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Boundary curvature guided programmable
shape-morphing kirigami sheets
Yaoye Hong 1, Yinding Chi1, Shuang Wu1, Yanbin Li1, Yong Zhu1 & Jie Yin 1✉

Kirigami, a traditional paper cutting art, offers a promising strategy for 2D-to-3D shape

morphing through cut-guided deformation. Existing kirigami designs for target 3D curved

shapes rely on intricate cut patterns in thin sheets, making the inverse design challenging.

Motivated by the Gauss-Bonnet theorem that correlates the geodesic curvature along the

boundary with the Gaussian curvature, here, we exploit programming the curvature of cut

boundaries rather than the complex cut patterns in kirigami sheets for target 3D curved

morphologies through both forward and inverse designs. The strategy largely simplifies the

inverse design. Leveraging this strategy, we demonstrate its potential applications as a uni-

versal and nondestructive gripper for delicate objects, including live fish, raw egg yolk, and a

human hair, as well as dynamically conformable heaters for human knees. This study opens a

new avenue to encode boundary curvatures for shape-programing materials with potential

applications in soft robotics and wearable devices.
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Designing shape-programming materials from 2D thin
sheets to 3D shapes has attracted broad and increasing
interest in the past decades due to their novel materials

properties imparted by geometrical shapes1. Programmable shape
shifting in different materials and structures was realized at all
scales utilizing folding, bending, and buckling2. These shape-
programmable materials are attractive for broad applications in
programmable machines and robots3,4, functional biomedical
devices5, and four-dimensional (4D) printing6,7.

Kirigami, the traditional art of paper cutting, has recently emerged
as a new promising approach for creating shape morphing structures
and materials8–19. Cuts divide the original continuous thin sheets
into discretized cut units without sacrificing the global structural
integrity. Compared to continuous thin sheets, the kirigami sheet
enables more freedom and flexibility in shape shifting through local
or global deformation between cut units17. Starting from a thin sheet
with patterned cuts, it can morph into varieties of 2D and pop-up
3D structures via rigid rotation mechanism20 and/or out-of-plane
buckling21. The cuts impart new properties such as auxeticity9,11,
stretchability8,10,15,22–24, conformability8, multistability25, and opti-
cal chirality26, which have found broad applications in mechanical
metamaterials11,15,27,28, stretchable devices8,10,23,29,30, 3D mechan-
ical self-assembly31, tunable adhesion32, and soft machines17,18,33.

Despite the advance, most studies focus on the local buckling
of cut units in a thin sheet patterned with arrays of parallel slits or
networked triangular or square cuts etc8–13,15,17,18, generating
quasi-3D pop-up structures without global curvatures. There are
few studies on the shape shifting from a kirigami sheet to 3D
shapes with intrinsic curvature34–36. Recent work shows that
starting from a kirigami sheet or shell, 3D shapes with non-zero
Gaussian curvature can be generated by utilizing either forward
designs of non-periodic patterns of square cuts/cutouts34,36

or inverse designs of tessellation of non-uniform square cuts
patterning with irregular polygon cut units35. The local hetero-
geneous deformation among non-periodic tessellated cut units
induces global out-of-plane buckling of the 2D kirigami sheets,
thus, resulting in the formation of different 3D curved
shapes34,35. However, it often requires programming intricate cut
patterns and arrangements of non-periodic cut units, making the
inverse design and optimization for target 3D shapes complicated
and challenging35,36. In addition, how to utilize the 3D curved
shapes in kirigami sheets for functionalities remains largely
unexplored34–36.

Theoretically, the curvature of a boundary can be harnessed
to tune 3D curved shapes based on the classical Gauss-Bonnet
theorem in differential geometry37, which correlates the
Gaussian curvature and the geodesic curvature along the
boundary (i.e., the projection of boundary curvature). Moti-
vated by this theorem, here, we propose a simple strategy of
utilizing the boundary curvature of cut edges rather than
complex cut patterns to program 3D curved shapes through
both forward and inverse designs. In contrast to previous net-
worked polygon cut units with square cut patterning8,11,34–36,
our kirigami sheet is composed of parallel discrete ribbons
enclosed by continuous boundaries (Fig. 1a–c) through simple
patterning of parallel cuts. We demonstrated that simply
stretching the kirigami sheet with prescribed curved cut
boundaries could generate varieties of well-predicted 3D curved
shapes with positive, negative, and zero Gaussian curvatures
and their combinations. We proposed a straightforward inverse
design strategy for target 3D curved shapes, avoiding the
necessity of shape optimization by building on top of theore-
tical insights from applying the Gauss–Bonnet theorem to
the geodesic ribbons. Leveraging this, we demonstrated
their potential applications in designing a universal gripper
with dynamically programmable morphology for delicate

objects and a biomimetic conformable heating pad with
intrinsic adaptivity for human knees.

Results
Manipulating 2D boundary curvatures for 3D curved
morphologies. The classical Gauss–Bonnet theorem37 correlates
the boundary curvature with the global Gaussian curvature K.
Motivated by the theorem, as shown in Fig. 1a–f, we start by
designing the 2D precursors of kirigami sheets with different
boundary curvatures kbo to exploit its effects on the Gaussian
curvature of their 3D deployed shapes, where kbo is set to be
positive (circular boundary in Fig. 1a), zero (rectangular bound-
ary in Fig. 1b), and negative (biconcave circular boundary in
Fig. 1c), respectively. We use the polyethylene terephthalate
(PET) sheet with Young’s modulus of 3.5 GPa, Poisson’s ratio of
0.38, and thickness of 127 μm to fabricate the kirigami sheets
using laser cutting (see “Methods” section). The thin sheets are
cut into a number of discrete parallel thin ribbons enclosed by
continuous boundary ribbon.

Figure 1d–f show that stretching the 2D precursors leads to
distinct spheroidal, cylindrical, and saddle shapes with positive,
zero, and negative Gaussian curvature K, respectively (Supple-
mentary Movie 1). Upon stretching, the boundary ribbon starts
bending and compresses the enclosed discrete ribbons to induce
their out-of-plane buckling. Thus, it renders a 3D pop-up
morphology. Once the 3D shape is formed, the global shape will
not change but with its magnitude of curvature increasing with
the applied strain. The three samples exhibit similar J-shaped
force–displacement curves as shown in Fig. 1g, where the force
increases approximately linearly with the initial displacement due
to the bending-dominated deformation in the discrete ribbons,
followed by the steep rise arising from the stretching-dominated
deformation in the boundary ribbon. Such stiffness strengthening
mechanical responses are similar to that observed in the kirigami
sheet patterned with orthogonal square cuts24. Among the
three samples, the circular one morphing into a spheroidal shape
shows the highest stiffness and the least stretchability, while the
biconcave one deforming into a saddle shape is the most
compliant and stretchable (Fig. 1g).

