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Abstract

Objective: Analyzing human motion is essential for diagnosing movement disorders and guiding 

rehabilitation for conditions like osteoarthritis, stroke, and Parkinson′s disease. Optical motion 

capture systems are the standard for estimating kinematics, but the equipment is expensive and 

requires a predefined space. While wearable sensor systems can estimate kinematics in any 

environment, existing systems are generally less accurate than optical motion capture. Many 

wearable sensor systems require a computer in close proximity and use proprietary software, 

limiting experimental reproducibility.

Methods: Here, we present OpenSenseRT, an open-source and wearable system that estimates 

upper and lower extremity kinematics in real time by using inertial measurement units and a 

portable microcontroller.

Results: We compared the OpenSenseRT system to optical motion capture and found an average 

RMSE of 4.4 degrees across 5 lower-limb joint angles during three minutes of walking and an 

average RMSE of 5.6 degrees across 8 upper extremity joint angles during a Fugl-Meyer task. 

The open-source software and hardware are scalable, tracking 1 to 14 body segments, with one 

sensor per segment. A musculoskeletal model and inverse kinematics solver estimate Kinematics 

in real-time. The computation frequency depends on the number of tracked segments, but is 

sufficient for real-time measurement for many tasks of interest; for example, the system can track 

7 segments at 30 Hz in real-time. The system uses off-the-shelf parts costing approximately $100 

USD plus $20 for each tracked segment.

Significance: The OpenSenseRT system is validated against optical motion capture, low-cost, 

and simple to replicate, enabling movement analysis in clinics, homes, and free-living settings.
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I. Introduction

Researchers and clinicians measure kinematics during human movement to attain an 

understanding of diseases and rehabilitation, to improve the design of assistive devices, 

or to uncover the mechanisms by which athletes achieve peak performance. Estimating 

kinematics in real-time is important for many real-world applications of movement analysis, 

such as rapid biomechanics assessment for injury prevention, corrective feedback for at-

home rehabilitation, or real-time control of assistive devices to improve mobility.

Motion capture systems use sensors to objectively measure the motion of body segments and 

estimate joint angles and other kinematic quantities. Motion capture systems typically rely 

on either stationary sensors such as cameras placed throughout a room or wearable sensors 

such as inertial measurement units (IMUs) attached to the body. Systems that measure joint 

kinematics with less than 2 degrees root-mean-square error (RMSE) are considered to be 

excellent and less than 5 degrees RMSE to be acceptable for many applications [1], although 

accuracy requirements depend on the application.

Optical motion capture is the current industry standard. Careful calibration can enable 

these camera systems to track the position of markers with millimeter accuracy. However, 

capturing human motion adds additional sources of error such as skin motion artifacts and 

occluded markers [2], which can increase the average RMSEs for joint angles by 1 to 3 

degrees [3]. The use of optical motion capture is further limited by the high cost of the 

equipment and the requirement of a fixed capture volume.

Wearable systems use portable sensors, most commonly IMUs, worn on the body to capture 

motion in many environments. Modern IMUs measure linear acceleration, angular velocity, 

and the local magnetic field and are compact, lightweight, and low-cost compared to 

optical motion capture equipment. Joint kinematics can be computed with a variety of 

methods including integration [4], constrained orientation [5], statistical models [6], or 

musculoskeletal simulation [7]. Commercial IMU motion capture systems can estimate joint 

kinematics with less than 5 degrees RMSE compared to optical motion capture during brief 

bouts of activities including walking, jumping, and squatting [8]. Most current wearable 

systems estimate kinematics offline due to the significant number of processing steps and 

computation requirements. Computing kinematics in real-time is necessary for providing 

rapid results or diagnoses as well as applications that require feedback to the wearer, such as 

correcting a rehabilitation exercise [9] or improving an athletic maneuver [10].

