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Abstract

The human diarrheal disease cholera is caused by the bacterium Vibrio cholerae. Efforts to 

develop animal models that closely mimic cholera to study the pathogenesis of this disease 

began >125 years ago. Here, we review currently used non-surgical, oral inoculation-based 

animal models for investigation of V. cholerae intestinal colonization and disease and highlight 

recent discoveries that have illuminated mechanisms of cholera pathogenesis and immunity, 

particularly in the area of how V. cholerae interacts with the gut microbiome to influence infection. 

The emergence of high-throughput tools for studies of pathogen-host interactions, along with 

continued advances in host genetic engineering and manipulation in animal models of V. cholerae 
will deepen understanding of cholera pathogenesis, uncovering knowledge important for control of 

this globally important bacterial pathogen.
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Introduction

The Gram-negative bacterium Vibrio cholerae causes cholera, a severe human diarrheal 

illness that remains endemic in >50 countries [1]. The ongoing 7th cholera pandemic is 

estimated to cause >3 million cases annually and is caused by ‘variant’ El Tor V. cholerae 
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O1 strains that are continually evolving [2]. The secretory diarrhea that is the hallmark 

of cholera is largely explained by the actions of cholera toxin (CT) [1], an AB5-type 

toxin secreted by V. cholerae in the small intestine (SI), the site where the pathogen 

primarily colonizes the human intestine and causes disease [3]. While many pathogen 

factors facilitate SI colonization, a bacterial surface appendage - toxin-coregulated pilus 

(TCP) - is V. cholerae’s chief colonization factor [3]. The mechanisms by which TCP 

enables colonization are incompletely understood.

The self-limiting nature of cholera has prompted the development of a controlled human 

infection model (CHIM), where V. cholerae is orally administered to volunteers [4]. 

CHIM studies have revealed the requirements for CT for disease, TCP’s critical role in 

intestinal colonization, enabled investigations of immunity to V. cholerae, and demonstrated 

the relative efficacy of killed and live oral cholera vaccines (OCVs) [4,5]. However, 

CHIM work is limited by several logistical and ethical considerations. Many mechanistic 

questions regarding V. cholerae-host interactions in the SI cannot be readily answered in 

this human model. CHIM studies also cannot currently be conducted in cholera-endemic 

countries, potentially limiting the applicability of conclusions from volunteer studies in non-

endemic regions [6]. Instead, efforts to understand V. cholerae pathogenesis have led to the 

development of over a dozen different animal models for this pathogen. Historically, many 

different medium and large mammalian species ranging from guinea pigs to non-human 

primates have been used, but these suffer some of the same limitations as the CHIM 

(reviewed in [7]). The field is now largely driven by small mammal and non-mammalian/

invertebrate models.

The utility of any given animal model can be gauged by the extent to which it recapitulates 

human disease. In our view, it is useful to stratify currently used models (Table 1) by 

how well they reflect two critical aspects of human cholera pathogenesis - TCP-dependent 

SI colonization and CT-dependent diarrheal illness. Although models that lack either or 

both criteria can yield important information, the direct applicability of this knowledge 

to understanding cholera is unclear. In this review, we use this framework to present and 

discuss current oral, non-surgical infection models of V. cholerae. We illustrate how new 

discoveries from the last several years across different models illuminate themes in V. 
cholerae research and identify open areas of investigation for deepening understanding of 

cholera pathogenesis and immunity.

Insights into V. cholerae pathogenesis from animal models

The acuity of cholera is well-captured by short-term (~1 day) animal infection models. 

Conventionally reared, specific-pathogen free (SPF) adult mice (Mus musculus) are 

commonly used to study bacterial pathogens but are resistant to intestinal colonization by 

orally-inoculated V. cholerae, likely because of colonization resistance from the resident 

murine gut microbiota. Streptomycin-treated adult mice can be colonized by V. cholerae, but 

the pathogen is found almost exclusively in the colon and not the SI; moreover, intestinal 

colonization appears to be TCP-independent, and the animals do not develop diarrhea [8,9]. 

Alternate adult mouse models for oral V. cholerae infection (clindamycin or ketamine 
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pretreatment) that may surmount these obstacles have been reported, but have yet to be 

widely adopted [10,11].

The dominant model of V. cholerae pathogenesis is the 3–5-day-old infant mouse, where 

oral gavage of V. cholerae leads to TCP-dependent SI (but not colon) colonization and in 

some variations, CT-dependent diarrheal illness within ~16 hours [3,12]. Infant mice are 

a logistically simple system for addressing many targeted questions about the pathogen. 

