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Attention‑guided deep learning 
for gestational age prediction using 
fetal brain MRI
Liyue Shen1,11, Jimmy Zheng2,11*, Edward H. Lee1, Katie Shpanskaya3, Emily S. McKenna3, 
Mahesh G. Atluri3, Dinko Plasto4, Courtney Mitchell4, Lillian M. Lai5, Carolina V. Guimaraes3, 
Hisham Dahmoush3, Jane Chueh6, Safwan S. Halabi3, John M. Pauly1, Lei Xing7, Quin Lu8, 
Ozgur Oztekin9, Beth M. Kline‑Fath10 & Kristen W. Yeom3*

Magnetic resonance imaging offers unrivaled visualization of the fetal brain, forming the basis 
for establishing age-specific morphologic milestones. However, gauging age-appropriate neural 
development remains a difficult task due to the constantly changing appearance of the fetal brain, 
variable image quality, and frequent motion artifacts. Here we present an end-to-end, attention-
guided deep learning model that predicts gestational age with R2 score of 0.945, mean absolute error 
of 6.7 days, and concordance correlation coefficient of 0.970. The convolutional neural network was 
trained on a heterogeneous dataset of 741 developmentally normal fetal brain images ranging from 
19 to 39 weeks in gestational age. We also demonstrate model performance and generalizability 
using independent datasets from four academic institutions across the U.S. and Turkey with R2 scores 
of 0.81–0.90 after minimal fine-tuning. The proposed regression algorithm provides an automated 
machine-enabled tool with the potential to better characterize in utero neurodevelopment and guide 
real-time gestational age estimation after the first trimester.

The fetal brain undergoes dramatic morphological and architectural changes within a short timeframe. Accurate 
understanding of key milestones in fetal brain maturation is critical for assessing range of normal development 
and long-term cognitive outcomes1. Previous studies have established an approximate spatiotemporal timetable 
of healthy fetal brain development, outlining the progressive gyrification of the cerebral cortex starting in the 
mid-second trimester2–5. Depending on severity, deviations from this pattern have been associated with devel-
opmental delays, psychomotor retardation, and failure to thrive6. The link between gestational age and cortical 
folding lays the foundation for neuroimaging-derived age predictions.

A growing body of neuroscience research has managed to leverage multiple imaging modalities to accurately 
predict the “brain age” of individuals using machine learning7–9. These algorithms learn the relationship between 
neuroimaging features and corresponding ages, after which they are tested on unseen data. Assuming model 
accuracy, discrepancies between estimated brain age and actual chronological age might suggest developmental 
brain pathology10. However, most studies to date have focused primarily on degenerative diseases and trauma 
in adults11–14. Fetal brain-based age estimation remains a major research gap and holds profound implications 
for obstetric prenatal care, delivery planning, and postnatal outcomes9,15,16.

The current method of choice for evaluating fetal brain maturity involves initial ultrasonography (US) of 
the cerebral cortex17. However, US can be severely limited by technical challenges and patient factors including 
maternal obesity, suboptimal fetal positioning, and oligohydramnios18. In addition, US-guided gestational dating 
in the second and third trimesters can err by up to 2 and 4 weeks, respectively19. In utero MRI has emerged as an 
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important adjunct to US, offering detailed resolution of cortical gyration and myelination20. Nevertheless, rapid 
and ongoing neurodevelopmental changes, low signal-to-noise ratio, tissue contrast, and geometric distortions of 
small fetal brain embedded within the maternal structures pose obstacles to fetal neuroimaging. Fetal motion is 
also random, spontaneous, and possible in all planes, rendering even fast single-shot sequences challenging21,22. 
Furthermore, fetal brain MRI protocols, imaging platforms, and operator experience differ widely across institu-
tions, leading to inconsistency in image quality and interpretation23.

Deep learning algorithms offer a powerful means to solve complex tasks such as fetal age estimation from 
highly variable imaging data12,24–26. Recent efforts have employed deep learning techniques on fetal brain MRI 
to infer gestational age, achieving moderate to high prediction accuracies27,28. However, these studies do not 
demonstrate a large or diverse enough sample to claim sufficient robustness or scalability28,29. The performance 
of some of these convolutional neural networks (CNN) also depends on manual brain segmentation, which can 
be time-intensive, poorly generalizable, and sensitive to artifacts, particularly in fetal imaging30. To address these 
problems, we proposed a self-attention framework to improve brain localization and the use of input images in 
multiple planes to maximize image diversity. We developed and tested several fully automated CNN architectures 
on a large heterogeneous single-center fetal MRI dataset. Finally, we tested the accuracy of age prediction when 
applied to data from several other centers of excellence in fetal imaging.