We note that distinct from the kirigami sheets composed of
networked polygon cut units in previous studies8,11,34–36 or
discrete structures composed of disconnected non-geodesic
ribbons38, the simple design of parallel cuts in this work endows
the unique characteristic, i.e., parallel cuts make each discrete
ribbon a geodesic curve of the morphed morphologies (see
“Methods” section). It will facilitate the inverse design and
dynamically programming morphologies, as discussed later.

By extending the classical Gauss–Bonnet theorem in differ-
ential geometry to the two neighboring enclosed ribbons and the
multiple-connected enclosed kirigami surface morphology (Sup-
plementary Fig. 1 and see “Methods” section), we can
qualitatively explain the observed 3D curved shapes and their
dynamic shape morphing. Mathematically, for the morphed 3D
pop-up morphologies, the theorem can be simplified asZ

Ω
KdAþ

I
∂Ω
kgbds ¼ C; ð1Þ

where the constant C ¼ 2πχðΩÞ �∑p
i¼1θi with χ(Ω) and θi

denoting the Euler characteristic of the Riemannian manifold Ω
with boundary ∂Ω and the exterior angles at the vertices of the
manifold, respectively. C remains unchanged during shape shifting
(see “Methods” section). kgb ¼ kb sin φ is the geodesic curvature
along the boundary ribbon according to the Meusnier theorem37,
i.e., the projection of the deformed boundary curvature kb with φ
being the projection angle (see “Methods” section).
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For the 2D kirigami precursor with positive boundary
curvature, i.e., kbo > 0, we have C ¼ H ∂Ωo

kgbds by setting K= 0
with Ωo denoting the manifold before deformation. After
deformation, for the deformed manifold Ω′, we have

R
Ω0KdA ¼ C � H ∂Ω0kgbds ¼

H
∂Ωo

kgbds�
H
∂Ω0kgbds in terms of

Eq. (1). As the applied strain increases, both kb and sin φ
decrease, which results in a decreased geodesic curvature kgb,
and consequently

R
Ω0KdA > 0. Given the C2 continuous
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Fig. 1 Shape shifting of 3D curved morphologies from 2D kirigami sheets with different cut boundary curvatures subject to uniaxial tension. a–c 2D
precursors of three kirigami sheets patterned with parallel cuts but different boundary curvatures kb highlighted in dashed white curves. circular (a), square
(b), biconcave (c) samples with positive, zero, and negative boundary curvature, respectively. d–f The corresponding formed 3D curved shapes with
different Gaussian curvature K. d Spheroidal shape with K > 0 at an applied strain of 0.30. e Cylindrical shape with K = 0 at an applied strain of 0.65.
f Saddle shape with K < 0 at an applied strain of 1.47. Scale bars = 10mm. g Force–displacement curves for the three 2D precursors. The shaded areas are
the standard deviation between four different tests.
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boundary curves in the three characteristic precursors (C2

continuity means that both the first and second derivatives of
the curves are continuous, i.e., continuous in curvature), bothR
Ω0KdA and K will be simultaneously positive or negative.

Thus, we have a globally positive K in the deformed manifold
Ω′, i.e., K > 0 in Ω′, which is consistent with the observed
spheroidal shape in Fig. 1d. Similarly, for the 2D precursor
with kbo < 0, as the strain increases, the absolute value of
the boundary curvature jkbj becomes smaller and sin φ
decreases, which results in an increased geodesic curvature.
Thus, we have the generated saddle shape with globally K < 0 in
Fig. 1f. For the 2D precursor with kbo= 0, during the
deformation, kbo= 0 does not change, which leads to a zero
geodesic curvature. Thus, we have a cylindrical shape with
K= 0 in Fig. 1e.

Analytical modeling and simulation on 3D shape shifting.
To quantify the shape shifting of the kirigami structures with
the applied strain, we combine both analytical modeling and
finite element method (FEM) simulation to predict their mor-
phology changes (see “Methods” section). The deformation of
the kirigami structures is dominated by bending of the discrete
ribbons, where the elastic strain energy in the boundary ribbon
is negligible due to its small width (Supplementary note 1).
Thus, all the discrete ribbons share similar deformed elastica
shapes39–42. The deformed 3D shape at an applied strain ε can
be described by rsð�sb;�sdÞ ¼ ð�xð�sb;�sdÞ;�yð�sb;�sdÞ;�zð�sb;�sdÞÞ, where
�sb and �sd denote the normalized arc length coordinate of the
boundary and the discrete ribbon as illustrated in Fig. 1a,
respectively. ð�x;�y;�zÞ denote the Cartesian coordinates of any
point Pð�sb;�sdÞ on the surface with its origin set at the center of
the 2D precursor. Considering the deformed surface shape
foliated by continuously varying discrete ribbons along the
boundary, its generalized shape functions can be expressed as
(see details in Supplementary note 1)

�xð�sb;�sdÞ ¼ 2m
λ

CNðλ�sd;mÞ cos α1 þ f ð�sb; εÞ; ð2Þ

�yð�sb;�sdÞ ¼ 2
λ
EðAMðλ�sd;mÞ;mÞ ��sd; ð3Þ

�zð�sb;�sdÞ ¼ 2m
λ

CNðλ�sd;mÞ sin α1; ð4Þ

by sweeping the varying discrete ribbons modeled as an elastica
shape along the boundary. m ¼ mð�sb; εÞ is the elliptical modulus
that characterizes the bending deformation of a discrete ribbon.
λ ¼ 2Fðπ2;mÞ=�ld is related to the normalized length �ld of the
discrete ribbon. AM and CN denote the Jacobian amplitude and
the elliptic cosine, respectively. E and F denote the incomplete
elliptic integral of the second kind and the first kind, respec-
tively. α1 ¼ α1ð�sb; εÞ is the tilting angle of the discrete ribbon
with respect to the horizontal plane (i.e., xy plane) as shown in
Fig. 1d, which varies from 0 to 180° depending on its boundary
location and the applied strain. f ð�sb; εÞ describes the x coordi-
nate at �sb of the deformed boundary ribbon.

