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A B S T R A C T   

A growing body of literature suggests that the explicit parameterization of neural power spectra is important for 
the appropriate physiological interpretation of periodic and aperiodic electroencephalogram (EEG) activity. In 
this paper, we discuss why parameterization is an imperative step for developmental cognitive neuroscientists 
interested in cognition and behavior across the lifespan, as well as how parameterization can be readily 
accomplished with an automated spectral parameterization (“specparam”) algorithm (Donoghue et al., 2020a). 
We provide annotated code for power spectral parameterization, via specparam, in Jupyter Notebook and R 
Studio. We then apply this algorithm to EEG data in childhood (N = 60; Mage = 9.97, SD = 0.95) to illustrate its 
utility for developmental cognitive neuroscientists. Ultimately, the explicit parameterization of EEG power 
spectra may help us refine our understanding of how dynamic neural communication contributes to normative 
and aberrant cognition across the lifespan. Data and annotated analysis code for this manuscript are available on 
GitHub as a supplement to the open-access specparam toolbox.   

1. Parameterizing neural power spectra: developmental 
considerations 

Dynamic neural communication is essential to cognitive develop
ment. Neurophysiological signals consist of periodic (putative oscilla
tions) and aperiodic (exponent, offset) components that are dynamic 
and physiologically distinct, and are thought to reflect neural commu
nication (Donoghue et al., 2020a; He, 2014; Voytek and Knight, 2015). 
The inherent overlap of periodic and aperiodic components necessitates 
quantification that separates the signal to ensure that the observed 
neural activity is attributed to the appropriate physiological mechanism. 
Many canonical analysis approaches, such as analyzing pre-defined 
oscillation bands, may conflate, bias, and misrepresent these different 
components. As a result, developmental cognitive neuroscientists may 
be less likely to isolate and understand the mechanisms driving con
structs of interests over time. 

An example illustrating the importance of explicit parameterization 
can be seen in Fig. 1. In this case, Baby A and Baby B, both approxi
mately 18-months of age, exhibit alpha activity during a resting baseline 

recording. Using a traditional (non-parameterized) approach based on 
the canonical alpha frequency band (5–9 Hz in infants), we may 
conclude that the Baby B has lower relative alpha power compared to 
the Baby A, when in fact the difference is in peak frequency. It is worth 
noting that the canonical frequency band may not appropriately capture 
alpha activity for these infants, as peak frequency of the putative alpha 
oscillation for both Baby A and Baby B falls outside the commonly-used 
frequency range. In addition, using the traditional approach, it is unclear 
whether these infants differ in regards to aperiodic activity, which could 
conflate estimates of the periodic activity (Donoghue et al., 2020b; He 
et al., 2019). This inaccurate information could then be used to predict a 
behavioral outcome (e.g., lower alpha power is associated with less 
fearfulness), ultimately obscuring real brain-behavior associations 
because we failed to take a valid measurement of periodic activity. 

Instead, a more appropriate conclusion based on parameterized 
power spectral data is that Baby B had a higher alpha center frequency, 
suggesting relatively more cortical maturation (Marshall et al., 2002), as 
well as a slightly larger aperiodic offset and exponent relative to Baby A. 
On the other hand, Baby A exhibited more alpha power during the 
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resting baseline relative to Baby B. Without explicit parameterization of 
power spectral features, rich physiological information on key indicators 
of normative and aberrant neurodevelopment may be lost. 

With this need in mind, Donoghue et al. (2020a) introduced an 
automated method for parameterizing neural power spectra to disen
tangle periodic and aperiodic spectral features. This spectral parame
terization (“specparam”) algorithm1 fits components of power spectral 
densities (PSDs) in an efficient and physiologically-informed manner, 
while remaining agnostic to predefined canonical frequency bands. 

In this paper, we provide a step-by-step tutorial to showcase the 
utility of parameterizing electroencephalogram (EEG) power spectra via 
specparam in pediatric samples. Moreover, we discuss the importance of 
spectral parameterization for advancing the field of developmental 

cognitive neuroscience, emphasizing the role of the aperiodic signal in 
biasing the measurement of putative oscillations. Many of our examples 
focus on normative aging and neurodevelopmental disorders to high
light the utility of careful parameterization of neural power spectra 
across the lifespan. We do not intend to comprehensively describe 
developmental research on oscillatory neural activity, but instead select 
examples that illustrate key interpretive questions about the role of 
periodic versus aperiodic activity. Indeed, growing interest in the 
aperiodic exponent has shown that it is a physiologically distinct spec
tral component with important links to development and psychopa
thology in its own right (e.g., Molina et al., 2020; Tran et al., 2020). Data 
and annotated analysis code are available on GitHub (https://github. 
com/fooof-tools/DevelopmentalDemo) as a supplement to the 

open-access specparam toolbox (Donoghue et al., 2020a). The spec
param website includes detailed information about the algorithm and its 
many utilities (https://specparam-tools.github.io). 

1.1. Aperiodic activity 

Aperiodic activity refers to the arrhythmic component of neural field 

Fig. 1. Periodic and aperiodic power spectral components can differ between individuals, exemplified here by two 18-month old infants who differ in alpha activity. 
EEG data were recorded at central midline (Cz) during a resting baseline. Algorithm settings were set as: peak width limits: [2,8]; max number of peaks: 6; minimum 
peak height: 0.05; peak threshold: 2; aperiodic mode: fixed. Power spectra were parameterized across the frequency range 3–30 Hz. Relative alpha power is expressed 
as the percentage of power in the canonical frequency band for this age group (5–9 Hz) relative to total power across frequencies (3–30 Hz). 

1 This spectral parameterization algorithm was previously called “fitting os
cillations and one over f” (FOOOF). The name of this toolbox is being updated 
to specparam, to better reflect the methodological approach and conceptuali
zation of periodic and aperiodic activity. This change will take effect in an 
upcoming version release of the toolbox. Please check the toolbox website for 
updated installation instructions. 
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data, such as the EEG signal, which contributes power across all fre
quencies (He, 2014; Freeman and Zhai, 2009). Explicit parameterization 
of the aperiodic signal has challenged prevailing assumptions regarding 
the physiological underpinnings of cognitive and behavioral health and 
dysfunction by showing how aperiodic activity uniquely relates to 
cognitive, developmental, and clinical measures of interest 
(González-Villar et al., 2017; He et al., 2019; Molina et al., 2020; Rob
ertson et al., 2019; Tran et al., 2020). 

