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Abstract

Vitamin D promotes a shift from a pro-inflammatory to a more tolerogenic immune state 

in allogeneic hematopoietic cell transplantation (HCT) recipients. The dominant mechanism 

responsible for this shift has not been elucidated. We took a multifaceted approach to evaluating 

the clinical and immunologic impact of low vitamin D levels in 53 HCT recipients. We used 28-

plex flow cytometry for immunophenotyping, serum cytokine levels, T-cell cytokine production 

and T-cell whole genome transcription. The median day-30 vitamin D level was 20 ng/mL, 

and deficiency was common in younger patients undergoing myeloablative transplants. Low 

vitamin D levels were associated with a high CD8/Treg ratio; increased serum levels and T-cell 

production of proinflammatory cytokines; and a gene expression signature of unrestrained T-cell 

proliferation and epigenetic modulation through the PRC2/EZH2 complex. Immunophenotyping 

confirmed a strong association between high levels of vitamin D and an activated EZH2 signature, 
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characterized by overexpression of ID3, which has a role in effector T-cell differentiation. Our 

findings demonstrate the critical role of vitamin D in modulating T-cell function in human GVHD 

and identify a previously undescribed interaction with EZH2 and ID3 which may impact effector 

differentiation and has implications to cell therapies and other forms of cancer immunotherapy.
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Introduction

Acute graft-versus-host disease (GVHD) is a leading cause of morbidity and mortality in 

allogeneic hematopoietic cell transplant (HCT) recipients.(1) Despite standard prophylactic 

measures, the rates of GVHD remain high, with incidence rates ranging from 34% to 

65% in the first 100 days post-transplant, and adversely impacts mortality.(2,3) Therefore, 

developing improved GVHD prevention strategies remains a critical goal for successful 

allogeneic HCT.

The pathogenesis of GVHD involves donor-derived T-cell recognition of host antigens 

as foreign, resulting in their activation, proliferation, migration and cytokine release, and 

the subsequent destruction of host tissues.(4) Vitamin D, a fat-soluble prohormone long 

recognized for its primary role in mediating calcium and bone mineral homeostasis, 

possesses various non-skeletal functions, including immune regulation. The biologically 

active form of vitamin D, 1,25(OH)2D3 (calcitriol), regulates the expression of hundreds 

of genes by binding to the vitamin D receptor, a member of the nuclear receptor family 

of transcription factors found in nearly all immune cells, including T lymphocytes, B 

lymphocytes, macrophages, and dendritic cells (DCs).(5,6) Vitamin D has been shown 

to have pleiotropic effects on the immune system but it is generally thought to 

promote a shift from a pro-inflammatory to a more tolerogenic immune state. Vitamin 

D appears to modulate the maturation and activation of DCs, augment regulatory T 

lymphocyte production, affect macrophage function, decrease T-cell proliferation and 

promote naïve CD4+ T lymphocyte polarization toward a Th2 immune response.(7–12) 

Several observational studies have identified associations between vitamin D deficiency 

and GVHD.(13) A prospective clinical trial demonstrated mitigation of the risk of chronic 

GVHD with vitamin D supplementation,(14) but the dominant mechanism that associates 

vitamin D deficiency with GVHD in humans has not been elucidated.

Given the important role of vitamin D in modulating alloreactive T cell responses and 

considering the high incidence of vitamin D deficiency in allogeneic HCT recipients,(15) 

we hypothesized that early vitamin D deficiency after allogeneic HCT predisposes patients 

to a higher risk of GVHD as the result of a pro-inflammatory state. We had a particular 

interest in skin GVHD as vitamin D has been shown to impact T cell homing to the 

skin.(16–18) We conducted a retrospective analysis to evaluate whether serum vitamin 

D concentrations on day 30 after allogeneic HCT were predictive of acute GVHD and 

specific organ involvement. We used a cohort of patients that were transplanted prior to 
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implementation of routine vitamin D repletion. We chose to analyze day 30 levels to 

allow adequate time for the principal causes of vitamin D deficiency to manifest, such as 

malnutrition, malabsorption, and low sun exposure that are common in HCT patients during 

convalescence. In addition, we investigated the predominant mechanism of vitamin D’s 

effect on human GVHD using detailed immune profiling of post-transplant blood samples 

and gene expression analysis.