Without losing generality, we can use three profiles from the
front view, top view, and side view to characterize the 3D shape
shifting with the applied strain (Fig. 2a–c for spheroidal shapes,
Fig. 2e–g for saddle shapes and Supplementary Fig. 5a–c for
cylindrical shapes). The front view shows the backbone profile
on the xz plane (Fig. 2a, e and Supplementary Fig. 5a), which
can be predicted by �xbb ¼ 2m

λ cos α1 þ f ð�sb; εÞ and �zbb ¼
2m
λ sin α1 after setting �sd = 0 and �y = 0 in Eqs. (2–4). The
top-view profile shows the deformed shape of the boundary
ribbon (Fig. 2b, f and Supplementary Fig. 5b) that remains in

the xy plane during deformation by setting �z = 0 in Eqs. (2–4),
which can be parametrized by

rbð�sb; εÞ ¼ ð�x;�y; 0Þ ¼ ðf ð�sb; εÞ; gð�sb; εÞ; 0Þ; ð5Þ
where

gð�sb; εÞ ¼
2Eðπ2;mÞ
Fðπ2;mÞ � 1

� �
gð�sb; 0Þ; ð6Þ

describes the y coordinate at �sb of the deformed boundary
ribbon at the strain of ε. Equation (6) describes the relationship
between m and ε. Thus, combining Eqs. (2–4) and Eq. (6) will
determine the unknown parameters of �x, �y, �z, and m to predict
the deformed 3D shapes with the applied strain. The side view
shows the projection of similar elastica shapes of discrete
ribbons onto the yz plane (Fig. 2c, g and Supplementary
Fig. 5c), which depends on m and the tilting angle of the longest
discrete ribbon. Its deformed elastica shape can be expressed by
�yd ¼ 2

λEðAMðλ�sd;mÞ;mÞ ��sd and �zd ¼ 2m
λ CNðλ�sd;mÞ, where the

length of the discrete ribbons is assumed to be unchanged
during deformation.

Next, we apply both the generalized analytical model and FEM
simulation to analyze the 3D shape shifting in the specific
examples shown in Fig. 1. Figure 2a–c theoretically predict the
variation of the three profiled shapes with the applied strain ε
during the formation of a spheroidal shape. As ε increases from 0
to 0.4, top-view profiles show that the circular boundary gradually
deforms into an elliptical shape (Fig. 2b), where we have
f ð�sb; εÞ ¼ ð1� �wÞ sin �sb þ �v cos �sb and gð�sb; εÞ ¼ ð1�
�wÞ cos �sb � �v sin �sb (�sb 2 ½�π

2;
π
2�) in the model (Supplementary

note 1). �wð�sb; εÞ and �vð�sb; εÞ denote the radial and tangential
displacement of the boundary ribbon43, respectively. Correspond-
ingly, the compressed discrete ribbons deform into an elastica
shape (side view in Fig. 2c). The backbone expands and shows an
elliptical profile (front view in Fig. 2a and Supplementary note 1).
As shown in Fig. 2a–c, the superposition of the three theoretically
predicted front-view, top-view, and side-view profiles (high-
lighted in purple color) with images retrieved from the
experimental observation at ε= 0.3 shows an excellent agree-
ment. The corresponding FEM simulated deformed 3D shape
shows an excellent overlapping with the experiment (Fig. 2d).
Differently, during the formation of the cylindrical shape, both
the boundary ribbon and backbone profile remain straight during
deformation and all the discrete ribbons take the same elastic
shape, the modeling of which is consistent with both experiments
and FEM simulation (Supplementary Fig. 5).

Figure 2e–g show the predicted shape change during the
formation of a saddle shape. In contrast to simultaneous buckling
in generating the spheroidal and cylindrical shapes, we observe a
sequential buckling during the formation of the saddle shape in
experiments (Supplementary Movie 1). The discrete ribbons near
two stretching ends pop up first, followed by the ribbons in the
center when beyond a critical strain εc (Supplementary Fig. 6).
The physical origin of the sequential buckling is due to the
coupling effects of the concave boundary geometry and different
critical buckling forces of the discrete ribbons (Supplementary
note 1), where the curvature varies sequentially during deforma-
tion along the boundary ribbon from its two ends to the center
(Fig. 2f). Such sequential buckling behavior disappears for the
large radius of curvature since the 2D precursor is close to a
rectangle shape. As the applied strain further increases, the
discrete ribbons contact with each other, leading to structural
frustration. Reducing the number of ribbons facilitates a
frustration-free structure without self-contact (Supplementary
Fig. 7). Such a sequential shape shifting is well captured by both
the analytical model and FEM simulation. As predicted by the
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model, Fig. 2f shows that at the critical strain εc ≈ 1.42, the initial
concave boundary ribbon deforms into a straight line and
remains straight upon further deformation, where we have
f ð�sb; εÞ ¼ �sb and gð�sb; εÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:46� ðε� 0:32Þ2

p
with �sb 2

½�1:32; 1:32� in the model (Supplementary Note 1). Correspond-
ingly, the backbone profile (Fig. 2e) transits from an initial sharp
V shape to a smooth concave shape, which exhibits a sudden
jump of the displacement along the z-axis when the applied strain
is slightly beyond εc. Further stretching results in the formation of
the saddle shape with a concave backbone, which is consistent
with both experiments (Fig. 2e–g) and FEM simulation results
(Fig. 2h).

Quantitative correlation between the boundary curvature and
the Gaussian curvature. Based on the validated theoretical
model, we further establish the general quantitative correlation
between the boundary curvature kbo of 2D kirigami precursors

and the Gaussian curvature K of their popped 3D morphologies
at a given applied strain (see details in Supplementary Note 2).
Figure 3a, b show the theoretically predicted 3D maps of the
normalized Gaussian curvature �K at the center point Cð�sb ¼
0;�sd ¼ 0Þ as a function of both normalized boundary curvature
�kbo (see illustration of tuning different kbo in the insets of
Fig. 3a, b) and applied strain �ε. It shows that for 2D kirigami
precursors with either positive (Fig. 3a) or negative boundary
curvature (Fig. 3b), generally, the absolute value of �K increases
with an increasing strain �ε and j�kboj. Note that for the
formed saddle shapes, we have �K = 0 before reaching the cri-
tical strain εc. At the onset of εc, �K suddenly decreases due to a
dramatic increase in the boundary curvature. Beyond εc, �K
barely changes because the boundary ribbon remains straight
(Fig. 3b). Interestingly, Fig. 3c shows that theoretically,
the normalized variation of Gaussian curvature jΔ�K=�Kmaxj
increases approximately linearly with the normalized variation
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Fig. 2 Quantifying the 3D shape shifting through analytical modeling and simulation. a–h Predicted shape changes with the applied strain ε in the
samples of spheroidal (a–d) and saddle shapes (e–h). a, e Front-view profile. b, f Top-view profile. c, g Side-view profile. d, h Overlapping of FEM simulation
results (contours of the maximum principal strain εmax) with the experimental image at ε = 0.30 (d) and 1.47 (h). Scale bars = 10 mm.
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of boundary curvature jΔ�kb=�kboj(slope ≈ 1) (Supplementary
note 2), i.e.,

jΔ�K=�Kmaxj
jΔ�kb=�kboj

¼ 4m2�kbo
½�kbo�x2ðγ=�kbo; 0Þ � �yð0; 1Þ��Kmax

� 1; ð7Þ

which is consistent with the experimental measurements. �Kmax
is the maximum Gaussian curvature at the center point, and γ
denotes half of the central angle of the boundary curve. Note
that there are few data points for the square and biconcave
shapes because the cylinder and the saddle shape have zero
and sudden-jumping Gaussian curvature, respectively. Specifi-
cally, this near-linear relationship holds regardless of the initial
boundary curvature of a 2D kirigami precursor, which can be
harnessed to program the morphology and the dynamic
deployment trajectories.