Beyond computing kinematics in real-time, wearable systems should meet several additional 

criteria to be effective across a wide range of real-world scenarios. First, the accuracy 

and frequency of estimation must be sufficient for the application of interest. Systems that 

require off-board computation, such as a laptop or desktop, to provide real-time estimates 

restrict the motion capture volume to the range where the sensors can communicate 

with the computer. Thus, on-body computation is preferred for use in a wide range 

of environments. A wearable motion capture system for real-world applications also 

requires robustness to environmental changes such as the magnetic field, which can skew 
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magnetometer measurements, and temperature, which can affect gyroscope measurements. 

Design guidelines for wearable medical devices suggest devices should be lightweight, low-

cost, and easy to don and doff for extended use [11]. In addition, systems with open-source 

software, simple assembly procedures, and a straightforward calibration method would 

reduce barriers to use.

Existing real-time wearable systems span a range of features (Table I). All of these 

systems require off-board computation, which increases the overall system cost and limits 

motion capture to the range in which sensor data can be passed to the computer. Further, 

existing systems either use custom hardware and are not open-source, use commercial 

hardware and are expensive, or compute kinematics for a fixed set of joints for a specific 

application. While current commercial systems meet some of the desired specifications for 

real-time wearable systems such as accurately estimating joint kinematics, high computation 

frequency, and flexibility in the number of tracked body segments, they are expensive and 

require the user to stay within approximately 40 feet of a desktop or laptop computer.

To help overcome the current barriers to widespread use of real-time wearable systems, we 

developed the OpenSenseRT system, a low-cost, open-source, and fully wearable system 

for computing real-time kinematics. We assessed accuracy by comparing the OpenSenseRT 

system to optical motion capture for a range of upper and lower extremity movements, 

seeking to achieve an RMSE of 5 degrees or less for 3D joint angles. To make the system 

useful in a wide range of applications we used off-the-shelf components and enabled 

customization to estimate any combination of lower and upper extremity motions (assuming 

one sensor worn on each tracked segment). We have provided the software, a list of 

components, instructions for assembly and use, and examples of activities measured with 

the OpenSenseRT system [20].

II. Methods

A. Open-source system hardware

The system hardware is built from components that are inexpensive and can be assembled 

without tools or soldering. The components include IMUs, a microcontroller, Qwiic 

connector cables, a button (to start and stop recording), and a USB-rechargeable battery 

(Fig. 1). The sizes of the IMU, microcontroller assembly, and battery are 0.2 by 1.6 by 2.5 

cm, 3.5 by 6 by 9 cm, and 2.5 by 5 by 10.3 cm, respectively. At the time of publication, parts 

to build the system cost approximately $100 plus $20 for each tracked body segment. The 

assembly procedure consists of assembling a case for the microcontroller and fan, attaching 

this case to a belt to be worn on the pelvis, and connecting the sensors to the microcontroller. 

A complete bill of materials, suggested vendors, written assembly instructions, and video of 

the assembly procedure are provided in a user’s guide to simplify replication of the system 

[20].

The microcontroller and IMUs were selected because they meet computational requirements 

for real-time estimation of joint kinematics. The microcontroller is a Raspberry Pi 4b+ 

with 4 gigabytes of RAM and a quad-core microprocessor (Raspberry Pi Foundation). This 

amount of RAM is required to build the OpenSim software [21] that performs the inverse 
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kinematics. The quad-core microprocessor allows for multiple threads to run in parallel, 

necessary for the system’s software architecture discussed in the next section. The IMUs are 

ISM330DHCX breakout boards (Adafruit) which contain an accelerometer and gyroscope. 

These IMUs measure accelerations up to 16 times gravity and angular velocities up to 

4000 degrees per second, sufficient to capture dynamic activities like running. The analog 

to digital resolution of the IMU is 16 bits. The IMU sampling rate is variable with a 

maximum rate of 6.7 kHz. An IMU was measured in a static position for 60 seconds to 

determine the standard deviations of the accelerometer measurements, which were 0.0155, 

0.0244, and 0.254 meters per second squared, and the gyroscope which were 0.0742, 

0.0583, and 0.0369 degrees per second for the x, y, and z directions, respectively. The 

IMU breakout board includes connectors to simplify wiring the IMUs to the microcontroller 

with pre-made cables. We recommend gluing the pre-made cables into connectors on the 

IMU and microcontroller to improve the strength of the connections.