Aperiodic activity is characterized by an exponential decrease in 
power across increasing frequencies that follows approximately a 1/f 
distribution. This “1/f-like” characteristic can be described by two pa
rameters: the aperiodic ‘offset’, which describes the broadband offset of 
the spectrum and the aperiodic exponent, defined as the χ in the 1/f χ 

formulation, which describes the pattern of power across frequencies 
(Donoghue et al., 2020a). Animal and computational models have pro
posed that the aperiodic exponent may be a noninvasive index of the 
balance of excitation and inhibition (E:I) in cortical circuits (Gao et al., 
2017). In this case, a smaller exponent reflects a broadband flattening of 
the PSD, signifying a shift away from cortical inhibition (E > I), while a 
larger exponent indicates the opposite pattern of activation (E < I). 
Practically, emerging evidence suggests that the aperiodic exponent 
systematically relates to perceptual and cognitive behaviors, such as 
working memory performance (Donoghue et al., 2020a; Podvalny et al., 
2015; Waschke et al., 2020). 

1.1.1. Aperiodic exponent and normative aging 
Converging evidence suggests that the aperiodic exponent decreases 

with age, and may account for a normative redistribution of spectral 
power from lower to higher frequencies over time (He et al., 2019). In 
adulthood, older individuals consistently display flatter PSDs (smaller 
exponents and less cortical inhibition) relative to their younger peers 
(Tran et al., 2020, Waschke et al., 2017; Voytek et al., 2015). A similar 
pattern emerges when considering adults and children, with older in
dividuals (23–58 years old) showing flatter PSDs compared to 
school-aged children (5–10 years old) (He et al., 2019). 

Only two studies to date have examined the aperiodic exponent in 
infancy. Using cross-sectional data, Karalunas et al. (2021) observed 
that exponents were smaller (flatter PSDs) in adolescents relative to 
infants. Using longitudinal data, Schaworonkow and Voytek (2021) 
observed a progressive flattening of power spectra among infants across 
the first months of life. Psychometrically, the exponent has been shown 
to have high internal consistency in infancy and adolescence (Karalunas 
et al., 2021), as well as good test-retest reliability in adulthood (Pathania 
et al., 2021) and among children with autism spectrum disorder (Levin 
et al., 2020). While studies suggest good signal reliability, it is important 
to note that it would be difficult to compare aperiodic parameters across 
participants when different recording systems are used, or in different 
environments, due to the fact that measurement noise is also often 1/f in 
nature (He et al., 2010; Miller et al., 2009). Together, findings to date 
indicate that the exponent is a reliable neural signature that decreases in 
an approximately linear manner across development, possibly contrib
uting to age-related changes in cognitive function (e.g., Tran et al., 
2020). 

1.1.2. Aperiodic exponent and neurodevelopmental disorders 
Crucially, the exponent may offer insight into a physiological 

mechanism that contributes to disrupted information processing among 
neurodevelopmental disorders, chiefly, attention deficit/hyperactivity 
disorder (ADHD) (Ostlund et al., 2021; Robertson et al., 2019), autism 
(Levin et al., 2020), schizophrenia (Molina et al., 2020), and Fragile X 
Syndrome (Wilkinson and Nelson, 2021). For instance, the balance of 
excitatory (glutamatergic) and inhibitory (GABAergic) influences ap
pears critical for attention control, and has thus been implicated as a 
putative mechanism contributing to ADHD (Mamiya et al., 2021). 
Clinical and animal models point to altered GABAergic and gluta
matergic activity among individuals with ADHD (Edden et al., 2012; 

Hammerness et al., 2012; Zimmermann et al., 2015), indicating that E:I 
imbalance in cortical circuits may be a core dysfunction for this popu
lation (Mamiya et al., 2021). Findings from Ostlund et al. (2021) lend 
support for this hypothesis, showing that adolescents (11–17 years old) 
with ADHD had smaller exponents (flatter PSDs), compared to their 
typically-developing peers. This flattening suggests an atypical E:I bal
ance in developing cortical circuits, namely, a shift away from cortical 
inhibition. 

Though promising, a recent study from Robertson et al. (2019) with 
younger children (3–7 years old) found the opposite pattern: children 
with ADHD had larger exponents compared to their typically-developing 
peers. In addition, larger exponents were only characteristic of children 
who were stimulant medication-naïve. This group had larger exponents 
(steeper PSDs) compared to both typically-developing peers and chil
dren with ADHD who were prescribed stimulant medication but had 
undergone a 24-hour medication washout prior to the EEG recording. 
Findings raised at least two major questions: (1) is the power spectrum 
among children with ADHD steeper or flatter compared to children 
without ADHD? and (2) are the patterns dependent on stimulant treat
ment history? 

To reconcile inconsistent findings, Karalunas et al. (2021) examined 
the aperiodic exponents of infants (Mweeks = 6.08, SD = 1.67) and ado
lescents (11–17 years old) at high familial risk for, or currently diag
nosed with, ADHD, respectively, in relation to their typically-developing 
peers.2 Compared to their same-aged typically-developing peers, ado
lescents with ADHD had smaller exponents, but effects were moderated 
by lifetime history of stimulant treatment. Specifically, only adolescents 
with ADHD and no history of stimulant treatment had smaller exponents 
than their typically-developing peers. In addition, during infancy high 
familial risk for ADHD was associated with larger exponents. These re
sults mirror discrepant findings reported by Robertson et al. (2019) and 
Ostlund et al. (2021), pointing to a potential developmental effect 
among children at-risk for ADHD, which may help understand symptom 
and functional trajectories. 

To this end, Karalunas and colleagues posited that neuro
developmental risk for ADHD may be characterized by a differential rate 
in the normative broadband flattening of neural power spectra across 
development. This pattern may be normalized with pharmacological 
intervention (e.g., methylphenidate medications such as Ritalin; Per
termann et al., 2019), given that results were specific to medi
cation-naïve children (Karalunas et al., 2021; Robertson et al., 2019; see 
Molina et al., 2020 for E:I normalization among individuals with 
schizophrenia), and is consistent with changes in GABA and glutamate 
concentrations for individuals with ADHD across the lifespan (Mamiya 
et al., 2021). This provocative hypothesis warrants further examination 
in longitudinal samples, and motivates the importance of applying an
alyses such as spectral parameterization in developmental samples in 
order to differentiate periodic and aperiodic activity and understand 
their relations to behaviors of interest. 

1.1.3. Aperiodic offset 
The offset—an aperiodic parameter that indexes the uniform shift of 

broadband power in response to changes in cognitive and perceptual 
states—has received relatively less attention than the exponent, despite 
being a correlate of neuronal population spiking (Manning et al., 2009; 
Miller et al., 2014) and the blood oxygenated level dependent (BOLD) 
signal from functional magnetic resonance imaging (fMRI) (Winawer 
et al., 2013). The offset parameter has shown fair test-retest reliability 
among typically-developing children as well as children with autism 
(Levin et al., 2020). Developmentally, He et al. (2019) have shown that 
the aperiodic offset is smaller in adults relative to children. These au
thors also found that the offset is negatively correlated with age in 

2 Adolescent data analyzed in Ostlund et al. (2021) was a subset of the 
adolescent sample reported in Karalunas et al. (2021). 
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childhood, an effect that was marginal among adults. Overall, these 
results are consistent with other neurophysiological findings showing 
age-related reductions in broadband power (e.g., Gómez et al., 2017; 
Rodríguez-Martínez et al., 2017). To this end, medication-naïve young 
children with ADHD have larger offsets compared to their 
typically-developing peers and stimulant-treated children with ADHD 
who underwent a 24-hour medication washout (Robertson et al., 2019), 
consistent with the neurodevelopmental nature of the disorder. 