Combinatorial designs for more complex 3D shapes. Next,
equipped with the knowledge of the correlation between the
boundary curvature and the deformed 3D shapes, we extend
it to achieve more varieties of 3D shape-morphing morpholo-
gies through tuning the smoothness of the boundary curves
of individual units in combinatorial and tessellated designs
(Fig. 4a–j).

We first explore the 3D shape shifting in 2D kirigami
precursors through tessellating the three basic units in Fig. 1a±c.
Figure 4a shows a 2D diamond-shaped kirigami precursor
composed of tessellated 2 × 2 square units with zero boundary
curvature. Each unit has the same parallel cut pattern. Upon
vertically stretching the 2D diamond precursor along the y-axis,
both top and bottom square units pop up spontaneously
(represented by the symbol of “+” in the inset of Fig. 4b) via
out-of-plane buckling while the square units on two sides pop
down (denoted by the symbol of “−”), generating a smiley 3D
human face-like morphology (Fig. 4b). Note that both the inner
and outer boundaries of an individual unit in the combinatorial
design still belong to the cut boundaries following our model,
both of which contribute to the geodesic curvature kgb in Eq. (1)
and satisfy the Gauss–Bonnet theorem locally and globally.
Specifically, the eyes and mouth in the form of a hole are formed
due to its discontinuous slope (changed smoothness) at the
intersections of boundaries, which results in a localized non-zero

Gaussian curvature. This is also consistent with the Gauss-Bonnet
theorem, where the localized non-zero Gaussian curvature arises
from the localized curvature change (variation of the exterior
angle in Eq. (1)) of the C0 smooth inner and outer boundary
curves of the units (Supplementary Note 3). The holes divide the
face into eight independent popping regions (e.g., forehead, eyes,
nose, cheek, mouth, and chin). We note that the face will not
change its pattern under different loading rates. Similarly,
stretching an array of 3 × 1 rectangle units with identical parallel
cuts and zero boundary curvature (Fig. 4e) along the x-axis leads
to a sinusoidal wavy shape (Fig. 4f) with zero Gaussian curvature.
Furthermore, Fig. 4h shows that two circular units with positive
boundary curvatures bridged with a biconcave unit with negative
boundary curvatures form a vertically tessellated 2D precursor.
Stretching the 2D precursor along the x-axis generates an
increasingly enclosing 3D shape, where the two circular units
pop up into a spheroidal shape with positive Gaussian curvature
while the concave unit buckle into a saddle shape with negative
Gaussian curvature (Fig. 4i). As the stretching strain further
increases, their two end circular boundaries contact with each
other, forming an encapsulated Venus flytrap-like structure
(Fig. 4j) that could be used for delicate grippers, as discussed later.

We note that given the combinatorial design of units and the
bistability in each unit, the formed 3D shapes in the kirigami
sheets could be further reconfigured to other distinct 3D
morphologies via the bistability switch25 in the buckled discrete
ribbons locally or globally, where each ribbon could pop up or
pop down independently and locally as shown in Supplementary
Fig. 10. For example, manipulating the bistable switch in eight
independent popping regions of the human face-like morphology
in Fig. 4b, i.e., the popping directions of discrete ribbons in each
region, could generate more potential facial expressions. As a
proof of concept, manually flipping all the popping directions in
the eight regions of the smiley face under the stretched state
generates a sad face (Fig. 4c), which can be reversibly switched to
the smiley face. Furthermore, localized flipping of two single
ribbons in the eye area generates a face with eyeglasses (Fig. 4d).
The bistable states of the ribbons could be either manually
switched25 or potentially remotely tuned using the magnetic field
(Supplementary Fig. 11, Supplementary Movie 2, and Supple-
mentary Note 4). Similarly, Fig. 4g shows that flipping the
popping direction in the central unit of the sinusoidal wavy shape

Experimental Theoretical

C C

a b c

Fig. 3 Quantifying the correlation between the boundary curvature and the Gaussian curvature. a, b Theoretically predicted 3D maps of the normalized
Gaussian curvature �K at the center point C as a function of the normalized boundary curvature �kbo in 2D kirigami precursors (insets) and the applied strain
ε for the cases of spherical (a) and saddle (b) shapes. The color bars represent the normalized Gaussian curvature. c Theoretical and experimental results
of the approximately linear relationship between the normalized variation of the Gaussian curvature jΔ�K=�Kmaxj and the normalized variation of the
boundary curvature jΔ�kb=�kboj.
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in Fig. 4f makes it reconfigure into a coiled shape, which could be
reversibly switched by flipping back the popping direction.

More complex 3D shapes can be generated by combining
boundary curvatures with different smoothness in stacked 2D
kirigami precursors (Fig. 4k–n) under uni-axial mechanical
stretching, e.g., a 3D droplet-like shape (Fig. 4l) and a vase-like
shape (Fig. 4n). We note that the smoothness of the backbone
in the generated 3D shapes is controlled by the smoothness of
the boundary in their corresponding 2D precursors, which