This model has enabled limited-throughput studies of within-host virulence regulation, such 

as the use of engineered V. cholerae to identify in vivo-activated and -repressed loci, and 

the use of clinical V. cholerae isolates to understand how ongoing genetic variation in 7th 

pandemic strains impacts pathogenicity [12–16]. Advanced tissue imaging of the infant 

mouse SI has revealed the sub-intestinal localization patterns of V. cholerae during infection, 

and spatiotemporal control of virulence gene regulation [18,19]. The most common use 

of this model has been to validate suspected colonization factors with competitive index 

studies, where a mutant strain is competed against a WT strain in vivo [3]. Competition 

studies have recently highlighted the contributions of fatty acid and carbon metabolism, cell 

wall maintenance and V. cholerae LPS modifications to intestinal colonization [9,20–23].

A key limitation of infant mice is the relative scarcity of biological material for high-

throughput, hypothesis-generating studies such as transcriptomics and whole-genome 

functional genetic screens. The infant rabbit (Oryctolagus cuniculus) model of cholera, 

which exhibits rapid CT-dependent lethal diarrheal illness along with TCP-dependent SI 

colonization, has filled this niche in V. cholerae animal studies [24]. Up to 1010 in vivo 

V. cholerae can be rapidly collected from the ~1 mL of diarrheal fluid that accumulates 

in the infant rabbit cecum, providing a valuable reagent for high-throughput analyses. The 

chemical composition of this fluid is highly similar to that of human choleric diarrhea 

[24]. Infant rabbit studies have revealed the genetic landscape of colonization factors in 

V. cholerae through transposon-insertion sequencing screens, which are largely limited 

by bottlenecks in infant mice [25–28]. Infant rabbits have enabled the acquisition of 

high-resolution in vivo V. cholerae RNA-seq, metabolomic, and proteomic datasets, as 

well as insights into V. cholerae population dynamics during infection [29–31]. A recent 

transcriptomic study in infant rabbits revealed novel roles for CT in the shaping of the 

pathogen’s nutritional microenvironment [32]. This and other studies have illustrated the 

value of combining animal models for complementary purposes - discovery experiments in 

infant rabbits and targeted competition assays in infant mice. Combined approaches offer 

considerable practical advantages, as infant rabbits are relatively expensive and large-scale 

experiments with these animals are technically challenging.

The most commonly used oral non-mammalian species for studying V. cholerae are fruit 

flies (Drosophila melanogaster), zebrafish (Danio rerio), and nematodes (Caenorhabditis 
elegans). Although flies can exhibit CT-dependent mortality, infection and host killing in 

these models is otherwise neither CT- nor TCP-dependent [33–35]. Despite these important 

limitations, these models offer increased throughput, lowered cost, and ease of host genetic 

manipulation relative to infant mice. As the Drosophila intestinal immune system bears 

similarity to that of mammals, flies have been used to investigate host responses to V. 
cholerae, including pathogen manipulation of host lipid and carbon metabolism and how 
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V. cholerae quorum sensing controls host outcomes [36–39]. Studies in C. elegans have 

identified putative accessory V. cholerae virulence factors [35,40], and work in D. rerio 
aided by tissue imaging has been informative regarding V. cholerae’s interaction with gut 

symbionts and the intestinal epithelium [41–43]. However, as most non-mammalian studies 

remain to be validated in either human or small mammal cholera models, their applicability 

to our understanding of cholera is limited.

An emerging theme in animal-based investigations of V. cholerae is the pathogen’s 

relationship with the intestinal microbiome. One of V. cholerae’s primary modes of 

interaction with other microbes is its type 6 secretion system (T6SS), an apparatus 

that mediates interbacterial antagonism [44]. Recent studies across several models using 

defined intestinal microbial communities have demonstrated the importance of the T6SS in 

mediating intestinal colonization, and dissected its role in creating colonizable niches for V. 
cholerae [25,41,42,45–47]. Investigations in infant and adult murine models with altered gut 

microbiota have been complemented by efforts to identify microbiome changes in humans 

exposed to V. cholerae [48–50]. Intestinal microbes that can promote or inhibit V. cholerae 
intestinal colonization in mice have been identified, and reconstitution of germ-free (GF) 

mice with these microbes offers an in vivo system in which to investigate interbacterial 

interactions (recently reviewed in [51]). The mechanisms underlying these phenotypes 

remain to be extensively characterized, but several appear to involve regulation of V. 
cholerae virulence programs by commensal-derived metabolites like secondary bile acids 

[10,50,52]. An important caveat to these findings is that V. cholerae intestinal colonization 

occurs primarily in the colon in GF mice. V. cholerae’s intricate relationship with intestinal 

microbes has also been hinted at by studies in infant rabbits that demonstrated V. cholerae 
is conjugation-competent in the intestine, and that pre-colonization with an avirulent V. 
cholerae live vaccine strain or V. cholerae-targeting phages can limit subsequent infection 

[28,47,53].

Insights into immunity to V. cholerae from animal models

Samples from cholera patients and volunteers in CHIM studies have been instrumental in 

the investigation of immune responses to V. cholerae. Observations that cholera bestows 

protection against future infection inspired development of currently used killed OCVs. 