Patients and Methods

Patient Population

We retrospectively analyzed 53 adult patients with hematologic malignancies who 

underwent allogeneic HCT at the University of Pennsylvania between January 2008 and 

December 2012, for whom day-30 post-transplant peripheral blood samples had been 

banked. During that time frame, vitamin D levels were not routinely monitored, and routine 

supplementation was not implemented. Patients were randomly selected from a large bio-

specimen repository of samples from allogeneic HCT recipients. Patients received standard 

tacrolimus-based GVHD prophylaxis without in vivo or ex vivo T-cell depletion. Patients 

did not receive oral vitamin D supplementation during their transplant. Patients who were 

administered total parenteral nutrition (TPN) received 5 mcg of ergocalciferol (vitamin D2) 

daily as part of the standard multi-vitamin infusion formula. The circulating form of vitamin 

D, 25OHD, was measured using a quantitative chemiluminescent immunoassay (ARUP 

Laboratories, Salt Lake City, UT). Vitamin D deficiency was defined as 25OHD <20 ng/mL 

and insufficiency as <30 ng/mL.(6)

Clinical Endpoints

The primary objective of the clinical analysis was to evaluate whether serum vitamin D 

concentrations on day 30 after allogeneic HCT were predictive of acute grade 2-4 GVHD. 

Secondary endpoints included time to organ-specific acute grade 2-4 GVHD, chronic 

GVHD and overall survival (OS). Acute GVHD and chronic GVHD were graded according 

to the modified Glucksberg criteria and National Institutes of Health consensus criteria, 

respectively.(19,20) Guidance published by the Mount Sinai Acute GVHD International 

Consortium was used to determine GVHD diagnosis and grading.(21) OS was defined as the 

time interval between date of HCT and death from any cause or for surviving patients, to last 

follow-up.

Immune Phenotyping

We characterized immune cell populations in peripheral blood mononuclear cell (PBMC) 

samples from all patients on day 30 post-HCT. The percentages and absolute numbers of 

cell populations carrying distinct phenotypic markers were analyzed by flow cytometry. 

A detailed panel using 25 surface markers was initially applied to 34 patients, selected 

for having the highest and lowest vitamin D levels in the dataset, with adjustments due 

to sample availability and quality. Samples from 23 patients were also analyzed for the 

intracellular expression of 10 transcription factors and 19 patients were analyzed for 

production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-2, IL-17A and IL-4 

using intracellular staining after activation with PMA and Ionomycin. Samples for these 
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analyses were also selected from patients with the highest and lowest vitamin D levels based 

on availability. Briefly, cells were resuspended in fluorescence-activated cell sorting buffer 

(PBS and 0.5% BSA) and stained using Fixable Viability Dye NIR at 20°C for 15 minutes. 

Cell surface staining was performed for 30 minutes at 4°C and intracellular staining was 

performed using a fixation/permeabilization kit (eBioscience) according to manufacturer’s 

instructions. Antibodies are listed in Supplementary Table 1. Flow cytometry was conducted 

on BD Canto or Cytek Aurora and analyzed on FlowJo software.

Cytokine Analysis

Serum cytokine levels were measured by Milliplex Immunology Multiplex Assay (End 

Millipore) and analyzed by Bio-Plex 200 Systems (Bio-Rad). The cytokines examined were 

interleukin (IL)-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumor necrosis 

factor (TNF)-α, and thymic stromal lymphopoietin. GVHD biomarkers were measured by 

enzyme-linked immunosorbent assay using kits from R&D Systems and MBL International.

Gene Expression Analysis

T lymphocytes from 16 samples including 8 with low (≤15 ng/mL) and high (≥30 ng/mL) 

vitamin D levels were isolated by negative selection using Magnetic Activated Cell Sorting 

(Miltenyi Biotech). RNA was extracted using RNeasy Mini kit (QIAGEN) and labeled 

using Agilent’s one-color labeling protocol. All steps from PBMC thawing to RNA 

extraction were conducted rapidly and on ice to minimize changes in gene transcription. 

Labeled cRNA was hybridized to Agilent 8x60 human gene expression arrays according 

to manufacturer instructions. Agilent software was used to assess raw signal intensity. 

One sample was identified as an outlier and was excluded from the analysis. Raw probe 

expression levels were normalized and probes measuring the same genes were averaged as 

previously described.(22)

Differentially expressed genes at a significance level of P ≤ 0.05 between low and high 

vitamin D samples were considered to be associated with vitamin D levels. Gene set 

enrichment analysis was performed against Gene Ontology annotation and the Broad 

Institute’s MSigDB gene sets using hyper-geometric function.(23) P-values were corrected 

using the false discovery rate (FDR) method.(24)

Statistical Analyses

Descriptive statistics were used to characterize distributions of variables. The cumulative 

incidence of acute grade 2-4 GVHD was determined using a Fine and Gray method, 

considering death and relapse as competing events. The Kaplan-Meier method was used 

to estimate OS and compare patients who had vitamin D concentration on day 30 after 