makes the combinatorial design easy to handle. To generate the
water droplet shape, we design a 2D precursor consisting of
combined a straight line and a circular arc to mimic the 3D
water droplet’s backbone shape (Fig. 4k). Similarly, the vase-
like shape (Fig. 4n) is generated by stretching two stacked 2D
precursors composed of a concave and convex boundary
(Fig. 4m). Furthermore, stretching multiple layers of similar
semi-circular 2D precursors generates a flower-like shape with
multilayer pedals (Fig. 4o).
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Fig. 4 Combinatorial designs of 2D kirigami precursors for complex 3D shapes under uniaxial tension. a–j Reconfigurable 3D shapes through bistability
of discrete ribbons. a 2D precursor composed of 2 × 2 square units with zero boundary curvature. b–d Uni-axial stretching induced reconfigurable human
face-like morphologies with switchable smiley (b) and sad (c) expressions, as well as eyeglasses (d) by tuning the popping directions of ribbons (insets).
e 2D precursor composed of 3 × 1 rectangle units with zero boundary curvature. f, g Formation of switchable sinusoidal wavy and coiled shapes. h 2D
precursor composed of an array of two circular units bridged with a biconcave unit. i, j Formation of a 3D encapsulated Venus flytrap-like shape through
uniaxial stretching. k–n Formation of a 3D droplet-like shape (l) and vase-like shape (n) by uni-axially stretching 2D precursors with different combined
boundary curvatures (k, m). Insets show the image of a droplet and a vase. o Formation of a flower-like shape by uni-axially stretching multiple layers of
semi-circular 2D precursors. Scale bars = 10 mm.
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Inverse design strategy. Existing methods of inverse design for
target 3D-curved shapes using the kirigami approach require
complex algorithms to program heterogeneous local deformation
among networked cut units35,36. Based on the information that
discrete ribbons are geodesic curves of the deformed 3D shapes,
we propose a straightforward inverse design strategy. It utilizes
the geodesic curves extracted from the target shapes and the
isometric mapping to prescribe the 2D precursors (Fig. 5a), which
is, in principle, applicable to any target configuration.

To illustrate the strategy, we use the target shapes of a water
droplet (Fig. 5b) and a vase (Fig. 5d) as two examples for the
inverse design of the 2D kirigami precursors. As shown in Fig. 5b,
d, we first approximate and represent the target shapes by
deriving the shape functions of the backbone curve B (highlighted
in yellow color, see details in Supplementary Note 5), the geodesic
curves G (highlighted in orange color) approximated by elastica
curves, and the boundary curve Г (highlighted in red color). Next,
based on the isometric mapping from G and Г in the target shape
to the 2D precursor, we derive the shape function of the
prescribed 2D boundary curve ГP (Supplementary Note 5). The
parametrization of Г and ГP can be expressed in the form of
rΓ ¼ ðxðsbÞ; yðsbÞ; 0Þ and rΓP ¼ ðxPðsbÞ; yPðsbÞ; 0Þ, respectively,
where the superscript P represents the 2D precursor. Accordingly,
the shape function of the boundary curve ГP in the 2D precursor
can be derived as (see details in Supplementary Note 5)�

xPðsbÞ
yPðsbÞ

�
¼
�
ηx 0

0 ηy

��
xðsbÞ
yðsbÞ

�
; ð8Þ

where the parameters ηx and ηy are related to the isometric
mapping. Furthermore, the required strain εre to form the target
shape is given by εre ¼ ½xðmaxðsbÞÞ � xPðmaxðsbÞÞ�=xPðmaxðsbÞÞ
with max(sb) being the maximum arc length of the boundary
ribbon.

Figure 5c, e show the result of the inverse design of a water
droplet and a vase after deploying the derived 2D kirigami
precursors at an applied strain of εre= 0.14 and 0.07,
respectively. The inverse design result agrees well with the
target shape denoted by the yellow curves. We note that for a
target discrete 3D-curved shape, previous studies using the
assembly of disconnected non-geodesic ribbons without an
enclosed boundary need complicated control and optimization
of geometry and distribution of each ribbon locally and globally
in the inverse design38. Notably, precise control of all the
geodesic ribbons and shape optimization are not necessary for
our proposed inverse design approach, since it harnesses the
isometric mapping of geodesics and only needs the information

of one representative geodesic curve and one boundary curve in
the target surface. Thus, such a strategy could significantly
simplify the calculation (Supplementary Note 5). Moreover,
programming the dynamic shape-shifting morphology of the
global geometric entity in our design is limited to only one
variable, i.e., the boundary curvature in terms of Eq. (7). Only
geodesic ribbons have zero geodesic curvatures, and their
curvatures are the normal curvatures on the morphed surface,
where the easy-to-handle global dynamic program arises
naturally. It does not require the trivial control and optimiza-
tion of the heterogeneous deformation of the polygons in
networked kirigami structures35,36 or the thickness distribution
of each non-geodesic ribbon in a discretized manner38.

Next, based on the revealed design principle on utilizing
boundary curvature for programmable shape morphing in the
kirigami sheets, we further explore the potential of harnessing
dynamic shape morphing for shape-determined multifunction-
ality. To show their potential, we demonstrate two proof-of-
concept examples with their potential applications in delicate
flexible grippers and conformable heaters.

Application: delicate and noninvasive kirigami hand designed
via the programmable morphology. A simple, rapid, and eco-
nomical soft gripper is highly required in biomedical robotics and
wildlife-conservation devices. However, for the existing soft
grippers realized by pneumatic44–46, hydraulic47, and magnetic
actuation48, and responsive materials17 using pinching44,45,48,
enclosing47, and suction49, it is challenging to balance the
response time, manufacturing cost, simplicity of designs, and
robustness in noninvasive grasping missions. Here, utilizing the
dynamically programmable shape morphing, we present a uni-
versal, flexible yet robust kirigami hand, which can encapsulate
gelatinous and delicate organisms nondestructively in unstruc-
tured environments.

Subject to simply uniaxial stretch, the 2D kirigami precursor
composed of two circular units bridged with a biconcave unit
(Figs. 4h and 6a) transforms into an encapsulated Venus-flytrap-
like shape composed of two hemispheres bridged with a saddle
shape (Fig. 6b). To demonstrate its delicacy in noninvasively
grasping extremely soft and slippery objects, we use the example
of grasping a raw egg yolk from a petri dish with the grasping
process and mechanism from open to closed states shown in
Fig. 6c–e in both side view and front view (insets) and
Supplementary Movie 3. First, the biconcave unit starts bending
and forms a V shape with the increasing uniaxial stretch (Fig. 6c).
Next, as shown in Fig. 6d, the two circular units transform into
two hemispheres with the variation of the boundary curvature

b c d e

y

a Inverse design

Using  geodesics 

to represent 

the target shape 

Fig. 5 Inverse design of 3D shapes. a Flow diagram of the inverse design. b Schematic of using curves to approximate and represent the target shape (side
view of a waterdrop). The inset shows an isometric view. Red, orange, and yellow curves are the boundary curve Γ, geodesic curve G, and backbone curve
B, respectively. c Experimental inverse-design result of the waterdrop shape formed by a 2D kirigami precursor subject to uniaxial tension. The yellow curve
is the backbone in the target shape. d Schematic of using curves to approximate and represent the target shape (side view of a vase), with an isometric
view showing in the inset. e Experimental inverse-design result of the vase shape formed by a 2D precursor subject to uniaxial tension. Scale bars = 10 mm.
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and start grasping the egg yolk from the bottom. Last, the
flattened boundary curve leads to the closure of the structure and
encapsulating the egg yolk (Fig. 6e), where the super-slippery and
soft yolk can be held for hours showing both the soft yet robust
ability to encapsulate and preserve gelatinous organisms.