It is important to note that any exponent change, if it rotates the 
spectrum around a non-zero frequency, will also lead to a change in 
offset. Thus, the offset and exponent are often highly correlated. 

1.2. Periodic activity 

Periodic activity refers to the rhythmic component of the EEG signal 
that rises above the aperiodic exponent, indexing putative neural os
cillations, visible as peaks in the power spectrum (Buzsaki et al., 2013). 
The distribution of power across frequencies is traditionally divided into 
fixed frequency bands that, in adults, are typically approximately 
defined as delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 
(13–30 Hz), and gamma (30–80 Hz) (Pernet et al., 2020). It is worth 
noting that studies vary in their definition of the frequency range over 
which the canonical bands are estimated, particularly when considering 
pediatric samples, raising practical challenges for comparing results 
between studies. 

Across the lifespan, band-limited power is an established correlate of 
cognition, emotionality, and behavior. Since research on band-limited 
power in childhood has been discussed extensively, a comprehensive 
review of this literature is beyond the scope of this paper (see e.g., Saby 
and Marshall, 2012 for review). The frequency ranges that define these 
narrow bands shift with age (e.g., Marshall et al., 2002). More specif
ically, with advancing age, power in the lower frequency range 
(< 20 Hz) tends to decrease, whereas power in the higher frequencies 
range (> 40 Hz) tends to increase. Recent evidence suggests that this 
age-related redistribution of power may reflect normative change in 
aperiodic activity with aging (Donoghue et al., 2020a; He et al., 2019; 
Tran et al., 2020), observed as a broadband “see-saw” rotation of the 
power spectrum as a result of changes in the aperiodic signal (Voytek 
and Knight, 2015). 

Notably, few studies have explicitly parameterized the neural power 
spectra to account for aperiodic activity, which may bias estimations of 
narrowband power, consequently affecting physiological interpretations 
of cognition and behavior in childhood. The importance of this issue is 
exemplified in a recent study by Donoghue et al. (2020b), who examined 
whether band ratio measures (e.g., theta/beta, theta/alpha) were 
conflated by the aperiodic signal. Historically, researchers have used 
band ratio measures to understand individual differences in develop
ment, cognition, and psychopathology risk (e.g., Loo and Makeig, 2012). 
The suggestion is that an increased theta/beta ratio reflects more 
subcortical (relative to cortical) involvement, which may impede 
inhibitory control (e.g., Angelidis et al., 2016). Thus, theta/beta and 
other low/high frequency ratio measures have been of interest in neu
rodevelopmental disorders, such as ADHD, where inhibitory control is 
impaired. However, using real and simulated EEG data, Donoghue et al. 
(2020b) demonstrated that band ratio measures, particularly the the
ta/beta ratio, were conflated with the aperiodic signal. These findings 
raise questions regarding the utility of band ratio measures specifically, 
as well as the interpretability of band-limited power estimates that do 
not account for aperiodic activity more broadly. The conflating of pe
riodic and aperiodic activity may also help explain why research find
ings for theta/beta and similar metrics in ADHD have been equivocal at 
best (Arns et al., 2013; Loo and Arns, 2015; Loo et al., 2013), and help 
answer calls for alternative ways to quantify differences in the power 
spectrum in these clinical groups (Saad et al., 2018). 

With this in mind, recent studies have begun to explore whether 
aperiodic-adjusted power measures change over development. 

Comparing children (5–10 years old) and adults (23–58 years old), He 
et al. (2019) replicated power differences in delta, theta, beta, and 
gamma activity that have been reported in prior studies. These findings 
suggest that neuronal activity within each canonical frequency band 
changes as a function of cortical maturation, which permits researchers 
to draw conclusions about how cognitive and behavioral correlates of 
these neural signatures may change across the lifespan. However, after 
accounting for the aperiodic signal, age-related increases in power were 
only observed in the canonical beta band, with adults exhibiting rela
tively greater peak beta power compared to children (He et al., 2019). 
These results lend support to the suggestion that the aperiodic signal 
conflates age-related changes in spectral power, and raise questions as to 
whether narrowband changes in cortical activity (calculated via stan
dard methods) do in fact underpin observed age-related changes in 
cognition and behavior. Further investigation into the development of 
aperiodic-adjusted power, center frequency, and bandwidth of putative 
oscillations is necessary to clarify their role in cognitive and behavioral 
functioning across the lifespan. 

Notably, whereas neural oscillations are an interesting and impor
tant feature of neural activity (Buzsaki et al., 2013), including in 
development (Saby and Marshall, 2012; Cellier et al., 2021), the pres
ence of aperiodic activity and the complex properties of oscillatory ac
tivity requires care when estimating. As with the spectral 
parameterization approach described here, we direct the reader to 
Donoghue et al. (2021) for a detailed discussion of necessary consider
ations for detecting neural oscillations. For example, in the spectral 
domain, prominent rhythmic components in a time series will be re
flected as a peak of power at the corresponding frequency. However, the 
reverse inference is not necessarily true–a peak in the spectral domain 
may reflect a harmonic of a non-sinusoidal rhythm. For example, a 
10 Hz mu wave may exhibit a harmonic peak at 20 Hz in the spectrum 
despite there being no corresponding 20 Hz rhythmic activity. While we 
focus on spectral domain measures and representations here, we also 
note that specparam can be used in conjunction with time-domain an
alyses approaches which can provide alternate and complementary ap
proaches to detecting the oscillatory activity, and examining oscillatory 
features such as waveform shape (e.g., Jones, 2016; Cole and Voytek, 
2019). 

2. A practical guide for using the specparam algorithm 

Here, we briefly describe the specparam algorithm, along with 
considerations for the model fitting process. We then provide a step-by- 
step guide to fitting individual and group power spectra via specparam 
in Jupyter Notebook and R Studio, respectively. We selected these two 
programs due to their ease of use and familiarity among developmental 
cognitive neuroscientists for data analysis and visualization. Using real 
data from children, we fit the same individual and group power spectra 
in both programs. We direct the reader to Donoghue et al. (2020a) for 
information on algorithm performance with real and simulated EEG/
MEG data. Although not discussed in this paper, a Matlab wrapper is 
available on the specparam website as well. 

We recommend that users interested in this tutorial download the 
full code and data from the GitHub repository and follow the in
structions in the ReadMe document when setting up their environment. 
Please check the repository for this project periodically for updates 
related to, among other things, future version releases and improve
ments in functionality. 