The hardware system specifications are designed to estimate joint kinematics for extended 

periods in free-living settings. The total weight of the system is 408 grams, with 

approximately half due to the rechargeable battery. The rechargeable battery allows 

continuous recording for approximately 6.5 hours per charge and can be recharged in about 

2 hours or replaced for continual use. The SD card in the microcontroller is able to store 

approximately 100 hours of recordings at a 30 Hz computation rate. A button and blinking 

LED provide control and feedback to the user to start and stop recordings.

B. Open-source software architecture

The open-source software requires user inputs to define which body segments are tracked 

with IMUs and uses a two phase procedure to estimate kinematics: initial calibration and 

iterative computation of joint kinematics (Fig. 2). The software builds on the OpenSense 

tools for IMU-based kinematics [22] that are part of OpenSim version 4.2 [21]. The 

microcontroller’s SD card contains the operating system for the OpenSenseRT system. 

The user-defined parameters are input to the system by editing a text file on the SD card. 

Step-by-step instructions to edit this text file and additional instructions to customize the 

software are provided in the user’s guide [20].

The software performs a calibration of the gyroscopes in the IMUs during their first use. 

Gyroscope measurements are taken for 10 seconds and averaged to remove any offset, which 

is a standard IMU processing technique to prevent drift due to sensor bias. The gyroscope 

offset fluctuated less than 0.00571 degrees per second when measured for several minutes, 

thus only 10 seconds of data was required to accurately estimate the gyroscope offset. IMUs 

with similar gyroscope noise levels are expected to perform similarly. These gyroscope 

bias values are stored and recalled for future recordings with the same set of sensors. The 

gyroscope bias was measured 3 days in a row to understand the variation over time. The 

largest difference between the bias measurements across these days was 0.0172, 0.0247, 

and 0.0178 degrees per second for the x, y, and z directions. These differences were below 

the 0.1 degrees per second standard deviation in gyroscope measurement, indicating the 

gyroscope bias values do not degrade measurement accuracy over a few days. Periodic 

recalibration of the gyroscopes is important to minimize drift in the sensors. The system will 
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automatically calibrate the gyroscope measurements when the user edits the text file to tell 

the system to recalibrate, following the instructions in the user’s guide [20].

Before each recording session, a system calibration must be performed to determine the 

initial orientation of all the IMUs; we assume a standing pose and a set of known IMU 

orientations with respect to each body segment. The subject stands in a neutral position with 

their arms at their sides, with all IMUs aligned as shown in Fig. 1. The initial orientation 

of the IMUs is computed from this stationary standing data by using a Mahony Filter [23]. 

Since OpenSenseRT does not use magnetometer measurements, the initial heading angle 

of the IMUs with respect to the anterior-posterior axis of the musculoskeletal model is 

randomly rotated to point in different directions. First, we compute the average heading 

angle across all IMUs which we will use as our target heading angle. Then we align all 

IMUs to the same initial heading angle by rotating each IMU orientation by the difference 

between its heading angle and the target heading angle. Thus, all the IMUs are initialized 

with the same target heading angle. The IMUs now match the initial generalized coordinates 

of the musculoskeletal model used to estimate kinematics.