However, there are significant limitations associated with killed OCVs, including their 

limited efficacy in young children; furthermore, many gaps remain in our understanding 

of the scope and mechanisms of protective immunity to V. cholerae [54]. Most questions 

in OCV development and immunity to cholera concern long-term adaptive immunity, but 

infant mammals and invertebrates have immature (or absent) adaptive immune systems. 

As such, adult mice have become the model of choice for studies of adaptive immunity 

to V. cholerae. Although adult mice have well-characterized and easily manipulated 

immune systems, mimicking OCV vaccination or natural infection by the oral route in 

this model is constrained by several critical limitations described above. These models 

exhibit no discernable illness, TCP-independent colonization, and colonic-biased pathogen 

localization, and GF mice are additionally confounded by sustained (months-years) V. 
cholerae colonization [8,55]. CHIM studies have shown that TCP-dependent intestinal 

colonization is critical for immunogenicity of live V. cholerae [5], and interpretation of 
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immune responses observed in adult mice is complicated since the colon lacks immune 

features of the SI such as Peyer’s patches. Despite these shortcomings, viable alternatives to 

adult mice for studies of adaptive immune responses to V. cholerae are currently lacking.

Orally-infected adult mice can be used to profile diverse immune responses to V. cholerae. 

Many assays used in humans that report on known correlates of protection against cholera, 

such as antigen-specific ELISAs for CT and TCP, and the vibriocidal antibody titer assay, 

can be directly applied to murine samples. Immunological metrics can be read out from 

serum and fecal samples over time from the same mouse, enabling kinetics of immunity to 

be dissected [56]. Genetically modified adult mice could be used to explore the necessity 

and sufficiency of host factors in the development of immunity to V. cholerae, but these 

investigations have been rare [57].

Sustained V. cholerae colonization in GF adult mice precludes their rechallenge with 

virulent V. cholerae, a critical measure of vaccine efficacy. However, since colonization 

is transient in antibiotic-treated mice, rechallenge after clearance is possible [8,58]. While 

pulmonary inoculation of V. cholerae to circumvent obstacles associated with oral infection 

has been described, the translational significance of observations with this route of infection 

are unclear [59]. It is instead possible to use infant mice as proxy hosts to interrogate 

immunity in vaccinated dams, as well as to use V. cholerae pre-mixed with serum from 

immunized mice as an infant mouse challenge inoculum. These approaches, combined with 

readouts of immunogenicity, have collectively proven useful to test the protective efficacy of 

cutting-edge cholera vaccine candidates, including new live OCV strains, outer membrane 

vesicle-based formulations, and transcutaneous conjugate vaccines [23,56,60,61]. These 

studies underscore the importance of combining appropriate models (adult immunization 

with infant challenge) in the investigation of cholera vaccines and immunity. Standardization 

and consolidation of immunization schema and efficacy measures will aid these efforts [23].

The throughput and ease of host manipulation in mouse models makes them well-suited 

for targeted investigations of hypotheses derived from observations of human immune 

responses. For example, clinical investigations have suggested that immune responses to 

the V. cholerae O-antigen are the protective factor against reinfection [54]. Infant mice have 

been used by multiple groups to test and ultimately support this hypothesis with a variety 

of strategies, including direct isolation and in vivo testing of human-derived monoclonal 

antibodies [62,63]. A transgenic mouse line expressing a V. cholerae core/lipid A-targeted 

monoclonal antibody was developed to evaluate the sufficiency of this target for protection 

from intestinal colonization [64]. These examples demonstrate how hypotheses from human 

studies can be mechanistically evaluated using engineered animals. Similarly, the emerging 

concept that the intestinal microbiome shapes human immune responses to V. cholerae [65] 

is starting to be addressed using defined human microbial communities in GF mice. For 

example, prebiotic and microbial treatments in a GF model of CT-based vaccination were 

recently shown to enhance immune responses to this V. cholerae antigen [66]. Insights 

from mouse models may not only provide explanations for observations regarding human 

immunity but offer useful platforms to test interventions for future translation back to the 

clinic.
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Conclusions

Despite the long history of studies of cholera pathogenesis, many questions regarding V. 

cholerae-host interactions remain (Table 2). Metchnikoff recognized the importance of 

‘favorizing microbes’ in promoting experimental cholera in 1894 [67], but elucidation of 

the tripartite host-pathogen-commensal interaction axis during infection is just beginning. 