Results
Stanford cohort.  A total of 741 T2-weighted MRI scans corresponding to unique patients (median gesta-
tional age 30.6 weeks, range 19–39 weeks) were included. Coefficient of determination (R2) and mean absolute 
error (MAE) for each model architecture tested are presented in Table  1. For each MRI plane, diminishing 
performance was seen with more than 3 input slices. Between the two age prediction approaches, averaging the 
outputs from the global branch and attention-guided local branch generated higher R2 scores and smaller MAE 
compared with predictions based on global images alone. The highest performing single-plane model was the 
attention-guided, 3-slice, coronal-view model with an R2 of 0.924 and corresponding MAE of 7.9 days.

Integrating information from the three planes achieved a notable improvement in model regression perfor-
mance. A visualization of model regression performance is shown in Fig. 1. The concatenated multi-plane net-
work produced the most accurate gestational age predictions out of all models tested, with the 3-slice architecture 
slightly outperforming the 1-slice model (R2 = 0.945 vs. 0.935; MAE = 6.7 vs. 7.3 days). The agreement between 
prediction and ground truth for this model was substantial based on Lin’s concordance correlation coefficient 
(ρc = 0.970; 95% CI 0.961–0.978). The modified Bland–Altman plot shows slight age overestimation up to about 
34 weeks, after which the model progressively underestimates gestational age across quantile curves.

External sites.  The attention-guided, multi-plane ResNet-50 models trained on Stanford data were tested 
on external data obtained from four centers of excellence: Children’s Hospital of Los Angeles (CHLA), Cincin-
nati Children’s Hospital Medical Center (CCHMC), St. Joseph Hospital and Medical Center (SJH), and Tepecik 
Training and Research Hospital (TTRH). Without transfer learning, the 1-slice and 3-slice models achieved R2 
of 0.690–0.861 and 0.523–0.857 and MAE of 9.2–16.0 days and 10.3–21.0 days, respectively. As shown in Table 2, 
both models demonstrated notable improvement after fine-tuning (ΔMAE = − 0.7 to − 4.1  days and − 0.5 to 
− 4.6 days). Combining all datasets, the 1-slice model achieved higher Lin’s concordance correlation coefficient 
than the 3-slice model, but the difference was not significant (ρc = 0.920 [0.903–0934], vs. 0.895 [0.874–0.913]). 
The most generalizable models were the fine-tuned 1-slice model for CHLA, SJH, and TTRH and 3-slice model 
for CCHMC, with R2 of 0.81–0.90, MAE of 8.4–12.9 days, and moderate ρc of 0.90–0.94.

Table 1.   R2 score and mean absolute error performance across model architectures. R2 scores and 
corresponding MAE (days) are shown for each model architecture. ResNet-50 was used as the backbone. 
The Basic Network analyzes the entire image as input without attention masking. For each column, the best 
performance based on R2 score and mean absolute error is colored in blue. The highest performing architecture 
across all tested permutations is in red.

Architecture No. of 
slices

Single plane
Multi-plane

Ax Sag Cor

Basic network

1 0.880 (9.45) 0.892 (9.78) 0.908 (8.60) 0.929 (7.62)

3 0.906 (8.95) 0.894 (9.08) 0.902 (8.87) 0.938 (7.12)

5 0.717 (15.26) 0.683 (15.33) 0.736 (13.08) 0.829 (12.37)

Attention-guided

1 0.902 (9.01) 0.895 (9.30) 0.917 (8.07) 0.935 (7.34)

3 0.917 (8.34) 0.907 (8.30) 0.924 (7.94) 0.945 (6.66)

5 0.814 (11.91) 0.734 (14.05) 0.786 (13.08) 0.850 (10.92)
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Figure 1.   Regression performance of an attention-guided multi-plane ResNet-50 model. Model performance of 
the highest-scoring architecture visualized above. (a) Correlation between predicted brain age and ground truth 
(R2 = 0.945) is represented by the line of best fit (blue). The dashed line is the ideal regression, where prediction 
equals true age. (b) Differences between predictions and ground truth are shown on the modified Bland–
Altman plot. Corresponding 5%, 10th, 25th, 50th, 75th, 90th, and 95th quantile curves based on local piecewise 
regression analysis are drawn.

