]

0.50 0.353
127 [81–351]

0.73 0.078
L 22 (15.38) 87,814 [5535–98,,671] 93 [31–317]
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a large number of PI/r resistance mutations. In this regard, a previous study demonstrated that the emergence 
of protease major resistance mutation I50V require as a prerequisite changes in the Gag gene at position L449 
in vivo and cause reduction of sensitivity to amprenavir and an improved viral fitness in vitro18. The same 
observation was made in another study where this mutation was present exclusively among individuals failing 
PI/r-based treatment19. Protease mutation L90M had the strongest correlation with L449F which is confirmed 
in the dendrogram. These major protease mutations I50V and L90M would therefore be a sentinel for the L449F 
in the Gag gene. Gag Y484P mutation was shown to be associated to darunavir exposure and was classified as a 
novel Gag C-terminus mutation associated to PI/r regimen20.

We have also observed that some mutations (class II: S462L, I479G, I479K and D480E) which were already 
moderately present (1–5%) in isolates from ART-naïve patients significantly increased their prevalence (positive 
association) in isolates from patients on PI/r regimen. Mutations S462L and I479K were previously identified as 
Gag polymorphisms which are associated to PI/r exposure21. Also, Gag mutation D480E which is recognized as 
a PI-exposure associated mutation21 significantly correlated with two major PI/r resistance mutations (I54V and 
V82A). In the other hand, given that some studies have shown that only Gag mutations are capable of inducing 
resistance to darunavir16, the role of the novel mutation I479G which did not significantly correlate with any 
major or accessory PI/r resistance mutation deserve to be investigated.

Among the mutations already present in isolates from ART-naïve patients at a frequency of ≥ 5% but with a 
significant increase in isolates from PI/r treated patients (Fig. 2), only one mutation significantly correlated with 
major PI/r resistance mutations. More precisely, Gag mutation P453L positively correlated with seven major 
protease resistance mutations (L33F, M46I, I54L, I54V, V82A, V82T, I84V). Several studies have shown a positive 
correlation of Gag P453L mutation with some protease major resistance mutations such as I50V and I84V11,12,22. 
The involvement of this mutation in PI/r resistance has been demonstrated in vitro and has been incriminated 
in contributing to the restoration of viral fitness18. The strong correlation of this mutation with PI resistance 
mutations has been confirmed by the dendrogram; where P453L Gag mutation clustered with two major protease 
resistance mutations (M46I and I84V) (Fig. 4). This mutation although classified as PI/r-associated mutation21 
should be investigated to better understand its likely involvement in PI/r resistance. Among the mutations 
which did not correlate with any major or accessory protease resistance mutations, E460A was described to be 
repeatedly associated with therapy failure23, but its role in viral fitness and or drug resistance has not yet been 
proven. Gag mutations R464G, S465F, V467E, Q474P, I479R, and E482G were also previously identified as 
polymorphisms associated to PI/r exposure21. Thus, the potential role of these Gag mutations in the pathways 
to the development of resistance still need to be confirmed.

Furthermore, by comparing resistance mutation profile of RTI treated patients versus ART-naïve patients, 
we found the presence of certain Gag mutations (L449F, I479R, E482G and Y484P) significantly associated 
to RTI treated patients, and which were also significantly associated to PI/r treated patients. This suggest that 
some Gag mutations in patients failing PI/r may have been previously induced during RTI treatment, showing 
a possible interactive role of RTI on emerging Gag mutants. As previously reported by Soldi et al. in a subtype F 
highly-prevailing setting, the presence of NRTI mutations was associated to some PI/r resistance mutations (i.e. 
I50LV) in patients failing PI/r treatment24. Indeed, some studies revealed that some inserts at the P6 region within 
the Gag gene may favor virus escape from nucleoside reverse transcriptase inhibitors (NRTI) through greater 
accumulation of resistance mutations, leading to high level of resistance to this drugs class25. Of the 18 Gag muta-
tions associated to PI/r exposure, fifteen were not significantly present among patients on RTI when compared 
to naïve patients, and ten mutations were significantly associated to PI/r exposure when compared PI/r-treated 
vs RTI-treated. This reinforces the fact that these mutations are primarily selected under PI/r exposure.