Surprisingly, despite the use of infant and adult mice to study V. cholerae for decades, 

experiments with genetically modified hosts are almost entirely lacking in the study of both 

pathogenesis and immunity. Although human loci conferring susceptibility to cholera have 

been identified [68,69], there are relatively few studies that use genetically engineered mice 

to investigate host innate defense against V. cholerae [70–72]. Such studies will be valuable 

because cholera can be one of the most rapidly fatal acute infections and innate rather 

than adaptive responses may determine outcomes. Defining the innate immune pathways 

that are modulated by V. cholerae infection, and whether these responses are beneficial 

or detrimental to the host, should be feasible in engineered newborn mice despite the 

immaturity of their adaptive immune systems.

Another key open area of investigation is V. cholerae host-to-host transmission. There is 

no controlled V. cholerae animal model of fecal-oral transmission. Approximate models of 

transmission such as transfer of infected intestinal homogenates or diarrheal fluid gavage 

have revealed a transient host-priming (“hyperinfectious”) phenotype of host-derived V. 
cholerae [73,74]. The mechanism(s) underlying this phenomenon, which could be critical 

to understanding the explosive kinetics of cholera outbreaks, remains unclear. Adaptation 

of new barcoding frameworks in future studies of transmission in animals will facilitate 

understanding of how particular regions of the intestine, including the colon, contribute 

to host-priming [75]. It is likely that studies involving host-, pathogen-, commensal-, 

and environment-targeted permutations across differing animal models will be needed to 

understand the biology of cholera transmission.

The power of animal models for understanding V. cholerae is heightened by the broad 

and accessible genetic toolkit for this bacterium, including multiplex genetic engineering 

and numerous reporter systems. The continued integration of data from different models 

and implementation of cutting-edge genome-scale techniques from other fields, such as 

single-cell sequencing and transcriptomics, will be crucial to construct a holistic view of 

cholera pathogenesis and to reveal novel therapeutic opportunities against V. cholerae and 

other bacterial pathogens.
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Highlights

• Mammalian, non-mammalian, and invertebrate species are currently used to 

model Vibrio cholerae pathogenicity.

• Models vary considerably in their recapitulation of V. cholerae-host 

interactions in the human intestine.

• Recent work in animals has revealed molecular details of the host-V. 
cholerae-microbiome axis.

• Open areas for investigation include intestinal innate defense against V. 
cholerae and determinants of cholera transmission.
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Table 1.

Major non-surgical oral infection animal models for V. cholerae.

TCP-
dependent 

colonization

CT-
dependent 
diarrhea

ST 
coloniza 
tion**

Genetic host 
manipulation

Throughput/
accessibility

Application(s)***

Mammalian

M. musculus 
(infant mice) + + + ++ ++ Investigation of putative 

colonization factors

M. musculus 
(germfree/strept 
omycin-treated 

adult mice)

− − − ++ ++

Adaptive immunity/
vaccination, commensal-

pathogen interactions

O. cuniculus (infant 
rabbits) + + + + (rare) + High-throughput and 

“omics” approaches

H. sapiens (human 
volunteers) + + + − − Clinical-stage 

investigations

Non-mammalian and Invertebrate

D. melanogaster 
(fruit flies) − −* N/A +++ +++ Investigations of host 

defense and metabolism

C. elegans 
(nematodes) − − N/A +++ +++

Identification of putative 
accessory V. cholerae 

toxins

D. rerio (zebrafish) − − N/A +++ +++
Tissue imaging and 

commensal- pathogen 
interactions

*
CT-dependent mortality

**
SI as the primary site of pathogen colonization

***
Applications are not unique to models and indicate a representative use of the species

Scale: − (lowest) to +++ (highest) (columns with only +/− indicate presence or absence/unknown)
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Table 2.

Future questions for animal models in the study of V. cholerae.

Pathogenesis and 
host response

• Why is V. cholerae primarily a small intestinal pathogen?
• Why is TCP required for V. cholerae pathogenesis?
• How does CT modulate host responses beyond diarrhoeagenesis?
• How does V. cholerae intestinal colonization modify intestinal epithelial function?
• What are the molecular pathways that underlie the host -induced ‘hyperinfectious’ transmission state?

Microbiome- V. 
cholerae

• How do the murine and human gut microbiomes prevent V. cholerae intestinal colonization?
• Why does V. cholerae display colonic tropism in mice lacking intestinal microbes?
• How does the gut microbiome control immune responses to V. cholerae and OCVs?

Innate Immunity • What pathways of innate immunity contribute to protection against or resolution of cholera?
• What is the role of the inflammasome and/or pyroptosis at the intestinal epithelial surface in defense against cholera?
• What is the function of suspected innate immune cholera susceptibility loci such as LPLUNC1?

Adaptive 
Immunity

• Can a TCP-dependent animal model of adaptive immunity be developed?
• What are the pathways of adaptive immunity and cellular populations that contribute to protection against cholera? Do 
they differ in naturally-infected versus vaccinated hosts?
• Why do young children have poor memory responses to OCV immunization?
• Can non-mucosal immunization routes confer long term immunity to cholera?
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