Table 2.   External validation of attention-guided, multi-plane, 1-slice and 3-slice models. R2 scores and 
corresponding MAE (days) are shown before and after fine-tuning on data from other institutions. This external 
validation uses the highest-scoring model architecture (attention-guided multi-plane) based on the Stanford 
dataset. 20% of each external dataset was used for fine-tuning and the other 80% for testing model performance 
and generalizability. The largest improvements in R2 and MAE are shown in blue for each dataset. The most 
generalizable architecture for each dataset is in red.

No. of 
slices Before fine-tuning After fine-tuning Difference

CHLA

(N=156)

1 0.861 (9.21) 0.891 (8.49) + 0.030 (− 0.72)

3 0.839 (10.47) 0.855 (9.94) + 0.016 (− 0.53)

CCHMC

(N=64)

1 0.690 (15.63) 0.818 (11.52) + 0.128 (− 4.11)

3 0.857 (10.30) 0.897 (8.44) + 0.040 (− 1.86)

SJH

(N=25)

1 0.835 (11.80) 0.883 (9.60) + 0.048 (− 2.20)

3 0.801 (11.52) 0.823 (10.96) + 0.022 (− 0.56)

TTRH 

(N=189)

1 0.718 (16.01) 0.808 (12.90) + 0.090 (− 3.11)

3 0.523 (20.97) 0.692 (16.34) + 0.169 (− 4.63)
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Discussion
In this study, we present an end-to-end, automated deep learning architecture that accurately predicts gesta-
tional age from developmentally normal fetal brain MRI. Our highest-scoring model performed at R2 of 0.945 
on the Stanford test set, comparable or superior to published child, adolescent, and adult brain age prediction 
CNNs8,10,24. Previous works in fetal brain-based age analysis using MRI have primarily been limited to the devel-
opment of spatiotemporal atlases for comparative age estimation and morphological segmentation31–33. Impor-
tantly, these methods help characterize fetal brain development and normal variability within the population9. 
However, most studies are restricted to a relatively small database, narrow age range, or isolated anatomical 
region (e.g., cortex, ventricles, hippocampus)31,34–36. These limitations reduce the generalizability of age-specific 
templates and reveal an important gap in our understanding of normal fetal brain maturation.

Variability in imaging quality presents another significant challenge for assessing fetal development. Chal-
lenges to interpretation include the rapidly changing neurological features in utero as well as the technical 
complexity of imaging17,21. Fetal MRI is notoriously complicated by the low signal from small fetal organs and 
relatively noisy background due to spontaneous fetal motion and maternal soft tissues (see Supplementary 
Fig. S1)37,38. One study showed that a deep learning segmentation model achieves high Dice overlap scores 
(96.5%) on clean datasets but low performance on images with motion artifact or abnormal fetal orientation 
(78.8%)30. This discrepancy highlights the importance of leveraging heterogeneous datasets to train and fine-
tune deep learning networks. Accordingly, we reviewed all normal fetal MRIs at Stanford from 2004 to 2017 
and excluded images only if severe imaging artifacts rendered them nondiagnostic. Our database of 741 images 
thereby enabled us to capture broad within-institution imaging variability and outnumbers datasets previously 
used to develop spatiotemporal atlases9,31–33,39.

More recent deep learning methods have utilized attention guidance in conjunction with object segmenta-
tion to improve noise resiliency40,41. Shi et al.28 built an attention-based deep residual network based on 659 
pre-segmented fetal brains, achieving R2 of 0.92 and MAE of 0.77 weeks. Their use of attention activation maps 
emphasized global and regional features, such as cerebral volume and sulcal contours, within pre-processed 
segmentations to enhance prediction accuracy. However, this staged deep learning approach relies on the care-
ful delineation of fetal brain masks, a time-intensive process that the authors report taking 30–40 min per 
sample. Since age regression depends on accurate object masking, external generalizability may be limited, 
as any fine-tuning would require manual segmentation by a trained researcher with domain knowledge. In 
contrast, we employ the attention mechanism to automatically focus on the fetal brain itself, enabling a higher 
signal-to-noise ratio by excluding unrelated features such as the maternal organs and other fetal body parts 
and reducing non-uniform MR intensity. Furthermore, both attention-guided masking and age regression are 
trained simultaneously and recursively, obviating the need for extensive pre-processing and fine-tuning. Our 
best-performing model was thereby computationally efficient and scalable, completing its regression task within 
5 min at a GPU level.