HCT above and below the median. The associations between vitamin D levels and 

other variables were conducted using the Pearson correlation coefficient and t-tests. We 

then used a landmark analysis to estimate the impact of day-30 vitamin D levels on 

subsequent clinical outcomes. A multivariable cumulative incidence analysis was performed, 

and the following variables were selected by backward elimination: GVHD prophylaxis, 

conditioning intensity, and degree of human leukocyte antigen (HLA) match. Student’s 

t-test and the Mann-Whitney test were used for parametric and non-parametric group 
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comparisons, respectively. For the cytokine analyses, we log-transformed the observations 

to adjust for non-normality, and then analyzed using t-tests. A P-value of ≤ 0.05 was 

considered statistically significant. We then performed multivariable modeling to identify 

independent associations with vitamin D status in a concatenated dataset of clinical and 

immune phenotypic variables. Specifically, we used multivariate imputation by chained 

equations to generate 10 datasets in which missing data were imputed using the predictive 

mean matching method. We selected variables associated with vitamin D status in each 

of the 10 imputed datasets using the elastic net method for logistic regression models 

on 500 bootstrap samples. Stability of the selection was checked by selecting variables 

with different tuning parameters in the elastic net. In parallel, we also selected variables 

associated with vitamin D status using a random forest approach. Using the subset of 

variables selected with both approaches, we generated a final logistic regression model, 

using backward/forward selection based on the Akaike Information Criterion. Analyses 

were performed using Stata v13.1 (STATA Corp, College Station, TX) and R, using the 

cmprsk package for Fine and Gray models (https://CRAN.R-project.org/package=cmprsk), 

the mice package for imputation (https://www.jstatsoft.org/v45/i03/). the glmnet package for 

the elastic net method (http://www.jstatsoft.org/v33/i01/). the VSURF package for variable 

selection in random forests (https://CRAN.R-project.org/package=VSURF). and the MASS 
package for the final backward/forward selection process (The R Project for Statistical 

Computing, http://www.rproject.org). Prism 8.0 software (GraphPad) was used for the 

analysis of flow cytometry results. The study was approved by the Institutional Review 

Boards of the University of Pennsylvania and Columbia University Medical Center.

Results

Patient Characteristics

Patient and transplant characteristics are summarized in Table 1. The median follow-up was 

49 months (range 1.5-62 months). The median day-30 post-HSCT vitamin D level was 20 

ng/mL (range 6-50 ng/mL), reflecting vitamin D deficiency in half of the patients in the 

cohort. Vitamin D insufficiency (25OHD < 30 ng/mL) was present in 42/53 (79%) of the 

patients.

Clinical Predictors of Vitamin D Deficiency

We first examined whether day-30 vitamin D levels were associated with patient, disease, 

and transplant characteristics (Table 2). Surprisingly, vitamin D deficiency was more 

common in younger HCT recipients (P < 0.01) and there were lower vitamin D levels 

in patients who underwent myeloablative conditioning (MAC) without reaching statistical 

significance (P = 0.08). A depiction of vitamin D levels in relation to patient age and 

conditioning intensity is shown in Supplementary Figure 1A. Vitamin D deficiency was also 

more common in patients undergoing HCT for a lymphoid malignancy (P = 0.02) and in 

those that required TPN (P < 0.01). Moreover, a direct relationship was observed between 

day-30 albumin concentrations and vitamin D levels (P = 0.03), shown in Supplementary 

Figure 1B. We also explored the correlation between the intensity of the conditioning 

regimen and day-30 vitamin D levels, using several different cutoffs (25OHD <15 ng/mL, 

<20 ng/mL, and <30 ng/mL). Compared with RIC HCT recipients, a greater proportion 
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of patients undergoing MAC were vitamin D insufficient at day-30 post HCT, defined as 

vitamin D levels <30 ng/mL (92% vs. 65%; P = 0.02).

Vitamin D Deficiency on Day 30 after HCT Increases Risk of Acute GVHD

The cumulative incidence of acute grade 2-4 GVHD was 32.1% (95% confidence interval 

[CI], 21.4% to 45.5%) at day 100 and 50.9% (95% CI, 37.9% to 63.9%) at day 180 

post-HCT. To assess whether day-30 vitamin D levels were predictive of acute grade 2-4 

GVHD and organ-specific involvement, we used a landmark analysis starting on the day of 

serum vitamin D level measurement (approximately day 30) and examined the association 

between vitamin D deficiency and the outcome. A multivariable cumulative incidence 

analysis was used, with adjustment for significant covariates after backward elimination 

(GVHD prophylaxis regimen, conditioning intensity and HLA mismatch). We analyzed 

patients in two groups according to their median day-30 vitamin D level (<20 and ≥20 

ng/mL), which coincidentally corresponded with the accepted cutoff that defines vitamin D 

deficiency.(6) This analysis is summarized in Supplementary Table 2.