Further, to demonstrate the advantage of the bio-interactive
hand, we rapidly encapsulate a live fish from water before it could
escape (Fig. 6f, g and Supplementary Movie 3); we then release it
unharmed. The noninvasive interaction shows the conformability
and adaptivity of the gripper. Also, encapsulating super-soft
objects (e.g., shampoo bubbles in Fig. 6h) and the collection of
granular objects (e.g., pine nuts in Fig. 6i) from a super-soft
substrate (e.g., a raw egg yolk) are demonstrated, broadening its
versatility and noninvasiveness. Moreover, the universal gripper
can be applied to a wide range of targets, including small objects
such as a human hair (Fig. 6j), a coin, a thin micro-SD card, and
blueberries, etc. (Supplementary Movie 3), as well as a 400 g
deadweight (Fig. 6k) that is 1000 times the weight of the gripper
(0.4 g). We note that despite the simple design, the gripper
kirigami is capable of repeatedly lifting the 400 g deadweight for
over 1400 cycles without causing materials and structural failure
and sacrificing its grasping performance, demonstrating the
robustness of the gripper.

The dynamic morphology programmed via tuning the
boundary curvature can be further harnessed to tailor the holding
force of the flexible gripper47. As shown in Fig. 7a–e, when the
normalized initial-boundary curvature �kbo (illustrated in Fig. 7a)
of the 2D precursors increases from 0 to 2, after simple stretching,
the angle formed by the two tips of the hemispheres increases
from 0 to 195°, correspondingly, their final deformed shapes
transit from open (�kbo < 1 in Fig. 7a) to closed (�kbo ≥ 1 in Fig. 7b,
c). The precursor with �kbo ¼ 1 defines a critical state, where the
two curved ends can become contacted to form a 3D
encapsulated shape (Fig. 7b). Correspondingly, as shown in
Fig. 7d, e on the pulling force of the kirigami grippers vs. �kbo, it
results in a sudden jump of the pulling-out force of the kirigami
grippers at �kbo ¼ 1 from an average force of 0.4 N (�kbo < 1) to
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Fig. 6 Programmable delicate and noninvasive kirigami gripper. a 2D precursor composed of an array of two circular units bridged with a biconcave unit.
�kbo defines the initial boundary curvature of the units. Yellow arrows are the direction of the uniaxial stretching. Yellow lines and white dashed lines
represent the cuts and the boundaries, respectively. b Isometric view of the morphology from bending to encapsulating upon stretching. Red arrows
represent the morphing direction of the hemisphere. c–e Side views of the grasping process of a raw quail egg yolk with the increasing applied strain from
0.62 to 1.3, respectively. The inset shows the corresponding front views. f, g Encapsulating a live fish from a petri dish filled with water. h Grasping the
super-soft shampoo bubbles from the surface of the water. i Collecting the granular objects (pine nuts) from the super-soft surface of a raw egg yolk.
j, k Grasping a human hair (j) and a deadweight (400 g, k). Scale bars = 10 mm.
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Fig. 7 Effect of the initial boundary curvature on the pulling-out force of
kirigami grippers. a–c Experimental illustration of shapes formed by 2D
precursors with the different initial-boundary curvatures �kbo at the maximum
applied strain. The insets show the schematic figure of the 2D precursors. The
white dashed line represents the angle between the tips of the gripper.
d Schematic illustration of measuring the pulling-out force F via pulling out a
red sphere from the grippers with various boundary curvatures �kbo. Red arrows
are the direction of the pulling-out force. e The experimental results on the
curve of F vs. �kbo. The error bars represent the standard errors of the mean.
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6.1 N (�kbo ≥ 1), a 15 times grasping force enhancement. The
pulling force is defined as the minimum force required to pull the
red sphere out of the gripper, as schematically illustrated in
Fig. 7d. The force jump is because the grasping mode transits
from pinching by friction to distinct encapsulating due to the
programmed shape of the grippers by the boundary curvature.

Further increasing the normalized boundary curvature beyond
2 does not lead to a higher pulling force (Supplementary
Fig. 12b), since all the grippers share a similar closed shape
under the same encapsulating grasping mode (Supplementary
Fig. 12a), where further deformation is constrained by the
contacted hemisphere petals. Furthermore, for the kirigami
grippers with the same size and geometry, when reducing the
number of parallel cuts or equivalently increasing the ribbon
width (Supplementary Fig. 13a–e), we observe the similar sudden
jumping of the dramatically reduced pulling force at a critical
ribbon width 0.875 mm (Supplementary Fig. 13f and Supple-
mentary note 6), arising from the same grasping transition mode
from encapsulating to pinching (Supplementary Fig. 13a–e).

It is noteworthy that using pinching or the friction force,
existing kirigami grippers are not well suited for grasping
gelatinous organisms17,48. These grippers need to compress or
pinch the targets to lift the targets, making the noninvasive
collection of the delicate organisms challenging17,48. Distinct
from that, we demonstrated a grasping mode, encapsulating the
targets ultra-gently without compressing the objects, via the
programmable dynamic morphology, which is especially suitable
for grasping delicate organisms nondestructively. Also, the
pulling-out force of our gripper could be an order of magnitude
(about ten times) larger than recently reported kirigami
grippers48 at the same scale by harnessing the dynamically
programmed morphology.

Application: conformable heater composed of the geodesic
ribbons. Conformable heating devices are desired for human
joints to relieve pain50. The inhomogeneous deformation and
complex-curved shapes51 of the joints, such as the human knee,
result in the trade-off between the large contact area (between the
device and the human skin) and the conformability and adap-
tivity, especially during motion. Here, different from existing
heaters32,52,53, we harness the correlation between the boundary

curvature and the 3D morphology and demonstrate an electrically
driven resistive human-knee heater mimicking the conformability
of the Mantis shrimp’s shell. It shows intrinsic adaptivity with
decent conformability and large-area uniform-heating capability.