The real-world utility of any deep learning model largely depends on its generalization performance. For 
fetal MRI in particular, standard imaging protocols, quality of imaging, sequences used, and operator experience 
differ widely across institutions23. Performance losses incurred when transferring models from one institution 
to another has become a major concern in the machine learning field. In this study, we test multi-center gen-
eralizability of our automated deep learning network using a large external database spanning four centers of 
excellence, two countries, and a wide array of imaging platforms, scanner hardware, and acquisition parameters 
(Table 3). There were visible differences in image appearance when comparing datasets across different sites 
due to factors such as resolution, contrast, and signal-to-noise ratio (see Supplementary Fig. S2). Accordingly, 
our Stanford-trained multi-plane models yielded varying degrees of performance reduction on the external 
datasets. However, fine-tuning the model with just 20% of the external data enabled the network to adapt to 
the new cohort, highlighting its potential applicability across institutions and imaging platforms. Meaningful 
improvements in R2 score, MAE, and age concordance were achieved across institutions after fine-tuning and 
may continue to be observed using larger validation datasets.

Fetal MRI not only offers insight into prenatal development, but can also guide laboratory work-up, thera-
peutic interventions, counseling, and delivery planning23. At present, the reported date of last menstrual period 
and first-trimester US measurements are “gold standard” methods for determining gestational age19. However, 
inaccurate recall of the last menstrual period, confounding factors (e.g., irregular spotting or ovulation), and 
US variability in the second and third trimesters have propelled the need for alternative gestational dating 
approaches42. In our study, fetal brain MRI scans interpreted as normal based on expert consensus were used to 
develop a convolutional neural network that was highly predictive of gestational age, offering a potential solu-
tion for age estimation in the second half of gestation. Our end-to-end approach to assessing the fetal brain also 
obviates the need for manual feature engineering or segmentation, enabling real-time interpretation. Moving 
forward, this model may serve as a backbone for evaluating gestational age as well as deviations from normal 
development, such as underdevelopment, malformation, and other congenital diseases6,9. Furthermore, emerging 
deep learning techniques in image reconstruction43 offer promise for developing population-based spatiotem-
poral atlases to better characterize age-based fetal neuroanatomy.

There are several limitations to this study. As a 2D CNN, age predictions are made based on single-slice inputs, 
potentially limiting the information available to the network. A 3D CNN incorporating multi-slice imaging 
features may improve model performance but would require a much larger dataset and risk greater background 
noise. Our approach to enhance regression accuracy involves Gaussian weighting of the attention heatmap, opti-
mized for images centered on the fetal brain. Extreme position and size variability thereby reduces the accuracy of 
attention-guided mask inference but not necessarily regression performance as shown in Supplementary Fig. S3. 
This may be explained by the inclusion of both local and global branches, incorporating semantic features from 
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the emphasized subregion as well as the entire image, respectively. A drawback of this approach is the inclusion 
of unwanted background noise when the localization procedure performs optimally.

Notably, beyond 34 weeks, our model appears to underestimate gestational age. This trend can be partially 
attributed to dataset imbalance with few fetal MRI performed in the late third trimester, biasing predictions 
toward younger gestational ages. US and MR imaging studies also indicate that peak gyrification occurs between 
weeks 29–35 and that most of the primary and secondary sulci along with all notable gyri have formed by weeks 
34–374,18,44. A decreasing gyrification rate approaching full term may also skew age estimates, as fetal brains 
appear more homogenous as they near maturity. Future work can extend the training set to include fetal MRI at 
age extremes and explore emerging methods such as feature distribution smoothing for imbalanced data with 
continuous labels45. In terms of generalizability, our model may also benefit from the inclusion of external data in 
the original training set to reduce over-fitting. Finally, a machine learning model is only as reliable as the quality 
of its input data. Long-term clinical and developmental outcomes for our cohort are unavailable, so scans used 
to train and test our model are only “normal” from a neuroanatomical perspective.