Once calibrated, the system uses the inverse kinematics solver of OpenSim to compute new 

joint kinematics at each timestep based on the IMU orientations. An IMU on the pelvis is 

required and acts as the base segment against which we compute the relative orientation of 

other sensors. The microcontroller uses two separate threads to compute joint kinematics 

at each step. The first thread samples each IMU and converts the raw accelerometer and 

gyroscope readings into a quaternion containing the orientation by using a Mahony Filter 

[23]. Pilot walking data was used to compare the joint kinematic estimates using a Mahony 

Filter to optical motion capture estimates in order to select the appropriate parameters for 

the Mahony Filter. Although a range of proportional and integral gains were evaluated, all 

sets of parameters resulted in errors within 0.1 degrees RMSE of each other. Thus, the 

proportional gain was left to the recommended default value of 1, and an integral gain of 

0.3 was chosen empirically to allow the initial IMU orientations to reach a steady-state 

value within 3 seconds. Further tuning of these parameters may improve IMU orientation 

estimates for specific applications [24], [25]. Magnetometer measurements were not used 

to compute the quaternions, because they are sensitive to changes, for example, when near 

electric motors or large metal objects. The first thread operates approximately 12% of 

the time, while the second thread runs continuously. Thus, the computational frequency is 

limited by the speed of the inverse kinematics solver.

The second thread uses these orientations and the musculoskeletal model as inputs to 

the inverse kinematics solver included in OpenSim version 4.2 [21], [22] to compute the 

generalized coordinates of the model (i.e., joint angles and joint angular velocities). The 

inverse kinematics solver uses the generalized coordinates of the musculoskeletal model 

at the previous time step as an initial guess. The new set of generalized coordinates 

are computed by taking the error relative to the measured IMU orientations from the 

current step, converting to an axis-angle representation, and then minimizing this angle-axis 

difference. The axis-angle representation defines orientation in three dimensions with a unit 

vector, or axis, and a single angle about this axis. These steps are repeated to estimate the 

kinematics as measurement moves forward in time. Using two threads reduces the delay in 
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computing kinematics, allowing for higher computation frequencies. For the experimental 

comparison described below, the generic musculoskeletal model did not need to be scaled to 

subject anthropometry, because we only examined joint kinematics that depended on relative 

orientations of the segments.

Estimating kinematics in real-time required several modifications to the musculoskeletal 

model and inverse kinematics settings. We modified a previously published full-body 

musculoskeletal model [26] by removing muscles and locking unused joints, including the 

subtalar and metatarsophalangeal joints. The inverse kinematics solver used a weight on the 

joint constraints of 10 and a solver tolerance of 0.001. These values were selected through 

trial and error in pilot testing of the device to achieve both accurate and fast solutions.

The OpenSenseRT system can estimate kinematics online or offline. The online mode uses 

one or more of the microcontroller cores to compute kinematics. The offline mode only 

samples the IMUs, performing the inverse kinematics computation later. The offline mode 

provides much faster sampling frequencies by removing the need to compute kinematics 

in real-time. Higher frequency estimates of joint kinematics improve the accuracy when 

estimating dynamic motions such as running and may be preferred for applications without 

real-time constraints.

C. Experimental comparison to optical motion capture

We compared estimates of joint kinematics from the OpenSenseRT system to estimates 

based on optical motion capture (Optitrack) for a range of conditions including: walking, 

running, a Fugl-Meyer upper-limb task [27], and a task measuring the range of motion of 

the trunk. The motion capture was recorded at 100 Hz. Lower-limb experiments used sixteen 

markers, including markers bilaterally on the anterior and posterior superior iliac spines, 

as well as markers on the right leg with a three-marker plate on the thigh, a four-marker 

plate on the shank, and single markers on the femoral epicondyles, malleoli, calcanei, and 

the 2nd and 5th metatarsal heads. Upper-limb experiments used 14 markers bilaterally on 

the anterior and posterior superior iliac spines, as well as a marker on the C7 vertebrae and 

markers on the right side of the body for the clavicle, anterior and posterior shoulder, lateral 

shoulder, lateral and medial epicondyles of the humerus, radial and ulnar styloid processes, 

and the body of the 5th metacarpal. Healthy young adults (n = 5, 3 men and 2 women; 

age = 25.0 ± 1.8 yr; body mass = 63.0 ± 10.3 kg; height = 1.70 ± 0.07 m) were recruited. 

All subjects were volunteers and provided written informed consent before completing 

the protocol IRB-17282 approved by the Stanford University Institutional Review Board. 