In this study, we observed that the distribution of certain Gag mutations was significantly different according 
to the HIV-1 non-B viral subtypes, which seem to harbor more than two substitutions in P2/NC Gag cleavage site 
compare to B subtype26. Data on the distribution of Gag mutations potentially associated with drug susceptibility 
among non-B subtypes are limited. Our analysis showed that subtypes A and G, although not in large numbers 
seem to be most affected (Table 2). The association of Gag mutations in class 1 (< 1% variability among drug-
naïve individuals that significantly increased with PI treatment) among some of these non-B subtypes deserves 
to be further investigated. Of note, some differences in the susceptibility to PIs of certain non-B subtypes such 
CRF02_AG and G when compared to other subtypes was previously documented in the literature27.

Among Gag mutations which positively correlated with major protease drug resistance mutations, we did not 
find any significant association with a worse virologic or immunologic outcome. However, Gag mutations L449F 
and Y484P had higher median viremia when compared to individuals with a wild-type residues. Of note L449F 
were described to contribute to full recovery of viral fitness in protease inhibitor resistance13,28.

The significantly associated Gag gene mutations described to PI/r regimen in this non-B subtypes population 
are similar to those described in several studies conducted among B subtypes28. The selection of Gag gene muta-
tions related to PI/r exposure would therefore be similar in B and non-B subtypes in this C-terminal Gag region. 
These prominent findings henceforth support the need for a cohort-study in order to monitor the emergence of 
these mutations over time, the dynamics of immuno-virological parameters, in order to generate clinical con-
firmations that would be underscored by advanced in vitro analyses (by phenotyping via viral culture). Because 
we compared the non-B subtypes altogether, without a paired-wise comparison to B subtype, this could shadow 
some insightful information in non-B that would have reinforced our study-findings.

Conclusion
In summary, we have found that some Gag P7 (NC)-P6 mutations are associated with an increased frequency 
at PI/r failure among HIV-1 non-B isolates. In particular, mutations L449F, P453L and Y484P have shown a sig-
nificant correlation with several major and/or accessory protease resistance mutations. The potential implication 
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of novel Gag P7 (NC)-P6 mutations in treatment failure under PI/r-based regimen deserves to be further inves-
tigated in each non-B subtype and using cohort studies adding to in vitro experiments. These mutations could 
have clinical implications, since the current level of potential PI/r drug resistance might be underestimated.

Materials and methods
Specimen used for analysis.  The study was performed on plasma samples of PLHIV failing their treat-
ment. They were collected from January 2018 through December 2020 in Cameroon for routine clinical moni-
toring of HIV genotypic drug resistance at the Virology Laboratory of the Chantal BIYA International Reference 
Centre for research on the HIV/AIDS prevention and management (CIRCB) in Yaoundé-Cameroon. Patients 
were either naïve to antiretrovirals or treated with a PI/r-based regimen or a reverse transcriptase inhibitor (RTI) 
based regimen. Only patients with a clearly documented treatment history (available in their medical record) 
were enrolled; all participants on treatment were experiencing virological failure (i.e. a sustained plasma viral 
load > 1000 copies/ml after enhanced adherence counseling); and these participants on ART were considered to 
be adherent, based on self-reporting and enhanced adherence support according to national guidelines29.

HIV sequencing.  For the sequences obtained, HIV-1 P7 (NC)–P6 Gag and protease genotyping was per-
formed as previously described by Teto et al.30. Briefly, after viral RNA extraction from plasma samples, RNA was 
reverse-transcribed and amplified. From positive amplicons, DNA sequencing was performed in both sense and 
antisense using eight overlapping sequence specific primers. Sequences were obtained after capillary electropho-
resis on Applied Biosystem™ 3500 genetic analyzer (Applied Biosystems™, USA), and sequences of approximately 
168 nucleotides of the Gag gene P7 (NC)-P6) and 297 nucleotides for protease region were assembled and manu-
ally edited using Seqscape v.2.6. for P7 (NC)-P6 Gag gene and RECall (CDC, Atlanta) for protease gene.

Subtyping and drug resistance determination.  Nucleotide sequences were aligned with subtype/
CRFs reference sequences from the Los Alamos National Laboratory (LANL) database using the CLUSTAL.W 
integrated into Bioedit version 7.2.5 software (https://​bioed​it.​softw​are.​infor​mer.​com/7.​2/). Following compari-
son of each sequence to the subtypes and CRFs reference sequences (database accessed on 8/17/2021), gaps were 
removed from the final alignments. The phylogenetic tree was constructed by the neighbor-joining and Kimura’s 
two-parameter methods31 using the MEGA version 5.0 software (https://​www.​megas​oftwa​re.​net/). The reliabil-
ity of the branching orders was determined using 70% bootstrap robustness for subtype assignation.