Conclusion
Deep learning has emerged as a powerful approach for interpreting complex image features. We present an 
attention-guided, multi-view deep learning network that analyzes MRI-based features of the normally develop-
ing fetal brain to accurately predict gestational age. We further demonstrate model performance on external 
sites and the utility of fine-tuning the model for enhanced generalizability. This study identifies opportunities for 
imaging-driven analytics of in utero human neural development with potential to enhance diagnostic precision 
in the second and third trimesters.

Materials and methods
Stanford data collection and cohort description.  We retrospectively reviewed all 1927 fetal brain 
MRIs performed at Stanford Lucile Packard Children’s Hospital from 2004 to 2017, as described in Supple-
mentary Table S1. 1.5 T and 3 T MRI data were acquired with an 8-channel head coil on Signa HDxt, Signa 
EXCITE, Optima MR450W, and Discovery MR750W scanners (GE Healthcare). 572 images containing cerebral 
malformations, ventriculomegaly, or other acquired or congenital brain lesions were excluded. 422 nondiagnos-
tic images with severe motion artifacts or noise preventing adequate interpretation were also omitted. In total, 
we compiled a database of 933 fetal brain MRIs, interpreted as developmentally normal by expert pediatric 
neuroradiologists. MRI interpretations were based on visual features and biometry measurements such as brain 
biparietal diameter and skull occipitofrontal diameter. 741 studies had single-shot fast spin-echo T2-weighted 
sequences in all three planes (axial, coronal, and sagittal). The single-shot images, originally in DICOM File 
Format, were compressed to JPG files for visualization. The image slices near the middle of the sequence were 
pre-processed and augmented as the input. Slices were randomly cropped to 224 × 224 and normalized using 
sample mean and standard deviation. These data were randomly split into training (70%), validation (10%), and 
test (20%) sets for model input.

Table 3.   MRI datasets and acquisition parameters by institution. ssFSE single-shot fast spin-echo, ssTSE 
single-shot turbo spin-echo, bTFE balanced turbo field echo, FIESTA fast imaging employing steady state 
acquisition, HASTE half-Fourier acquisition single-shot turbo spin-echo, TRUFI true fast imaging with steady-
state free precession.

Institution

Stanford CHLA CCHMC SJH TTRH

No. of subjects 741 156 64 25 189

Median GA 
(range), wks 30.6 (19–39) 30.6 (20–40) 24.6 (16–39) 28.7 (19–36) 26.1 (18–40)

Field strength 1.5 T, 3 T 1.5 T, 3 T 1.5 T 1.5 T, 3 T 1.5 T

Manufacturer and 
Scanner

GE Discovery 
750 W, Optima 
450 W, Signa HDxt 
& Excite

Philips Ingenia & Achieva GE Signa HDxt Philips 
Ingenia GE Signa HDxt & Excite Siemens Magnetom Aero & 

Avanto

Sequence ssFSE ssTSE ssFSE, ssTSE, bTFE, FIESTA ssFSE, FIESTA HASTE, TRUFI

Repetition time, 
ms 600–6,000 750–2625 12,500–15,000 3–5 4000 4.6–4.9 1,300–2,300 3.6–5.0 1200–1700

Echo time, ms 67–420 70–120 90–120 1.5–2.3 80–120 1.9–2.1 78–93 1.4–2.0 104–198

Flip angle 90° 90° 75°–110° 75°, 90° 62°–180°

Field of view, mm 180 × 180–
440 × 440 160 × 160–450 × 450 240 × 240–380 × 380 240 × 240–340 × 340 129 × 187–380 × 380

In-plane resolution 0.35 × 0.35–
1.57 × 1.57 0.48 × 0.48–1.28 × 1.28 0.55 × 0.55–1.37 × 1.37 0.46 × 0.46–0.67 × 0.67 0.37 × 0.37–1.66 × 1.66

Median no. of 
slices (range) 23 (7–48) 44 (20–100) 20 (5–53) 22 (14–47) 26 (10–84)

Median slice thick-
ness (range), mm 4 (2–5) 3 (2.5–5.5) 4 (3–6) 4 (4–5) 4 (3–5)
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This study was approved by Stanford University’s Institutional Review Board (IRB). Data collection and 
analysis were performed in accordance with relevant guidelines and regulations. Written informed consent was 
obtained from all pregnant women or authorized representatives for imaging of fetuses prior to delivery (IRB 
protocol #42137).