2.1. Specparam algorithm 

2.1.1. Model parameters 
In specparam, PSDs are treated as a linear combination of aperiodic 

activity (in log-log space) and oscillatory peaks (individually modeled 
with a Gaussian) that rise above the aperiodic signal. The aperiodic 
component is initially fit across the observed frequency range and then 
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removed from the raw PSD. The residual activity is iteratively fit as 
Gaussian functions and removed, up to a predefined noise threshold. 
Fitted oscillatory peaks are removed from the raw PSD, at which point 
aperiodic activity is re-fit. Lastly, the fit EEG signals are combined and 
goodness of fit assessed (Donoghue et al., 2020a). In the end, the algo
rithm provides information on periodic and aperiodic components of the 
EEG power spectra. Periodic parameters include center frequency (mean 
of the Gaussian), aperiodic-adjusted power (distance between Gaussian 
peak and aperiodic fit), and bandwidth (2 SD of the fitted Gaussian). 
Aperiodic parameters include the offset (y-intercept of model fit) and 
exponent (χ in the 1/f χ model fit). 

Specparam also provides two “goodness of fit” measures that 
describe how well the algorithm fit the data – R^2 and Mean Absolute 
Error (MAE), representing the explained variance and total error of the 
model fit, respectively. It is important that users evaluate model fit 
before interpreting data. We recommend including descriptive infor
mation for the goodness of fit parameters when reporting results to give 
other researchers a sense of the quality of the model fits. These measures 
can be used for quality control, for example, as a way to identify outlier 
spectra that are not well fit. Indeed, high error and low r-squared may 
reflect a poor fitting model, whereas exceptionally low error and high r- 
squared may reflect a model that is overfit. Though helpful, it is 
important to keep in mind that the model fitting process is not designed 
to directly optimize these goodness of fit measures, that is, provide low 
error and high r-squared. Rather, the algorithm aims to measure the 
aperiodic and periodic components in the most parsimonious manner. 
This optimization approach may at times result in over- or underfitting 
of power spectra. Further recommendations for reducing over- and 
underfitting are available on the specparam website. 

2.1.2. Model fit settings 
An overview of key parameterization settings for the fitting algo

rithm is presented in Table 1. One important consideration is whether to 
fit the aperiodic signal with a bend, or “knee” (aperiodic_mode, default =
‘fixed’), a common spectral feature in broad frequency ranges (see e.g., 
Miller et al., 2009) that might reflect the electrophysiological timescale 
of the underlying neural population activity (Gao et al., 2020). In 
specparam, the aperiodic signal is modeled as:  

L = b – log(k +Fχ)                                                                                

where b is the broadband offset, χ is the exponent, k is the ‘knee’ 
parameter, and F is a vector of input frequencies. We recommend that a 
user visually inspect spectral data across a broad frequency range to see 
if the putative aperiodic signal appears approximately linear (in log-log 
space). The ‘fixed’ mode (k = 0) is the default because the PSD is likely 
approximately linear over smaller frequency ranges (e.g., 3–35 Hz). 
Fitting with a knee may perform sub-optimally in ambiguous cases 
(where the data may or may not have a knee), or if no knee is present. 
The ‘fixed’ mode will not fit the data well if there is a clear knee in the 

power spectrum; in this case, use the ‘knee’ mode. 
Another important consideration is whether to adjust the relative 

threshold for detecting peaks (peak_threshold, default = 2 standard de
viations). In most cases, the default setting will be sufficient for identi
fying peaks above the aperiodic signal. The specparam algorithm allows 
a user to adjust a number of other parameterization settings as well, 
including limits on the possible bandwidth of extracted peaks (peak_
width_limits), the maximum number of peaks (max_n_peaks), and mini
mum height above the aperiodic signal that a peak must be to be 
extracted in the initial fit (min_peak_height). A full description of all 
possible setting options can be found at the specparam website. 

We suggest that researchers report their algorithm settings to aid the 
interpretation of results and support replication in future studies with 
related populations. Here, we provide a template methods report: 

The specparam algorithm (version X.X.X) was used to parameterize 
EEG power spectra. Algorithm settings were set as: peak width limits: 
XX; max number of peaks: XX; minimum peak height: XX; peak 
threshold: XX; and aperiodic mode: XX. Power spectra were parame
terized across the frequency range XX to XX Hz. 

Code to access required settings from the specparam model object is 
provided on the specparam website (see https://fooof-tools.github.io 
/fooof/reference.html). 

2.1.3. A data-driven approach to tune model fitting 
There is no one-size-fits-all recommendation for specparam algo

rithm settings. The default settings are general settings that can 
accommodate different recording modalities, data quality, and fre
quency ranges, but often need some tuning to individual datasets and 
may result in over- or underfitting if care is not taken. In general, small 
changes in the algorithm settings tend to have minimal influence on 
model fits overall when broadly appropriate settings have been applied. 
We suggest applying a data-driven approach to tune model fitting for 
optimal performance, while taking into account your expectations about 
periodic and aperiodic activity given the data, the question of interest, 
and prior findings. To this end, a recommended workflow may include 
the following steps: (1) test model fit on a subsample of the data, 
selecting algorithm settings based on prior findings and a priori expec
tations; (2) adjust algorithm settings (e.g., frequency range, peak 
threshold) as needed; (3) fit power spectra of full sample with selected 
settings; and (4) assess model goodness of fit metrics, including cases of 
over- or underfitting. If the algorithm settings produce problematic 
model fitting for the full sample, a researcher may consider going back 
and adjusting algorithm settings as needed. 

We provide two options for evaluating the appropriateness of algo
rithm settings based on a subset of the data in the 02-GroupPSDs.ipynb 
and 03-R_GroupPSDs.Rmd scripts. In the first option, a user can effi
ciently fit a model for each participant in the identified subsample. Each 
model result is saved out for further consideration. Algorithm settings 
can be adjusted based on inspection of individual model fits. Alterna
tively, a user can fit two group models based on the subsample of data, 
with different algorithm settings for each model object. Group model 
results are saved out for further consideration. Code is also available to 
check possible over- or underfitting once initial algorithm settings have 
been selected and a group model object has been fit. This code loops 
through all model objects and extracts fits that are either above 
(underfitting) or below (overfitting) a specific error threshold. The re
ports for potentially problematic models are saved out for further 
examination. 

It is worth noting that researchers differ in the number and location 
of electrode channels in their analysis of aperiodic activity. The spatial 
origin of aperiodic activity is not thought to be confined to a specific 
brain area. With this in mind, it may be helpful to plot the spatial 
topography of aperiodic activity across the scalp to support selection of 
channels for analysis. This information can be assessed in conjunction 
with a priori hypotheses regarding the task-dependent topographical 
distribution of aperiodic activity. Reporting the spatial topography of 

Table 1 
Brief overview of key settings for the specparam algorithm.  