We did not observe a significant association between day-30 vitamin D levels and acute 

grade 2-4 GVHD (HR 0.56; P = 0.11) in the entire cohort but saw a trend toward earlier 

GVHD in the vitamin D low group (Figure 1). We then evaluated whether day-30 vitamin 

D levels were associated with specific organ involvement in acute GVHD, particularly skin 

GVHD. We found an association between lower day-30 vitamin D levels and higher risk 

of acute skin GVHD (HR 0.32; P = 0.05). We did not detect a relationship between acute 

gastrointestinal (GI) (HR 0.96; P = 0.92) or hepatic GVHD (HR 0.76; P = 0.66) and day-30 

vitamin D levels. Chronic GVHD and OS also showed no significant correlations with 

day-30 vitamin D levels (Supplementary Table 2).

Since the majority of MAC patients were vitamin D deficient as opposed to the RIC subset, 

which had greater heterogeneity in vitamin D levels, we performed a separate analysis in the 

subset of RIC recipients (Figure 1); in this group, low vitamin D levels were significantly 

associated with a higher risk of acute grade 2-4 GVHD (HR 0.35; P = 0.008) and nearly 

all vitamin D low patients in this cohort developed acute GVHD, with the majority of cases 

occurring by day 60. Here again, the protection against skin GVHD was more dominant than 

other organs (HR 0.28; P = 0.08).

Vitamin D Deficiency After HCT is Associated with a Gene Expression Signature of 
Increased T-cell Proliferation, Dampened Interferon Response and Epigenetic Modulation

To determine the immune signature of vitamin D deficiency after HCT, we first performed 

whole transcriptome gene expression analysis with the goal of identifying underlying 

molecular mechanisms that are influenced by vitamin D and contribute to or protect against 

GVHD. Gene expression levels were measured from isolated T lymphocytes of 16 patients, 

8 with high vitamin D (median 35 ng/mL, range 32-50) and 8 with low vitamin D (median 

12.5 ng/mL, range 8-15) levels. We found 182 genes whose expression was correlated with 

vitamin D status, and 88 genes with anti-correlation with vitamin D (Supplementary Table 

3). We then used a gene set enrichment analysis to identify the functionality of those genes, 
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and the pathways that govern their expression (Figure 2A–B). All P-values noted in this 

section represent FDR correction.

The genes with the strongest negative correlations with vitamin D levels involved 

DNA methylation, histone acetylation, chromosome packaging and RNA Polymerase I 

transcription (all with P ≤ 10−9), including 12 histone genes that are required for entry 

into S phase, indicating restrained T-cell proliferation in patients with adequate day-30 

vitamin D levels. A highly significant association (P = 1.3x10−10) was with a gene set 

involving methylation by the Polycomb Repressive Complex 2 (PRC2), an epigenetic 

protein complex that regulates gene expression primarily by catalyzing trimethylation of 

histone H3 on lysine 27 (H3K27me3). These results indicate that normal vitamin D levels 

are important in restraining T-lymphocyte proliferation early after HCT and suggest an 

epigenetic mechanism for the protective effect against GVHD.

The genes that positively correlated with vitamin D levels matched the expression profile 

of a type I IFN response by enrichment analysis (lowest P value = 3.4x10−7) due 

to overexpression of several IFN-stimulated genes (IFI44, IFI44L, IRF7, MX1, MX2, 
TNFSF10, OAS1, TDRD7, TREX1, IFIH1, HERC6, PNPT1). While a type I IFN response 

is generally considered proinflammatory and critical for innate antiviral responses, its role in 

T cell responses after allogeneic HCT is more complex and seems protective against GVHD.

(25,26) In addition, IF44L provides negative feedback regulation of the IFN response and 

may dampen inflammation.(27) Strikingly, one of the largest gene sets in the enrichment 

analysis contained 22 genes that are regulated by EZH2, a histone methyltransferase which 

is the primary catalytic subunit of PRC2 (P = 0.016).

Low Vitamin D Levels on Day 30 After HCT are Associated with Increased Inflammatory 
Cytokine Production

To assess the impact on the inflammatory environment on day 30 after HCT, we examined 

the associations between vitamin D levels and serum concentrations of major cytokines. We 

evaluated these associations using the clinical cutoffs for vitamin D insufficiency (25OHD 

<30 ng/mL) and deficiency (25OHD <20 ng/mL) and observed that vitamin D levels 

above 30 ng/mL correlated with lower levels of certain inflammatory cytokines (Figure 