Model structure.  The model architecture consists of two parallel branches, the global and local branches, as 
shown in Fig. 2. Both the global and local branches consist of deep residual neural networks that are optimized 
to predict gestational age based on fetal MRI. ResNet-50, a CNN pre-trained on more than a million images from 
the 2012 ImageNet database, was used as the backbone deep neural network for age regression46. For each stack 
of input image slices, we assumed the middle slice to contain the largest fetal brain area. We then tested the effect 
of the number of image slice inputs on model performance (e.g., 1, 3, 5), incorporating additional slices imme-
diately adjacent to the middle slice. The first convolutional layer of the ResNet-50 model was parameterized to 
accommodate different numbers of image slices with their corresponding input channels. Pretrained model 
weights were then applied to subsequent layers of the network. Given input image(s) X, the global branch is first 
trained using the entire or ‘global’ X. Then, the region of interest is masked using an attention mechanism with 
Gaussian weighting and trained for age regression on the local branch. Learned features from both branches 
simultaneously optimize final age prediction. Independent models were trained on axial, coronal, and sagittal 
images to study the unique semantic features from different planes.

We compared two approaches for predicting gestational age ypred: global branch predictions (i.e., entire image) 
without the attention-guided local branch, versus averaged age predictions from both the global branch and 
local branch (i.e., masked region of interest). The true gestational age ytrue or ‘ground truth’ was determined 
via the standard-of-care approach of estimating the date of delivery based on an early obstetric ultrasound in 
the first trimester19. Gestational ages at time of US were recorded directly from the reports, and differences in 
MRI and US dates were added to obtain ytrue for each patient. In the training phase, the model is optimized by 
stochastic gradient descent with backpropagation to minimize the mean squared error (MSE) loss between true 
and predicted agesytrue − y2pred 2

 47.

Figure 2.   ResNet-50 architecture for brain age regression with attention-guided mask inference. A single 
sagittal image with dimensions 224 × 224 is shown as an input to the global branch. Architectures incorporating 
multiple slices and planes are not displayed. The input of the local branch is a weighted image isolating the 
region of interest automatically generated from attention-guided mask inference. Global and local branches 
contain five convolutional layers (conv1 to conv5), each consisting of 3–6 building blocks (boxes) with a 
convolution, batch normalization, and rectified linear unit (ReLU), streamlined by shortcut connections (gray 
dotted arrows). Output sizes are denoted by k × k. Feature maps from both branches enter a max pooling 
layer and are subsequently fed to a fully connected layer (fc). The MSE for each branch and the total loss are 
minimized via gradient descent (black dotted arrows), simultaneously tuning model weights for both local and 
global branches via backpropagation. Age predictions (GA) are generated from each branch and averaged to 
produce the final age estimation.
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Attention‑guided mask inference.  Computational analysis of fetal MR imaging is extremely challeng-
ing due to the random position and rotation of fetal brains across patients. Additionally, noise unrelated to the 
fetus (such as the maternal placenta and organs) may negatively affect predictive performance. These considera-
tions motivated the use of attention-guided mask inference, which provides spatially variant maps that highlight 
regions of interest and contribute to accurate object recognition48.

As previously described in Guan et al.49 and Zhou et al.50, the attention heatmap is extracted from the last con-
volutional layer in the global branch. Given an initial input image X representing the whole image slice, fk

(

x, y
)

 
represents the activation of spatial location 

(

x, y
)

 in the kth channel of the output of the last convolutional layer, 
where k ∈ {1, . . . , K} and K is the total number of feature map channels ( K = 512 in ResNet-18, K = 2048 in 
ResNet-50). The attention heatmap values Hg are computed by maximizing activation values across channels:

After up-sampling Hg to match the resolution of the input images, we apply the truncated ReLU activation 
function to normalize the heatmap Hg to the data range of [0, 1], where larger values represent increasing prob-
ability of detecting fetal brain tissue. High-value areas are subsequently given more attention by the prediction 
model. Furthermore, with the prior knowledge that the fetal brain usually localizes in the center of the image, 
we multiply a 2D Gaussian mask to re-weight the heatmap. Thereafter, the heatmaps highlighting the region of 
interest (i.e., fetal brain) are generated. Examples of heatmaps are shown in Fig. 3.