Mutation’s prevalence.  To assess the association of Gag mutations with PI/r exposure, we calculated their 
respective frequencies in isolates from 101 drug-naïve patients, 118 patients on RTI, and 143 patients on PI/r-
based regimen. We then performed chi-squared tests of independence (based on a 2X2 contingency table) to 
verify statistically significant differences in frequency between the following groups of patients: (i) drug-naïve 
patients versus PI/r treated patients, (ii) drug-naıve patients versus patients on RTIs; (iii) patients on RTIs versus 
patients on PI/r.

Regarding protease mutations, we focused our attention on PI/r major and accessory drug resistance muta-
tions according to the Stanford list of mutations (https://​hivdb.​stanf​ord.​edu/​hivdb/​by-​mutat​ions/). In our analy-
sis, the Cochran rule, which is a conventional criterion for the chi-squared test to be valid, was fully satisfied. 
In fact, in each contingency table performed with our data set, 72% of the expected frequencies exceed 5, and 
all the expected frequencies exceed 1. In addition, in those few cases where the expected frequency in a single 
cell of the contingency table was less than 5, the significance was also confirmed by using the Monte Carlo sig-
nificance test procedure32.

We used the Benjamini–Hochberg method33 to identify results that were statistically significant in the pres-
ence of multiple-hypothesis testing. A false discovery rate of 0.05 was used to determine statistical significance.

Mutation’s covariation.  In the set of 143 PI/r treated patients, we exhaustively analyzed patterns of pairwise 
interactions among Gag mutations associated PI/r treatment and Protease mutations. Specifically, for each pair 
of mutations and corresponding wild-type residues, Fisher’s exact test was performed to assess whether co-
occurrence of the mutated residues differed significantly from what would be expected under an independence 
assumption. Again, the Benjamini–Hochberg method was used to correct for multiple testing, here at a false dis-
covery rate of 0.01. Samples having a mixture of two or more mutations at a given pair of positions were ignored 
in calculating the covariation, since it is not possible to identify whether these mutations are indeed located in 
the same viral genome.

Cluster analysis.  To analyze the covariation structure of mutations in more detail, we performed average link-
age hierarchical agglomerative clustering, as described elsewhere34. Hierarchical clustering methods, which 
under different names are also widely used in phylogenetic tree building, rely on a matrix of pairwise dissimi-
larities between entities. Briefly, in average linkage clustering, clusters of increasing size are formed starting from 
one-element groups by iteratively joining two clusters with minimum average inter cluster distances between 
pairs of mutations. The distance between a pair of mutations was derived from the phi correlation coefficient, 
which is a measure of the association between two binary random variables, with 1 and − 1 representing maxi-
mal positive and negative association, respectively. This similarity measure was transformed into a distance by 
mapping phi = 1 to distance 0 and phi = − 1 to distance 1, with linear interpolation in between. The distance 
between different mutations at a single position was left undefined, as such pairs never co-occur in a single 
sequence (except from mixtures) and would lead to distorted dendrograms owing to their great distance. sed 

https://bioedit.software.informer.com/7.2/
https://www.megasoftware.net/)
https://hivdb.stanford.edu/hivdb/by-mutations/
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on which groups are associated into hierarchical clusters of decreasingly strong association. To assess the stabil-
ity of the resulting dendrogram, confidence values for all sub trees in the dendrogram were computed by 100 
replications of the clustering procedure on sequence sets bootstrapped from the original 143 sequences34. For 
instance, a bootstrap value of 1 simply means that out of 100 runs, all 100 had these two mutations (or groups of 
mutations) most closely linked. In this dendrogram, only Gag gene mutations significantly associated with PI/r 
exposure and major/accessory protease resistance mutations were considered.

Ethical approval and informed consent.  This study was conducted in accordance with the Declaration 
of Helsinki. The study protocol was approved by the Cameroon National Ethics Committee, all subjects gave 
written informed consent/assent for inclusion before participating in the study.
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