2C), whereas a cutoff of 20 ng/mL seemed insufficient to restrain cytokine levels (not 

shown). Specifically, serum levels of TNF-α were significantly increased in patients that 

were vitamin D insufficient (11.13 vs. 3.97 pg/mL; P = 0.02, Supplementary Figure 2). In 

addition, patients that were vitamin D insufficient had higher serum levels of IL-8 (7.02 

vs. 3.04 pg/mL; P = 0.01) and IL-6 (5.62 vs. 1.27 pg/mL; P = 0.02). Because IL-8 is 

important for regulating migration and activation of neutrophils and is also regulated by 

them, we examined whether absolute neutrophil count (ANC) confounded this association, 

however, there was no difference in day-30 ANC between patients that had high versus 

low IL-8 levels (4.82 vs 3.26 THO/μL; p=0.27). In addition, we measured the day-30 

serum concentrations of the known GVHD biomarkers, suppression of tumorigenicity 2 

(ST2) and Regenerating islet-derived 3-alpha (REG3α).(28) The vitamin D-lo group had 

greater heterogeneity in biomarker levels with several patients exhibiting much higher 

Macedo et al. Page 7

Transplant Cell Ther. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



levels than the vitamin D-hi group, however, statistical significance was not demonstrated 

(Supplementary Figure 3).

We further measured cytokine production in day-30 stimulated T-cells from 24 

representative patients with the lowest (<15ng/mL) or highest (>25ng/mL) vitamin D levels. 

We found that patients with high vitamin D levels had lower production of IL-2 and TNF-α 
in CD4+ T-cells, and lower IFN-γ production in CD8+ T-cells (Figure 2D).

Increased ID3 and EZH2 Expression Characterizes T Cells from Patients with High Vitamin 
D Levels

To further investigate the mechanism by which high vitamin D levels restrain T cell 

proliferation and activation in post-transplant patients, we studied the expression of 

transcription factors known to be associated with the development of effector and memory 

T-cell populations, along with differentiation and activation surface markers. The gating 

strategy for major cell populations and multi-parameter data visualization using Uniform 

Manifold Approximation and Projection (UMAP) are shown in Supplementary Figure 4. 

Major cell populations had similar frequencies in vitamin D-hi and vitamin D-lo patients 

(Figure 2E, Supplementary Figure 5), however vitamin D-hi patients had a significantly 

lower ratio between CD8+ T-cells and regulatory T cells (Tregs). UMAPs showed clear 

separation between vitamin D-hi and vitamin D-lo patients (Figure 3A–C). In both groups 

there was a predominance of CD45RA-CCR7- effector memory cells that maintained high 

levels of expression of CD28 and CD27. Surprisingly, vitamin D-hi patients had significant 

expansion of cells expressing the DNA binding inhibitor ID3 with a subpopulation that 

also expressed high levels of EZH2 which has been associated with ID3 activation and 

silencing of several other transcription factors(29). High levels of ID3+ and EZH2+ T-cells 

were identified in CD8+, CD4+ conventional T cells (Tcons) and CD4+ Tregs and these 

cells were largely negative for other transcription factors that control T cell effector function 

(i.e., T-bet, RORγt, GATA-3, EOMES). In addition, the population of T-bet+ ID2+ cells, 

which are associated with enhanced effector differentiation(30–33), was similar in size but 

exhibited differences in phenotype – these cells largely retained CD27 and CD28 expression 

in vitamin D-hi patients, but had lower expression of these markers in vitamin D-lo patients, 

indicating a more differentiated memory phenotype.

Vitamin D Levels Independently Correlate with ID3 Expression and are Associated with 
Expression of Trafficking Receptors

Our phenotypic and clinical data for vitamin D-hi and vitamin D-lo patients included a total 

of 132 immunological variables (Supplementary Table 4) and 7 demographic and clinical 

variables. To identify independent variables that are associated with vitamin D level, and 

account for clinical covariates, we used multivariable logistic regression. To maximize the 

number of observations and variables, we handled missing data by applying a validated 

imputation method that generated 10 imputed datasets. We performed variable selection 

on these datasets using elastic net and random forest methods, followed by a backward/

forward selection procedure. We identified 6 variables that positively correlated (odds ratios 

> 1) with vitamin D levels in the majority of the datasets (Figure 4A). These variables 

included the expression of ID3 and Blimp1 in CD8+ T-cells, the proportion of CD4+FoxP3+ 
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T-cells that were CD45RA+, and the levels of expression of CCR5 on CD8+ T-cells and 

cutaneous lymphocyte antigen (CLA) on CD4+ and CD8+CD45RO+ T-cells. ID3 exhibited 

the most striking differential expression, with 8 of 11 vitamin D-hi patients exhibiting at 

least 85% positivity within CD8+ T cells, but 9 of 12 vitamin D-lo patients being <42% 

(Figure 4B). There were no variables that correlated negatively with vitamin D status that 

met the selection criteria for the model. Although our model selected ID3+ CD8+ T-cells 

specifically, we found a highly significant correlation between ID3 expression levels in 

CD8+, CD4+ Tcons and Tregs as well as in subsets of effector memory T-cells within these 

populations (Supplementary Figure 6), implying that ID3 expression in all major T cell 

subsets is strongly correlated with vitamin D level. To test the robustness of these results, 

we conducted a principal component analysis (PCA) using ID3 expression in 6 populations 

(CD8+, CD8+ Tem, CD4+, CD4+ Tem, CD4+FoxP3+, CD4+FoxP3+ Tem) and found that 

they accounted for 98.9% of the variability in vitamin D status (Figure 4C).