Heatmap weights are multiplied with the input image to obtain a masked region of the fetal brain, suppress-
ing background noise in the original scan. The re-weighted image is then inputted to the local branch for age 
prediction based on regional features. Since we automatically extract the heatmap from the global branch and the 
normalization operations are differentiable, the entire model framework can be trained end to end for adaptive 
attention map weighting and brain age estimation.

Multi‑plane learning approach.  A multi-plane learning approach was employed to capitalize on com-
plementary information contained in different MRI dimensions. Separately from the single-plane architectures, 
we trained a multi-plane model by minimizing the total MSE loss involving axial, coronal, and sagittal planes. 
Network weights are thereby optimized based on features from all MRI views simultaneously. After convergence, 
prediction outputs from each plane are then averaged for a final estimation of gestational age.

Hg

(

x, y
)

= max
(∣

∣fk
(

x, y
)∣

∣

)

, k ∈ {1, . . . , K}

Figure 3.   Examples of heatmap generation and region of interest mask inference. Top: Global input images 
show the entire view of a maternal womb captured on MRI in all three planes. Middle: Corresponding heatmaps 
derived from the last convolutional layer identify high-value areas for attention-based learning. Increasing 
activation values correspond to the color spectrum from violet to yellow. Bottom: Application of a 2D Gaussian 
mask generates a re-weighted heatmap highlighting the region of interest.
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Training and evaluation.  All network architectures were implemented with the PyTorch framework51. 
We trained the models using the Adam Optimizer with a learning rate of 1 × 10−4 and a batch size of 50 for 2000 
iterations. The training session was conducted on a NVIDIA TITAN Xp GPU. High scoring models were defined 
as those with strong correlation and concordance between true gestational age and predicted gestational age. 
Correlative strength was evaluated for all models trained and tested on Stanford fetal imaging data by the R2 and 
MAE. Concordance between predicted and true gestational ages was determined using Lin’s concordance cor-
relation coefficient, with strength of agreement assessed by McBride’s criteria as follows: poor, < 0.90; moderate, 
0.90–0.95; substantial, 0.95–0.99; almost perfect > 0.9952,53. Statistical results were visually confirmed by local 
piecewise regression analysis using a window size of 15 points, 95% overlap between windows, and Gaussian 
smoothing54.

Validation with external sites.  External MRI data were obtained from four additional centers of excel-
lence: Children’s Hospital of Los Angeles, Cincinnati Children’s Hospital Medical Center, St. Joseph Hospital and 
Medical Center, and Tepecik Training and Research Hospital in İzmir, Turkey. MR imaging across sites varied 
widely in terms of scanning platform, sequence types, and technical settings, as shown in Table 3. To test gen-
eralizability, the attention-guided multi-plane model (i.e., highest-scoring network tested on Stanford data) was 
used. The 1-slice and 3-slice architectures were compared across external institutions. After deploying the same 
data curation methods used for Stanford data, the external datasets consisted of 156, 64, 25, and 189 fetal MRI 
samples for CHLA, CCH, SJH, and TTRH, respectively (Supplementary Fig. S2). The Stanford-trained model 
was first tested directly on these unseen external samples without any transfer learning. We then fine-tuned the 
model with 20% of each dataset using the Adam optimizer with a learning rate of 1 × 10−5 and a batch size of 5. 
For SJH, we used a learning rate of 1 × 10−6 as only 5 data samples were available for fine-tuning. We employed 
early stopping at 5 epochs to avoid overfitting. Performance with and without fine-tuning on the remaining 80% 
of each dataset was compared.

Data availability
Deidentified images used in model training and testing are made available at the Stanford Digital Repository 
(https://​purl.​stanf​ord.​edu/​sf714​wg0636). All requests for raw data and related materials will be reviewed by the 
Office of the General Counsel at Stanford University to verify whether the request is subject to any intellectual 
property or confidentiality obligations. Restrictions generally apply to the public availability of the data due to 
patient agreements and privacy concerns. Any data and materials that can be shared will be transferred securely 
via a formal data sharing agreement.

Code availability
Source code and tutorial will be made available to reviewers upon request and deposited in a DOI-minting 
repository upon acceptance for publication. We used the publicly available ResNet-50 network as the backbone 
architecture for our deep learning models, available at https://​github.​com/​pytor​ch/​vision/​tree/​master/​torch​
vision/​models.
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