Setting Units Default Description 

peak_width_limits Hz [0.5, 
12] 

Limits on the bandwidth of 
extracted peaks. 

max_n_peaks  infinite Maximum number of peaks that 
can be extracted. 

peak_threshold Standard 
deviations 

2 Threshold above which a data 
point must pass to be considered a 
candidate peak. 

min_peak_height Power 0 Minimum height, above aperiodic 
fit, that a peak must have to be 
extracted in the initial fit stage. 

aperiodic_mode  ‘fixed’ The mode for fitting the aperiodic 
component, i.e., fitting with or 
without a ‘knee’ parameter.  
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aperiodic activity will be particularly useful when examining resting- 
state EEG among pediatric samples, given spatial heterogeneity 
inherent in neurophysiology across development (e.g., Cellier et al., 
2021), and can inform future developmental research. 

2.2. Spectral parameterization in Jupyter Notebook 

Jupyter notebooks are an open-source interface for interactive cod
ing, allowing for integrating code, outputs, and markdown descriptions 
in order to develop and apply computational workflows. Jupyter note
books support multiple programming languages, including Python and 
R. The Jupyter project also includes Jupyter lab, a platform for orga
nizing and interacting with code scripts, data files, notebooks, and code 
outputs. Once the spectral parameterization module is installed, Jupyter 
notebooks can be used to run and visualize spectral parameterizations. 
Instructions for installing Jupyter Notebook are provided in the Sup
plement and in the README file in the Python folder on the GitHub 
repository. The following tutorial to fit a single power spectrum in 
Jupyter Notebook is based on a shortened version of the 01-Individu
alPSD.ipynb script provided on GitHub, which we present in Fig. 2A. 

2.2.1. Load libraries 
Install the requirements document from the GitHub repository (pip 

install -r requirements.txt) and specparam (see specparam website for up- 
to-date installation information) via the pip function in the Terminal. 
These installations include all Python libraries necessary for spectral 
parameterization. Next, launch Jupyter Notebook, navigate to the folder 
with the 01-IndividualPSD.ipynb script, and open the script. 

2.2.2. Load data 
Set the working directory to the Data folder (data_path = Path 

(‘./Data/’)). Load the two CSV files that contain a vector of frequencies 
(“freqs.csv”) and a power by frequency matrix (“indv.csv”). It is worth 
noting that in the provided script we use the read_csv function from 
pandas and the ravel function from numpy to read in the CSV files and 
then flatten the data into one-dimensional arrays, respectively. 

Adjustments may be necessary if data are in a different format (see 
specparam website for examples using NPY files). 

2.2.3. Fit model 
The next step is to define the spectral parameterization object. Al

gorithm settings were set as: peak width limits: [1,8]; max number of 
peaks: 6; minimum peak height: 0.10; aperiodic mode: fixed; default 
settings otherwise. Power spectra were parameterized across the fre
quency range 3–40 Hz. The model is then fit using the report function 
from specparam, which fits the model and plots the results, creating the 
output seen in Fig. 2B. Model fit information can also be saved out, in 
this case as a PDF file. 

2.2.4. Store and print parameters 
Lastly, we extract and store model fit information. Example code for 

printing various model parameters is presented in Fig. 2A, including 
code for a custom parameter report. We store parameters from the model 
fit as objects for subsequent analyses and save the results as a JSON file. 
Additional data processing and visualization functions are described in 
the full 01-IndividualPSD.ipynb script and on the specparam website. In 
the 01-IndividualPSD.ipynb script, we also provide code for those who 
prefer to save Python results as a CSV file and read them into R sepa
rately for additional data analysis. 

2.3. Spectral parameterization in R Studio 

To facilitate integration of power spectral parameterization into 
analysis pipelines among researchers who prefer R, we provide code to 
run Python through R Studio using the reticulate package (Ushey et al., 
2020). The provided code allows a user to execute core features of 
specparam, namely, parameterization and visualization of individual 
and group power spectra. We provide code for using Python in R 
Markdown to support users interested in incorporating code from both 
languages into their data processing pipeline (see reticulate website for 
processing via the console). The following tutorial for fitting group 
power spectra in R Studio is based on a shortened version of the 

Fig. 2. Abbreviated version of the 01-IndividualPSD.ipynb script for parameterizing individual power spectrum using specparam in Jupyter Notebook (A). See the 
GitHub repository for full annotated script. Results of the specparam fitting of EEG data from a single child, recorded during an eyes-closed resting state, is presented 
in B. CF = center frequency of identified peak. PW = power of identified peak above the aperiodic signal. BW = band width of identified peak. 
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03-R_GroupPSDs.Rmd script provided on GitHub, which we present in  
Fig. 3. 

It is worthwhile to take time to ensure that the preferred Python 
version is being called in R—this is the most common issue users report 
when accessing Python in R Studio. Detailed instructions for setting up 
Python in R Studio are provided in the Supplement and in the README 
file in the R folder on the GitHub repository. The use of an older version 
of R or R Studio is another common issue. It may be necessary to update 
R and/or R Studio to newer versions in order to use the reticulate package 
and, by extension, the install_miniconda function. 

2.3.1. Load libraries 
Open the 03-R_groupPSDs.Rmd file in R Studio to analyze group 

power spectra (Fig. 3). We list a few necessary packages at the beginning 
of the provided script, namely, tidyverse (Wickham et al., 2019), grid
Extra (Auguie, 2017), psych (Revelle, 2021), and magick (Ooms, 2021). 
Load the reticulate package as well. Next, load the required Python li
braries. It is important to note that a user must include the code chunk 
delimiter ```{python} in order to interface with Python. An example of 
this is shown on line 54 in Fig. 3. 

Fig. 3. Abbreviated version of the 03-R_groupPSDs.Rmd script that parameterizes multiple power spectra using specparam in R Studio. See the GitHub repository for 
full annotated script. 
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2.3.2. Load data 
Load the two CSV files that contain a vector of frequencies (“freqs. 

csv”) and a power by frequency matrix (“eop.csv”). It is often helpful to 
check the shape of these objects to ensure that they are appropriate for 
the specparam algorithm. Namely, check that the column number from 
freqs matches with the row number from spectra. 

2.3.3. Fit model 
The next step is to define the spectral parameterization object (line 

56). Algorithm settings were set as: peak width limits: [1,8]; max 
number of peaks: 6; minimum peak height: 0.10; aperiodic mode: fixed; 
default settings otherwise. Power spectra were parameterized across the 
frequency range 3–40 Hz. The model is then fit using the fit function 
(line 57). Model fit results can be output, in this case as a PDF file. 

2.3.4. Extract periodic and aperiodic parameters 
Store model fit and aperiodic parameters to Python objects for sub

sequent analyses (lines 66–71). In regards to periodic parameters, we 
used the Bands function from specparam to identify peaks that occurred 
within a specific frequency range following spectral parameterization. 
This approach may be useful if comparing aperiodic-adjusted periodic 
activity to prior work on band-limited power (see e.g., He et al., 2019). 
Using the get_bands_peak_fg function, store periodic peak parameters 
that occur in the newly defined frequency bands as Python objects. 