In summary, using samples from allogeneic HCT recipients, we demonstrate that adequate 

levels of vitamin D early post-transplant are associated with restrained T-cell proliferation 

and proinflammatory cytokine production, a favorable ratio of Tregs to CD8+ T cells, and 

overexpression of ID3, corresponding to an activated EZH2 signature.

Discussion

In this study, we found that vitamin D deficiency is frequent early after HCT. Vitamin D 

deficiency was more common in younger patients undergoing myeloablative conditioning 

and requiring TPN. Interestingly, low vitamin D levels on day 30 post-HCT were associated 

with a higher risk of acute GVHD in RIC recipients, demonstrating the potential impact 

that this nutritional deficiency may have on transplant outcomes. In addition, vitamin D 

deficiency early after HCT was associated with increased inflammatory cytokine production 

and a gene expression signature of cellular proliferation, histone methylation, and EZH2 

activation. We identified a very strong association between vitamin D level and expression 

of ID3, a known target of EZH2. To the best of our knowledge, this study is the first 

to characterize the immunologic impact of vitamin D deficiency early after HCT and to 

identify an epigenetic mechanism that potentially contributes for the protective effect of 

vitamin D against GVHD.

Surprisingly, younger patients had a higher incidence of vitamin D deficiency in our 

cohort compared to older patients. Risk factors for vitamin D deficiency in non-HCT 

patients include inadequate exposure to ultraviolet radiation, malnutrition, obesity, and 

kidney disease,(6) however, in our cohort of HCT recipients who did not receive routine 

supplementation, younger age, MAC, and TPN were significant predisposing factors for 

vitamin D deficiency; these populations might benefit more than others from peri-transplant 

vitamin D repletion, a hypothesis that could be tested clinically.

We detected an inverse relationship between day-30 vitamin D levels and acute GVHD 

in RIC HCT recipients. This association is consistent with earlier preclinical reports in 

which vitamin D was found to mitigate T lymphocyte alloreactivity,(34,35) and several 

observational studies that were recently summarized.(13) Notably, we did not observe a 
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correlation between vitamin D deficiency and acute GVHD in MAC HCT. This is likely 

because most MAC HCT recipients had significant vitamin D depletion by day 30 and the 

absence of variability in day-30 vitamin D levels precluded a meaningful analysis in this 

subset of patients. We also found a correlation between lower vitamin D levels specifically 

with acute cutaneous GVHD, consistent with reports that associated vitamin D specifically 

with cutaneous immunity(36).

Numerous mechanisms connect vitamin D with immunologic function,(37) but which of 

these mechanisms is primarily responsible for the protection against GVHD in humans 

has not been determined. To this end, we studied the immune signature associated with 

post-transplant vitamin D status by using multi-faceted profiling of peripheral blood samples 

with a focus on T-cell phenotype, function and gene expression. We identified several 

notable findings. First, vitamin D was associated with restrained proinflammatory cytokine 

production and T-cell proliferation. Specifically, we found an inverse association between 

vitamin D levels and production of TNF-α and IL-6 which have well-described roles 

in the pathophysiology of GVHD in animal models; therapeutic efficacy for TNF-α and 

IL-6 blockade has also been demonstrated in humans.(38–40) We also found elevated IL-8 

levels in vitamin D deficiency, consistent with preclinical data in the non-HCT setting that 

demonstrated downregulation of IL-8 to be one of the anti-inflammatory mechanisms of 

Vitamin D.(41) Cytokine production in stimulated T cells also demonstrated an association 

between vitamin D status and IFN-γ and IL-2 production, which both have a complex role 

in GVHD pathogenesis.(42–45) These data suggest vitamin D plays an important role in 

regulating the cytokine milieu early after HCT.

In addition, we found that vitamin D was associated with a T-cell gene expression signature 

consistent with an interferon type I response, which in murine models was found to be 

favorable in terms of balancing the GVH and GVL responses.(25) A primary source of 

type I interferon is plasmacytoid dendritic cells, which are capable of suppressing GVHD.

(46,47) It is known that the complex effects of vitamin D on dendritic cell maturation and 

activation skew them towards tolerogenic properties(48), although a direct impact of vitamin 

D on plasmacytoid dendritic cells has not been fully elucidated and is worthy of further 

investigation.