Only one subject completed the running condition, but all subjects completed all other 

conditions. The walking condition lasted three minutes on a treadmill at 1.25 m/s. The 

running condition lasted 1 minute on a treadmill at 4.0 m/s. The Fugl-Meyer upper-limb and 

trunk range of motion conditions were completed ten times to create a cyclic upper-limb 

task for analyzing an average activity cycle in a similar manner to a gait cycle [28]. The 

Fugl-Meyer upper-limb task simulated cutting by having the subject pick up a knife from 

a table, perform a cutting motion, and place the knife back on the table [29]. The range 

of motion of the trunk task had subjects reach their comfortable range of motion for trunk 

flexion, then rotation, then bending [30].
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The optical motion capture data was input to the OpenSim software [21], [22] to estimate 

the ground truth kinematics. The optical motion capture data was processed following best 

practices to ensure proper model scaling, an accurate initial pose, and precise tracking of 

the marker positions using OpenSim’s inverse kinematics solver [31]. The joint kinematics 

computed with the OpenSenseRT system utilized the previously described open-source 

hardware and software. The similarity between joint kinematics computed with optical 

motion capture and OpenSenseRT was quantified with the Pearson correlation coefficient 

[32].

While our validation focused on joint kinematics, the OpenSenseRT system can compute 

any quantity that is derived from the kinematic state of the model. For demonstration 

purposes, we computed foot progression angle. We first computed virtual marker positions 

on the heel and second metatarsal head, using OpenSim’s analyze tool offline. Then the 

foot progression angles were computed from these virtual marker positions with a previously 

defined approach [33]. The OpenSenseRT system could perform this and other kinematic 

analyses in real time but would require custom development for a given application.

III. Results

A. Accuracy of estimated joint kinematics

During walking, the OpenSenseRT system estimated lower-limb joint kinematics with an 

average RMSE of 4.4 degrees compared to kinematics computed from optical motion 

capture data. Joint kinematic curves from the OpenSenseRT system were compared to 

optical motion capture for both walking (Fig. 3A) and running (Fig. 3B). The Pearson 

correlation coefficients between the OpenSenseRT system and optical motion capture 

were above 0.95 for all joint angles other than hip rotation during both walking and 

running (Table II). The joint kinematic curves from OpenSenseRT had a larger standard 

deviation than optical motion capture for the running trials, indicating the system was more 

susceptible to fluctuations during faster motion or higher impact activities. The absolute 

RMSE averaged across all joints drifted from 3.5 to 6 degrees after 3 minutes, although most 

angles stayed below a RMSE of 5 degrees for the first minute of data capture (Fig. 4). Hip 

rotation had the largest RMSE among the joint angles measured but also has larger errors 

relative to other joints when measured with optical motion capture [3].

The OpenSenseRT system estimated upper-limb joint kinematics with an average RMSE of 

5.6 degrees compared to kinematics computed from optical motion capture. The individual 

upper-limb joint angles had average RMSEs between 2.5 and 10 degrees (Fig. 5). Average 

joint kinematic curves from the OpenSenseRT system were similar to values from optical 

motion capture for the upper-limb task (Fig. 6A). The joint kinematics during the upper-limb 

task had larger standard deviations than other conditions for both OpenSenseRT and optical 

motion capture, because the activity cycles occurred over a longer time period and the 

movement was more variable across repetitions and subjects. The trunk joint kinematics 

estimates during the trunk range of motion task for the OpenSenseRT system and optical 

motion capture had similar means and standard deviations (Fig. 6B). The Pearson correlation 

coefficients between the OpenSenseRT system and optical motion capture were above 0.87 

for all joint angles other than shoulder rotation (Table III).
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Foot progression angle was computed to evaluate an example of a clinically relevant 

metric that is derived from the generalized coordinates of the model. The estimated foot 

progression angle for a single individual showed similar trends to the values computed based 

on optical motion capture data as the angle was varied during walking (Fig. 7).