2.3.5. Transfer to R data frames 
Call Python objects into an R workspace using the py$ command in a 

code chunk with the ```{r} chunk delimiter. For example, in Fig. 3, we 
define a variable with theta peak parameters (“thetas”) within a Python 
code chunk (line 79) that we call into an R code chunk as a data frame 
(lines 93–94). We create an R variable that binds together key variables 

from our original dataset (e.g., participant ID) with periodic, aperiodic, 
and model fit parameters into a single data frame. This data frame can be 
saved out as a CSV file. A user may now analyze and visualize aperiodic- 
adjusted power spectral data in R. 

2.3.6. Additional features 
We include code for additional features that may aid a user with 

tuning the specparam algorithm, some of which we demonstrate in  
Fig. 4. 

Based on the goodness of fit metrics presented in Fig. 4A, specparam 
fit the data recorded during an eyes-open resting state relatively well, 
with the exception of one potential outlier. The average R^2 was 0.99 
(SD = 0.03, range = 0.786–0.998). The average MAE was 0.03 
(SD = 0.01, range = 0.019–0.107). Grand averaged MAE is presented in 
Fig. 4B; error appears low across frequencies, except around 3 Hz. 
Overall, this pattern indicates that the model fit parameters were largely 
appropriate across the examined frequency range, although additional 
consideration on whether to parameterize beginning at 3 Hz may be 
warranted. 

Fig. 4C and D depict two fit models that were flagged as potentially 
over- (MAE < 0.025) and underfit (MAE > 0.100), respectively. There is 
no strict guideline as to what constitutes “bad” MAE values; relevant 
MAE depends on the scale and noisiness (smoothness) of the data. Based 
on visual inspection of Fig. 4C, the identified peaks appear reasonable, 
and the aperiodic fit does not appear to be fitting random noise in the 
data. The model fit presented in Fig. 4D, however, does not appear to be 
fitting the original spectrum well, with the original data going above and 
below the fit line across the examined frequency range. In this case, we 
may exclude this participant from subsequent analyses. In practice, 
participant exclusion should be informed by expectations about the data 
quality given the task, sample, and published research with comparable 

Fig. 4. Histograms for variance explained (R^2) and mean absolute error (MAE) for the full sample, recorded during an eyes-open resting state (A). Mean error per 
frequency, as well as standard deviation in error per frequency (blue shading), are presented in B. In this condition, the 3 Hz bin had the highest mean error and 
largest standard deviation in error, suggesting possible misfit at the lower end of the examined frequency range. Further consideration about specparam settings may 
be needed. C and D depict two fit models that were flagged as potentially being overfit (MAE < 0.025) and underfit (MAE > 0.100), respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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samples, particularly for young children. 

3. Illustrative example 

This illustrative example was conducted in R Studio using the 04- 
R_ExampleAnalysis.Rmd script provided on the GitHub repository. We 
tested whether power spectral features differed as a function of behav
ioral inhibition, a temperament trait characterized by distress to nov
elty, particularly if social in nature (Fox et al., 2001; Pérez-Edgar and 
Fox, 2018). Behavioral inhibition is associated with a three- to four-fold 
increased risk for social anxiety (Fox et al., 2001; Clauss and Blackford, 
2012). However, not every behaviorally inhibited child goes on to 
develop anxiety (Degnan and Fox, 2007). Prior work has examined 
frontal alpha asymmetry as a neural marker that may explain this het
erogeneity in risk trajectories, suggesting that behavioral inhibition in 
tandem with greater right frontal alpha asymmetry may lead to higher 
risk for anxiety and socioemotional difficulties (Hane et al., 2008; 
Henderson et al., 2001). As such, we also examined the association be
tween frontal alpha asymmetry calculated using the traditional method 
(i.e., no explicit parameterization of aperiodic activity) and via spec
param to illustrate the unique relations that can be derived from dis
entangling contributors to the EEG signal (see Supplemental 
Information). 

3.1. Method 

Example data come from a subsample of children (N = 60, Mage 
= 9.97 years, SD = 0.95; 55% female) recruited from central Pennsyl
vania for a study on behavioral inhibition and affect-biased attention. 
Descriptions of recruitment procedures and sample characteristics are 
published elsewhere (Liu et al., 2019, 2018; Thai et al., 2016). Children 
and their parents provided assent and consent, respectively, for partic
ipation at the initial laboratory visit. 

3.1.1. EEG collection and preprocessing 
EEG was recorded using a 128-channel geodesic sensor net (Elec

trical Geodesic Inc., Eugene, Oregon) during four 1-minute blocks. 
Children were instructed to keep their eyes open (EO) for two of the 
blocks, and closed (EC) for the other two blocks; blocks alternated be
tween conditions (EO, EC, EO, EC). EEG data were sampled at 1000 Hz 
and referenced online to the central midline electrode (Cz). Impedances 
were kept below 50 kΩ while recording. EEG data were preprocessed 
using the Maryland Analysis of Developmental EEG (MADE) pipeline 
(Debnath et al., 2020). Power spectra were estimated in 0.5 Hz in
crements from 1 to 50 Hz using Welch’s method with a hamming win
dow (50% overlap) in Matlab 2021a for each participant at each 
available electrode site. Although we chose to estimate the power 
spectral density using Welch’s method, other approaches, such as mul
titapers, can be used. The decision for which method to use depends 
somewhat on the characteristics of the data, and the intended purpose. 
Multitapering, for example, can provide less biased spectral estimates, 
especially for noisier, shorter time windows. Furthermore, the choice of 
which parameters to use when using Welch’s method (window size, 
window overlap), can influence spectral estimates. Therefore, it is 
advisable to examine the robustness of the results to different spectral 
estimation methods. 

Note that Matlab does not need to be used for this step, and all 
spectral analyses can be performed in Python using the MNE or neu
rodsp packages (Cole et al., 2019; Gramfort, 2013). Children from the 
larger sample with usable EEG in the EC and EO conditions were 
semi-randomly selected for the current analyses, only ensuring that half 
were behaviorally inhibited and half non-inhibited (see Supplemental 
Information for description of EEG preprocessing and subsample selec
tion). Analyses for the illustrative example were limited to data from the 
EC condition. 

3.1.2. Tuning the specparam algorithm 
The specparam algorithm (version 1.0) was used to parameterize 

EEG power spectra. For illustrative purposes, we will consider results 
from models fit with different algorithm settings. In practice, we suggest 
that algorithm settings be informed by published results from similar 
samples, taking into account expectations about periodic and aperiodic 
activity given the data and question of interest. Model #1 algorithm 
settings were set as: peak width limits: [2,5]; max number of peaks: 4; 
minimum peak height: 0.05; aperiodic mode: fixed; default settings 
otherwise. Power spectra were parameterized across the frequency 
range 2–20 Hz. Model #2 algorithm settings were set as: peak width 
limits: [1,8]; max number of peaks: 6; minimum peak height: 0.10; 
aperiodic mode: fixed; default settings otherwise. Power spectra were 
parameterized across the frequency range 3–40 Hz. 