As shown in Fig. 8a, the heater is composed of silver nanowires
(AgNWs)54,55 and the PDMS (polydimethylsiloxane) kirigami
sheet with parallel cuts. It generates Joule heating with a constant
direct current applied (see “Methods” section). Mimicking the
curling shell of the Mantis shrimp (Fig. 8b), the heater includes
discrete ribbons that are consistent with the geodesics of the knee,
which are normal to the boundary. Four vertices of the kirigami
AgNW-PDMS pad are bonded to the knee, as shown in Fig. 8c.
As the knee bends from 0 to 90°, the discrete ribbons deform
induced by the variation of the boundary curvature like the
curling of the shell of the shrimp (Fig. 8d, e). The geodesic
feature, same as the shell, endows intrinsic adaptivity, and the
heater shows decent conformability and uniform-heating cap-
ability, where the standard deviation of the temperature across
the knee before and after bending is 0.73 °C and 0.97 °C,
respectively (Fig. 8d, e). With the increase of the bending angle
φ, the temperature at the center of the heater (point M in Fig. 8d)
slightly decreases, resulting from the small increase in the
resistance of AgNWs (~1%), which shows stable heating
capability (Fig. 8f). We note that the cyclic heating and cooling
do not degrade the performance of the device, where the
resistance-temperature curves barely change after 100 cycles of
heating and cooling from 25 to 42 °C (Supplementary Fig. 14).
The discrete ribbon-based kirigami design offers the unique
features of adaptivity, conformability, and flexibility combined
with a large contact area, which can be potentially applied to
wearable sensors, flexible electronics, and textile electronics.

Discussion
We proposed a new way of utilizing the cut boundary curvature
to guide the formation of controllable and reconfigurable com-
plex 3D-curved shapes in kirigami sheets patterned with simple
parallel cuts. Such a strategy is validated through combined
theoretical modeling, FEM simulations, and experiments. The
unique feature of discrete cut ribbons as geodesic curves of the
deformed 3D shapes largely simplifies the inverse design. Pro-
gramming the dynamic 3D morphology, we showed a universal

a
Ag nanowire

PDMS
b

cuts

knee

heater boundary
glue point

ΔR
/R

Tem
perature (

)

42

M

22

Bending angle (o)

geodesics

shrimp curling

iii

0 15 30 45 60 75 90

0

0.01

0.02

37.5

38

38.5c

d e

f

Fig. 8 Dynamically conformable biomimetic heater. a Photograph of the 2D precursor. Scale bar: 10mm. The right shows the schematics of the cross-
section of the AgNW/PDMS heater and the cut pattern. b, c Schematics of the heater mimicking the shell of the Mantis shrimp composed of geodesics
attached to the human knee. b Curling shell of the Mantis shrimp. Yellow lines represent geodesics. c Schematic of the heater attached to the knee. Pink
and yellow lines are the boundary and the geodesics, respectively. Red dots are the points with the adhesive. Black dashed lines representing the geodesics
are perpendicular to the boundary with the knee bending. d, e The kirigami heater deforms with the knee as the knee bends from 0° (d) to 90° (e) and the
corresponding thermal image upon heating. φ denotes the bending angle of the knee. M is the center of the knee. The color bar represents the temperature.
f Electric resistance of the heater and the temperature of the point M as a function of the bending angle φ.
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noninvasive flexible kirigami gripper for grasping and preserving
delicate organisms and a biomimetic kirigami heater with decent
conformability and intrinsic adaptivity to human knees.

The parallel cuts ensure easy fabrication. However, there are
some limitations on our proposed method in terms of the
achievable morphed shapes and the level of curvature
programmability56. It is challenging for the straight discrete
ribbons to approximate an axisymmetric shape perfectly due to
the limitation of their elastica shape (e.g., a cone shape). The
inverse design with a high-accuracy requirement will need local
optimization of the boundary curve. For targeted more complex
3D surface shapes with arbitrary negative and positive curva-
tures, the inverse design will become more challenging since it
needs to utilize the smoothness of two orthogonal geodesics to
design both the tessellation of different shaped unit cells and the
shapes of inner and outer boundary curves. Moreover, com-
pared to the intrinsic deployment of retained 3D shapes through
bistability56 or pre-strain release16 after force removal, our
approach requires the application of external stretching forces to
remain the deployed shapes, otherwise, the generated 3D shape
will return to its original flat form after the external actuation is
removed due to the fully reversible elastic deformation in the
thermoplastic kirigami structure. To preserve the deformed 3D
shapes, we could utilize the shape memory properties of the PET
polymer upon heating above its glass transition temperature57.
We use thermal treatment under 120 °C to treat the 3D shapes
held at an applied stretching strain for a period of 120 min and
cooled down to the room temperature to fix the deformed
configuration (Supplementary Fig. 15b). Notably, the preserved
3D configuration can be further deformed and recover to its 2D
flat precursor shape upon another thermal treatment (Supple-
mentary Fig. 15c).

Despite the demonstration of programmable shaft shifting in
the thermoplastic kirigami sheets, we envision that the proposed
strategy is material and scale independent. We note that despite
the large applied stretching strain ε, the maximum principal
strain εmax in the buckled ribbons with thickness of 127 μm
remains small (εmax < 1% for ε > 50%, Supplementary Fig. 16 and
Supplementary Note 7), e.g., εmax= 0.4% in the deformed sphe-
rical shape at ε= 30% (Fig. 2d) and εmax= 0.6% in the saddle
shape at ε= 147% (Fig. 2h). Note that at the tip of the cuts, the
stress concentration could be reduced via curved cuts, and
moderate plastic deformation could be tolerated, as demonstrated
by the over 1400 repeated cycles of 400 g deadweight lifting with
the gripper without failure. Considering the small peak tensile
strain in the buckled ribbons and its linear relationship with sheet
thickness t, i.e., εmax decreases linearly with t, we envision that the
proposed kirigami strategy could also be applied to design shape-
morphing and stretchable structures and devices made of other
functional materials such as metals and even semiconductors at
small scales, as well as other stimuli-responsive materials actuated
by temperature, electrical, and magnetic field, etc.

Besides the simple parallel cut pattern, we further explored
applying the strategy of boundary curvature guided shape
morphing in kirigami sheets to other homogeneous cut pattern-
ing, such as the triangular cut pattern. As demonstrated by the
proof-of-concept experiment in Supplementary Fig. 17, it shows
the formation of approximately similar curved surfaces as the
parallel cuts by manipulating different boundary curvatures of the
2D precursors, but arising from distinct both local and global out-
of-plane buckling in the cut units (Supplementary Note 8). The
detailed deformation mechanism and its potential generality to
other cut patterns will be explored and examined in the future.
This work could find potential applications in designing soft
robots, non-invasive soft grippers, stretchable electronics, wear-
able devices, and portable, and wearable heaters.

Methods
Simplification of the Gauss–Bonnet theorem. The Gauss–Bonnet theorem can be
simplified according to the constant Euler characteristic and summation of the
exterior angles. The Euler characteristic of the surface is a topological invariant and
keeps a constant during deformation. For the surface formed by two neighboring
discrete ribbons, as shown in Supplementary Fig. 1, the Euler characteristic is
given by

χ Ωð Þ ¼ V � E þ F ¼ 1; ð9Þ
where V, E, and F denote the numbers of vertices, edges, and faces of the manifold
Ω, respectively. In this process, V, E, and F do not change with the increasing strain
(Supplementary Fig. 1c, f, i), resulting in a constant Euler characteristic.