Finally, we identified a strong and novel association between vitamin D levels and ID3 

expression in T cells. We previously demonstrated that ID3 expression is epigenetically 

controlled by EZH2 in murine T cells(29) and our current gene expression and flow 

cytometry data together suggest that a similar mechanism exists in humans and is impacted 

by vitamin D. This is of particular significance as inhibition of EZH2 is a promising 

therapeutic strategy to alleviate GVHD(49), and EZH2 has recently been identified as 

critical in maintaining the functional status of chimeric antigen receptor (CAR)-T cells.

(50) Thus, the interaction between vitamin D and EZH2 may play an important role in 

various types of cancer immunotherapies. In addition, EZH2 has a known role in cancer 

pathogenesis and the first EZH2 inhibitor has already been improved as cancer therapy,(51–

53) further underlining the need to decipher a potential interaction with vitamin D signaling.
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EZH2 primarily impacts gene transcription in T cells after TCR activation.(49) In mice, 

EZH2 activates the transcription of ID3 which in turn guides memory development.(32,33) 

EZH2 also silences ID2, Blimp-1, and EOMES in antigen-experienced CD8+ T cells to curb 

effector differentiation. Elevated levels of ID2, Blimp-1, EOMES, and T-bet are associated 

with enhanced effector differentiation but decreased memory potential.(30–33,54) Based on 

our data, adequate levels of vitamin D are associated with ID3 expression, which may be 

required to restrain effector differentiation. This may explain why vitamin D-hi patients 

were relatively protected against GVHD.

The main limitations of our study include its single-center design, retrospective nature, 

and small sample size. Because our objective was to identify a biologic mechanism, the 

immunologic assays were performed on groups of patients with the highest and lowest 

vitamin D levels in our dataset, which may not have been perfectly matched on other 

variables. To overcome this limitation, we included demographic and clinical variables in 

the multivariable analysis and identified immunophenotypic variables that independently 

correlated with vitamin D status (Figure 4). Nevertheless, this is the first study to identify a 

strong association between vitamin D levels early post-transplant and ID3 expression in T 

cells and propose an epigenetic mechanism for the function of vitamin D. It is also the first 

human study to identify the role of EZH2-ID3 signaling in alloreactive T cells. Our findings 

provide rationale for investigating this pathway further in allogeneic HCT recipients. We 

also did not directly address the impact of vitamin D levels on antigen presenting cells and 

other cells and cytokines of the innate immune system that are known to be regulated by 

vitamin D but are more challenging to study without availability of fresh blood and tissue 

samples. Finally, we did not study the expression level of the vitamin D receptor in T cells 

or the potential impact of vitamin D on the antitumor response, which has been suggested by 

several studies.(55,56)

In summary, we conclude that vitamin D deficiency is frequent early after allogeneic 

HCT and predisposes patients to a higher risk of acute GVHD. The findings of our study 

demonstrate a novel association between vitamin D and EZH2-ID3 signaling as a potential 

mechanism that restrains proliferation and effector function of alloreactive T cells. These 

findings will require confirmation, ideally in a prospective trial of vitamin D repletion with 

appropriate correlative studies to measure the impact of this intervention.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Vitamin D deficiency is common after allogeneic HCT and is associated with 

GVHD, primarily skin.

• Low vitamin D levels are associated with a high CD8/Treg ratio and elevated 

inflammatory cytokines.

• Adequate levels of vitamin D are associated with an EZH2-ID3 signature that 

regulates T-cell differentiation.
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Figure 1. 
Cumulative incidence plots of acute grade 2 – 4 GVHD (A-B) and skin GVHD (C-D) 

according to day-30 vitamin D levels. Low vitamin D levels and high vitamin D levels were 

defined as 25OHD < 20 ng/mL and ≥ 20 ng/mL, respectively. Plots are displayed for all 

patients and reduced-intensity conditioning subset.
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Figure 2. 
A. Gene set enrichment analysis of 182 correlated (upregulated) and 88 anti-correlated 

(downregulated) genes from a gene expression analysis of 8 patients with high and 8 patients 

with low vitamin D levels on day 30. Prominent gene sets from the Molecular Signature 

Database (MSigDB) v7.1 are listed in order of their adjusted p-values. Color signifies the 

direction of the correlation with vitamin D and size of each node indicates the number 

of annotated genes. B. Representative enrichment plots of prominent gene sets that are 

differentially expressed between the groups. C. Left – vitamin D levels in the vitamin D-hi 
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and vitamin D-lo groups. Right - comparison of serum cytokine levels. D. Comparison 

of cytokine production in CD4+ and CD8+ T cells stimulated with PMA and lonomycin 

on day 30 according to vitamin D levels (above and below 30 ng/mL). E. Violin plots 

show the different proportions of major cell subsets out of the total of CD45+ cells in the 

peripheral blood between vitamin D-hi and vitamin D-lo patients. The CD8/Treg ratio is 

significantly lower for vitamin D-hi patients. Medians and interquartile ranges are plotted 

and comparisons use the Mann-Whitney U test. * P<0.05 ** P<0.01 **** P<0.0001
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Figure 3. 
Flow cytometry data presented using UMAPS and specific markers displayed using 

heatmaps for vitamin D-hi vs. vitamin D-lo patients. Data presented separately for A. CD8+ 