Results from model fits using different settings on a randomly 
selected 10% subset of the data (n = 6) are presented in Fig. 5. Param
eterized power spectra from the same individual using different algo
rithm settings are presented in Fig. 5A and B. Although both model fits 
identified a peak at ~9.65 Hz, algorithm settings for model #1 resulted 
in a relatively poorer fit compared to model #2, as indicated by the 
goodness of fit metrics. Parameterized power spectra for the full subset 
of data are presented in Fig. 5C and D. Overall, the goodness of fit 
measures appear relatively better in Fig. 5D compared to C. This dif
ference is likely due to identified peaks at ~20 Hz range present in 
Fig. 5D that are not captured in C as a result of the smaller examined 
frequency range. As a general guideline, it is recommended to choose 
frequency ranges that are not in the middle of peak ranges, as is the case 
with model #1. Based on model fit results from the subset of partici
pants, and our expectations of periodic and aperiodic parameters in this 
sample, we chose to fit the group power spectra with algorithm settings 
from model #2. 

Visual inspection of error across examined frequencies indicated that 
the algorithm fit the data relatively well. There were no instances of 
underfitting, defined as MAE > 0.100, when considering data from the 
full sample. There was one instance of potential overfitting 
(MAE = 0.199, R^2 = 0.996), defined here as MAE < 0.020. After 
additional consideration, we decided that the identified peaks and 
aperiodic fit were reasonable. This participant was retained for subse
quent analyses. 

The selected algorithm settings were used to fit power spectra for 
behaviorally inhibited and non-behaviorally inhibited children sepa
rately (Table 2, Figs. 6 and 7). 

3.1.3. Measures 
Behavioral inhibition was measured using the Behavioral Inhibition 

Questionnaire (Bishop et al., 2003), a 30-item parent-report question
naire that assesses a child’s behavior in response to social and situational 
novelty. We examined BI as a categorical variable (total score 119 
and/or social novelty score 60), classifying a child as behaviorally 
inhibited (BI; n = 30) or non-behaviorally inhibited (BN; n = 30) 
(Broeren and Muris, 2009; Fu et al., 2017; Poole et al., 2020). 

Absolute power was calculated as spectral power averaged within 
the alpha (8–13 Hz) and beta (13–30 Hz) frequency ranges. Total power 
was calculated as spectral power averaged across all frequencies 
(3–40 Hz). Absolute power in each frequency band was divided by total 
power and then multiplied by 100 to create relative alpha and beta 
power. 

3.2. Results 

Descriptive information is presented in Table 2. Specparam model 
mean squared error (MAE) was significantly higher for BI children 
(M = 0.04, SD = 0.02) compared to BN children (M = 0.03, SD = 0.01), 
t = 2.26, p = .03. Specparam model variance explained (R^2) did not 
differ between BI children (M = 0.99, SD = 0.01) and BN children 
(M = 0.99, SD < 0.01), t = − 1.79, p = .08. A plot depicting the overlap 
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between averaged raw and specparam-estimated power spectra is pro
vided in the Supplemental Information. 

Aperiodic fits, as well as the spatial topography of the aperiodic 
exponent across the scalp, are presented for each group in Fig. 6. BI 
children did not differ from their BN peers in regards to their offsets 
(t = 1.18, p = .24; Fig. 7D) or exponents (t = 0.34, p = .73; Fig. 7E). 
Group comparisons were limited to alpha and beta activity. BI and BN 
children differed in regards to alpha center frequency (t = 3.01, 
p = .004) and power (t = 2.83, p = .006), but not bandwidth (t = 0.64, 
p = .52). That is, BI children had a higher peak frequency and more 
aperiodic-adjusted power in the canonical alpha band compared to BN 
children (Fig. 7B). Alpha peaks are reconstructed in Fig. 7F. BI and BN 
children did not differ in regards to beta center frequency (t = 1.01, 
p = .32). Neither beta power (t = 1.66, p = .10) nor bandwidth 
(t = 1.34, p = .19) differed between the groups. When considering 
behavioral inhibition as a continuous variable, total BIQ scores were 
significantly associated with alpha center frequency (r = 0.44, p < .001) 
and aperiodic-adjusted power (r = 0.33, p = .01). Results indicate that 

more behavioral inhibition is related to higher center frequency and 
more aperiodic-adjusted power in the canonical alpha band, com
plementing results from the analysis of BI as a categorical variable. 
When applying traditional methods, BI and BN children differed in 
regards to relative alpha power (t = 2.21, p = .03), but not relative beta 
power (t = − 0.10, p = .92). Once again, BI children were shown to have 
more alpha power compared to BN children. 

3.3. Discussion 

As expected, using traditional approaches for deriving frequency 
band measures, children with BI had higher relative alpha power but not 
higher beta power. However, these approaches leave the cause of these 
differences unclear. In contrast, by explicitly parameterizing the EEG 
power spectrum, we observed unique patterns of neural activation 
among BI children and their non-inhibited peers. Specifically, we found 
that alpha peak frequency and aperiodic-adjusted power during the 
eyes-closed resting state were higher for BI children relative to their BN 

Fig. 5. Spectral parameterization using different algorithm settings on a randomly sampled subset of the data (n = 6), recorded during an eye-closed resting state. 
Parameterized power spectra from the same individual are presented in A and B, demonstrating a participant-level assessment of model fit. Subgroup model fit results 
are presented in C and D. Algorithm settings for models fit for A and C were set as: peak width limits: [2,5]; max number of peaks: 4; minimum peak height: 0.05; 
aperiodic mode: fixed; default settings otherwise. Power spectra were parameterized across the frequency range 2–20 Hz. Algorithm settings for models fit in B and D 
were set as: peak width limits: [1,8]; max number of peaks: 6; minimum peak height: 0.10; aperiodic mode: fixed; default settings otherwise. Power spectra were 
parameterized across the frequency range 3–40 Hz. 
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counterparts. Thus, while alpha differences were present using both 
approaches, specparam clarifies that this is due to differences in peak 
frequency, which is not apparent using the traditional approach. 
Moreover, by parameterizing the power spectra, we can ascertain that 
the observed difference is driven by differences in periodic power, not 
the aperiodic signal. Recent work has shown that alpha peak frequency 
and power increase when visual input is restricted (Webster and Ro, 
2020), a pattern of neural activation associated with an introspective 
cognitive state, a reduction in cognitive engagement, and decreased 
autonomic arousal (Barry et al., 2009; Haegens et al., 2014; Ray and 
Cole, 1985a, 1985b). 