The summation of the exterior angles does not change under tension and the
variation in summation is expressed as

Δ ∑
P

i¼1
θi

� �
¼ 2 4 α2s sb þ

wd

sin α2s
	 


 !" #
�4 α2s sb

	 
� �( )
¼ 0; ð10Þ

where Δð∑P
i¼1 θiÞ denotes the variation of the summation of the exterior angles;

α2s sb
	 


denotes the angle between the tangent line of the boundary ribbon and the
discrete ribbon at the point of intersection and is a function of the arc length of the
boundary ribbon sb; the coefficient 2 is from the symmetry of the structure; wd is
the width of the discrete ribbons. Note that we assume the distance 4sb between
two discrete ribbons along the boundary ribbon is expressed as 4sb ¼ wd

sin α2sð Þ
because wd � R, with R being the half-width of the 2D precursor.

For the cylindrical and spheroidal shape, it is obvious that 4α2s ¼ 0 during the
deformation due to the conformal mapping (Supplementary Fig. 1). For the saddle
shape, while α2s is changing due to the contact between the discrete ribbons, and
the summation of the exterior angles keeps constant because the variation of the
angles of two neighboring discrete ribbons has the same absolute value. It is
noteworthy that the Gauss–Bonnet theorem is first applied to the surface formed
by two neighboring discrete ribbons and then extended to the entire structure.

Variation of the geodesic curvature. The curve of the ribbon is parametrized by
arc length as shown in Supplementary Fig. 2a, c, e; the origin is located at the
midpoint of each ribbon; sb and sd denote the arc length coordinate of the
boundary and discrete ribbons, respectively. The integral of geodesic curvature
along the smooth boundary of the manifold (Supplementary Fig. 1c, f, i) is com-
posed of two parts, i.e.,

R
kgds ¼

R
kgddsd þ

R
kgbdsb, where kgd and kgb denote the

geodesic curvature along the discrete and boundary ribbons, respectively. The
geodesic curvature of the discrete ribbons is equal to zero (kgd ¼ 0), because the
discrete ribbons are geodesics of the morphed surface (normal vectors of discrete
ribbons are normal to the tangent plane). As such, the integral is simplified asZ

kgds ¼
Z

kgbds; ð11Þ

where ds denotes the line element along the boundary of the manifold formed by
two neighboring discrete ribbons.

Further, the geodesic curvature of the boundary ribbons is equal to the
projection of the curvature of the boundary ribbon on the tangent plane Tp of the
surface, as shown in Supplementary Fig. 3. According to the Meusnier theorem37,
the relationship between the curvature of the boundary ribbon and the geodesic
curvature is given by

kgb¼ < r00b; S> ¼ kbsinφ; ð12Þ
where kb is the curvature along the boundary ribbon. kgb is the geodesic curvature
along the boundary ribbon. Vector rb denotes the boundary curve parameterized
by arc length and r00b



 

 = kb. The angle φ (Supplementary Fig. 3) is given in Eq. (2)
of Supplementary note 1.

Fabrication, mechanical testing, and thermal treatment of the kirigami sheets.
We used polyethylene terephthalate (PET) sheets (Dupont Teijin Film,
McMaster–Carr) with Young’s modulus of 3.5 GPa, Poisson’s ratio of 0.38, and
thickness of 0.127 mm for the kirigami sheets. The samples with different cut
patterns were cut out using a laser cutter (EPILOG LASER 40 W) with cut ribbon
width of 1.5 mm in Fig. 1a, b and 0.75 mm in Fig. 1c. Uniaxial tensile tests were
performed using Instron 5944 to characterize the force–displacement curves under
a loading rate of 10 mm/min. Thermal treatment (120 °C for 120 min) of the
deformed PET samples under a stretched state in an oven fixed the generated 3D
shapes upon cooling to room temperature and force removal. To recover to the
initial flat state, a second thermal treatment of the deployed 3D shapes was con-
ducted under 120 °C for 120 min in the oven.

Finite element simulation. In the FEM simulation (Abaqus/Standard), the PET
sheets corresponding to three different morphologies as a spheroid, cylinder, and
saddle were modeled as linear elastic, isotropic material with the measured Young’s
modulus of 3.5 GPa and Poisson’s ratio of 0.38. The geometries were meshed with
solid quadratic tetrahedral elements (C3D10H) and the fine mesh was applied to
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the connection area for the ribbons. The left end was fixed and a prescribed
displacement was applied to the right end to stretch the 2D kirigami precursors.

Kirigami hand. The kirigami hand is made of a polyethylene terephthalate (PET)
sheet with patterned cuts via laser cutting. For a proof-of-concept demonstration,
the shape-morphing of the gripper was manually actuated by uni-axial stretching.
The two ends were attached to customized acrylic beams to perform tasks in the
Supplementary Movie S3. The simplicity of the actuation makes it easy to be
integrated with existing robotic platforms or to be actuated remotely via a
magnetic field.

Fabrication of the AgNW/PDMS heater. For the nanowire synthesis, a modified
polyol process was used. Firstly, 60 mL of a 0.147M PVP (MW ~40,000, Sigma-
Aldrich) solution in EG (was added to a round-bottom flask to which a stir bar was
added; the vial was then suspended in an oil bath (temperature 151.5 °C) and heated
for 1 h under magnetic stirring (150 rpm). Then at 1 h, 200 µL of a 24M CuCl2
(CuCl2·2H2O, 99.999+%, Sigma-Aldrich) solution in EG was injected into the PVP
solution. The solution was then heated for an additional 15min, followed by injecting
60mL of a 0.094M AgNO3 (99+%, Sigma-Aldrich) solution in EG. AgNWs in
ethanol solution with an average diameter of 90 nm and length of 20–30 μm were
shaken for 5 min before use to disperse the nanowires in the solution. The AgNW
solution was drop-casted on plasma-treated polyimide (PI) tape on a glass slide; at the
same time, the solution was heated by a hot plate at 50 °C to evaporate the solvent.
After the evaporation of ethanol, the AgNWs were thermally annealed at 150 °C for
20min. Then the sample was laser cut to the desired pattern with extra nanowires and
PI removed. Then liquid PDMS (SYLGARD 184) with a weight ratio of 10:1 was spin-
coated onto the AgNW film, degassed, and subsequently thermally cured at 100 °C for
1 h. After curing, the AgNW/ PDMS composite was laser cut again to the designed
geodesic pattern. Then the AgNW/PDMS composite was peeled off from glass/PI
substrate in water. Finally, Cu wires were attached to the two ends of the heater by
silver epoxy (MG Chemicals) for connection to the power source.

Data availability
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