T cells B. CD4+ conventional T cells (Tcons) and C. regulatory T cells (Tregs).
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Figure 4. 
Multivariable logistic regression identifies 6 immunologic variables with a positive 

independent association with vitamin D-hi status. A. Heatmap of selected variables (lines) 

in 10 imputed data sets (columns). All OR are > 1. OR with lower bound of the confidence 

interval (CI) ≥ 0.95 are displayed. B. Plot of selected variables by vitamin D status displayed 

on log scale. Each dot corresponds to the value of one patient, lines correspond to median in 

each group. C. Principal Component Analysis of vitamin D status using 17 markers.
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Table 1.

Patient Characteristics (N=53)

Characteristic Value

Recipient age, median in years (range) 55 (20 – 71)

Recipient sex, male, n (%) 28 (53)

Donor age, median in years (range) 40 (20 – 70)

Donor sex, male, n (%) 28 (53)

Disease type, n (%)

    Myeloid 33 (62) 

      Acute myeloid leukemia 15 (28)  

      Myelodysplastic syndrome 10 (19)  

      Primary myelofibrosis 5 (9)  

      Chronic myelogenous leukemia 3 (6)  

    Lymphoid 20 (38) 

      Non-Hodgkin lymphoma 8 (15)  

      Acute lymphoblastic leukemia 6 (11)  

      Chronic lymphocytic leukemia 2 (4)  

      Hodgkin lymphoma 2 (4)  

      Multiple myeloma/plasma cell leukemia 2 (4)  

Graft source, n (%)

    Peripheral blood stem cells 44 (83)

    Bone marrow 9 (17)

Donor type, n (%)

    Sibling 23 (43)

    Unrelated 30 (57)

HLA compatibility, n (%)

    8/8 match 43 (81)

    7/8 match 10 (19)

Conditioning intensity, n (%)

    Myeloablative 25 (47)

    Reduced intensity 28 (53)

GVHD prophylaxis, n (%)

    Tacrolimus/methotrexate 41 (77)

    Cyclosporine/methotrexate 8 (15)

    Other
a 4 (8)

Pre-transplant albumin, median (range) 4.0 (3.0 – 4.7)
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Characteristic Value

Day-30 albumin, median (range) 3.6 (1.8 – 4.6)

Required TPN post-transplant, n (%) 22 (41)

GVHD, graft-versus-host disease; HLA, human leukocyte antigen; TBI, total body irradiation; TPN, total parenteral nutrition.

a
Tacrolimus/sirolimus (n=3), mycophenolate mofetil/prednisone (n=1)
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Table 2.

Associations of Day-30 Vitamin D Levels with Disease and Transplant Characteristics 
a

Variable Pearson Correlation P

Recipient age 0.431 0.001

Donor age 0.010 0.48

Baseline albumin 0.102 0.47

Day 30 albumin 0.300 0.03

Variable Mean Day-30 Vitamin D Level (range) P

Disease type 0.02

    Myeloid 23.4 (8 – 50)

    Lymphoid 17.6 (6 – 36)

GVHD prophylaxis 0.58

    CSA/MTX 20.6 (6 – 36)

    TAC/MTX 22.0 (9 – 50)

Donor source 0.63

    Sibling 20.5 (6 – 50)

    Unrelated 21.8 (9 – 45)

Donor sex 0.26

    Male 22.1 (9 – 37)

    Female 20.2 (6 – 50)

Recipient sex 0.50

    Male 21.8 (9 – 50)

    Female 20.5 (6 – 37)

Conditioning 0.08

    Myeloablative 18.5 (8 – 37)

    Reduced intensity 23.6 (6 – 50)

Graft type 0.73

    Peripheral blood 21.5 (6 – 50)

    Bone marrow 20.0 (9 – 37)

HLA match 0.65

    8/8 21.7 (6 – 50)

    7/8 19.3 (10 – 34)

TPN 0.0009

    Yes 16.1 (6 – 37)

    No 24.9 (9 – 50)
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CSA, cyclosporine; GVHD, graft-versus-host disease; HLA, human leukocyte antigen; MTX, methotrexate; TAC, tacrolimus; TPN, total parenteral 
nutrition

a
Comparisons were performed after natural-log transformation of vitamin D levels. Significant P-values are highlighted in bold.
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