Notably, less than half of the children in our illustrative example 
exhibited power above the aperiodic signal in the canonical theta band, 
lending credence to the necessity for spectral parameterization prior to 
interpretation of band-limited power. It is possible that the lack of 
observed peaks within this canonical band may be attributed to very- 
low-power oscillations or rare bursts of oscillatory activity. In this 
case, specparam could be used in conjunction with time-domain ana
lyses approaches to, among other things, quantify burst features over a 
short time window (see e.g., Jones, 2016, and Cole and Voytek, 2019) in 
order to confirm whether oscillatory activity is in fact completely absent 
(Donoghue et al., 2021). 

It is important to note that other methods for measuring periodic and 
aperiodic activity are available. One conceptually similar method is a 
time-domain rhythm detection algorithm called extended Better Oscil
lation Detector (eBOSC) which can be used to identify rhythmicity 
(relative to arrhythmic activity) at the single-trial level (Kosciessa et al., 
2020). The eBOSC algorithm uses a 1/f fit in order to detect bursts of 
oscillatory activity over and above the aperiodic component, which may 
be useful for time-resolved analyses focused on periodic activity. 
Another related measure is irregular-resampling auto-spectral analysis 
(IRASA), which decomposes time series to extract the 1/f activity (Wen 
& Liu, 2016). However, neither of these tools fully parameterizes the 
periodic and aperiodic parameters as done in specparam, which offers 
an algorithm and user-friendly tool measuring multiple spectral features 
together. Further comparisons of spectral parameterization to other 

Table 2 
Sample characteristics, periodic and aperiodic activity by BI status.   

BI BN 95% CI  

N Mean (SD) N Mean (SD) 

Age (years)  30  10.00 (0.95)  30 9.93 (0.98) [− 0.43, 0.57] 
Female    47%   63%  
BIQ  30    30   
Total    128.00 (20.49)   78.22 

(19.92) 
[39.34, 60.23] 

Social Novelty    70.23 (10.28)   38.78 
(11.32) 

[25.86, 37.04] 

Aperiodic  30    30   
Offset    1.62 (0.28)   1.54 (0.24) [− 0.06, 0.21] 
Exponent    1.69 (0.22)   1.67 (0.18) [− 0.09, 0.12] 
Periodic         
Theta (4–8 Hz)  9    16   

Center 
frequency    

6.65 (0.89)   7.06 (0.46)  

Power    0.21 (0.06)   0.37 (0.13)  
Band width    1.28 (0.31)   1.49 (0.35)  

Alpha (8–13 Hz)  29    30   
Center 
frequency    

10.03 (0.80)   9.50 (0.51) [0.18, 0.88] 

Power    1.19 (0.27)   0.98 (0.30) [0.06, 0.36] 
Band width    2.04 (1.01)   1.91 (0.54) [− 0.29, 0.55] 

Beta (13–30 Hz)  28    27   
Center 
frequency    

18.09 (2.72)   17.43 
(2.09) 

[− 0.65, 1.98] 

Power    0.33 (0.16)   0.26 (0.11) [− 0.01, 0.14] 
Band width    4.71 (2.10)   3.99 (1.89) [− 0.36, 1.80] 

Model fitting         
R^2    0.99 (0.01)   0.99 (<

0.01) 
[< − 0.01, 
< 0.01] 

MAE    0.04 (0.02)   0.03 (0.01) [< 0.01, 0.01] 

Note: Periodic activity group comparisons were limited to alpha and beta due to 
a small number of children exhibiting activity in the theta band after accounting 
for the aperiodic signal. BI = behaviorally inhibited. BN = non-behaviorally 
inhibited. BIQ = Behavioral Inhibition Questionnaire. Participants were cate
gorized as BI if BIQ total score was ≥ 119 and/or social novelty score ≥ 60. 
R^2 = variance explained in specparam model fit. MAE = mean absolute error in 
specparam model fit. 

Fig. 6. Individual and grand averaged fitted power spectra for behaviorally inhibited (BI; orange) and non-behaviorally inhibited (BN; blue) children, recorded 
during an eyes-closed resting state, are presented in A. The spatial topography of the aperiodic exponent across the scalp for BI (left) and BN (right) children is 
presented in B. The aperiodic fits by group, controlling for offset, are presented in C. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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approaches are described in Donoghue et al. (2020a). 
Overall, the examples and results indicate that greater attention to 

power spectral parameterization is warranted when considering elec
trophysiological signatures among pediatric samples. Both periodic and 
aperiodic features are dynamic both within and between subjects, with 
systematic variation across age, requiring methods that explicitly 
consider and measure both components, such as specparam. This spec
tral parameterization approach can also be used and combined with 
other methodological considerations for analyzing neural oscillations 
(Donoghue et al., 2021), and best practice recommendations for 
analyzing and reporting EEG/MEG data in research (Pernet et al., 2020) 
and clinical (Babiloni et al., 2020) contexts. 

4. Conclusions 

In this paper, we discussed why developmental cognitive neurosci
entists should parameterize power spectral data, and demonstrated how 
this can be accomplished via specparam, in Jupyter Notebook and R 
Studio. Many of the studies discussed used specparam to parameterize 
neural power spectra, often during resting baseline EEG recordings (e.g., 
Levin et al., 2020; Robertson et al., 2019), underscoring the applicability 
of the specparam algorithm for typically-developing and clinical pedi
atric samples. Results from the illustrative example lend additional 
support for this idea, demonstrating how specparam can be applied to 
EEG data to answer crucial questions regarding periodic and aperiodic 
activity differences between groups of children. By explicitly parame
terizing power spectral features, developmental cognitive neuroscien
tists may further clarify how dynamic neural communication 
contributes to normative and aberrant cognition, from infancy through 
old age. 
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Poole, K., Anaya, B., Pérez-Edgar, K., 2020. Behavioral inhibition and EEG delta-beta 
correlation in early childhood: comparing a between-subjects and within-subjects 
approach. Biol. Psychol. 149, 107785. 

Ray, W.J., Cole, H.W., 1985a. EEG alpha activity reflects attentional demands, and beta 
activity reflects emotional and cognitive processes. Science 228, 750–752. 

Ray, W.J., Cole, H.W., 1985b. EEG activity during cognitive processing: influence of 
attentional factors. Int. J. Psychophysiol. 3, 43–48. 

Revelle, W., 2021. psych: Procedures for Psychological, Psychometric, and Personality 
Research. Northwestern University, Evanston, Illinois. R package version 2.1.9. 
〈https://CRAN.R-projects.org/package=psych〉.  

Robertson, M.M., Furlong, S., Voytek, B., Donoghue, T., Boettiger, C.A., Sheridan, M.A., 
2019. EEG power spectral slope differs by ADHD status and stimulant medication 
exposure in early childhood. J. Neurophysiol. 122, 2427–2437. https://doi.org/ 
10.1152/jn.00388.2019. 

Rodríguez-Martínez, E.I., Ruiz-Martínez, F.J., Barriga Paulino, C.I., Gómez, C.M., 2017. 
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