B. Computational limitations

We evaluated the real-time computational limits of the OpenSenseRT system to understand 

the relationship between the number of sensors used to track body segments and the 

computation rate of the inverse kinematics solver. We evaluated the fastest computation 

rate for the system when using 1 to 14 sensors. We found the maximum computation rate 

when using a single core of the microcontroller had a line of best fit of 69 − 4.8 * N, 

with N denoting the number of IMU sensors used to compute the kinematics (Fig. 8A). 

This recommended maximum computation rate should be a guideline when customizing the 

number of IMU sensors for new applications. We expect a similar level of performance 

for other IMUs with sampling rates faster than the desired computation rate of the system. 

When computing kinematics using a single core, the microcontroller had a steady-state CPU 

temperature safely below the soft and hard temperature limits set by the operating system 

(Fig. 8B). Thus, the device can safely operate in this mode indefinitely without encountering 

computation limits due to heat. These computation experiments were performed indoors 

at a room temperature of approximately 22 degrees Celsius. We anticipate the single core 

mode of operation results reported here could be replicated in ambient temperatures up to 37 

degrees Celsius without performance degradation.

A second real-time mode of operation utilized all cores on the microcontroller to increase 

the maximum computation at the expense of increased CPU temperature. The maximum 

computation rate in this mode had a line of best fit of 93 − 5.6 * N, where N denotes 

the number of IMU sensors. The CPU temperature reached the soft limit after 92 seconds 

and the hard limit after 10 minutes. The soft computation limit reduced the microcontroller 

performance and computation rate, preventing computation of joint kinematics in real time. 

Thus, using all cores may provide a faster real-time computation rate than a single core, but 

cannot be sustained without overheating the microcontroller.

An offline mode was tested by taking measurements from the IMUs in real-time and then 

computing the kinematics once the recording was finished. The computation in real-time 

was only limited by how fast the sensors could be sampled, allowing much faster offline 

computation rates of 150 – 7.5 * N, where N is the number of IMU sensors. This mode 

offered sampling frequencies similar to other commercial systems [7] capable of capturing 

dynamic activities such as running.

IV. Discussion

The OpenSenseRT system is the first open-source, low-cost system to estimate kinematics 

for a range of different movements in real time. We computed kinematics for 14 different 

body segments, including upper- and lower-extremity joint kinematics, with an average 

RMSE of 5 degrees compared to optical motion capture. The OpenSenseRT system provides 

flexibility, with high-frequency sampling, real-time or offline kinematics computation, and 
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access to the modeling and analysis tools available in OpenSim, which we demonstrate 

by computing foot progression angle. The system provides technology to estimate joint 

kinematics in free-living conditions, which will help translate clinical tools into the real-

world and enable large-scale and long-term biomechanics studies.

A. Evaluating the accuracy of IMU motion capture

Joint kinematics estimated by the OpenSenseRT system had an average error of 5 degrees 

RMSE across lower and upper-extremity joints compared to optical motion capture, an 

acceptable error for use in many clinical and research applications [34]. Pearson correlation 

coefficients were also high (Tables II and III), indicating that the two methods produced 

similar kinematic profiles. Accuracy requirements will vary and should be validated for 

a specific clinical application before using the OpenSenseRT system to evaluate clinical 

outcomes. The error bands of hip and knee flexion during walking had similar magnitudes 

for both the OpenSenseRT system and optical motion capture, indicating that estimated 

kinematics were similarly consistent for both approaches. We expect there to be differences 

between kinematics estimates with OpenSenseRT and optical motion capture because 

optical motion capture is known to have measurement errors, for example due to skin 

motion artifacts. The error and Pearson correlation coefficients between optical motion 

capture and the OpenSenseRT system for lower-limb joint kinematics were within the range 

of several state-of-the-art commercial systems which compute kinematics offline, including 

Xsens [13], [35] and other systems [36]. Two offline systems reported lower errors during 

walking [37], [38]. The upper-limb estimates error and Pearson correlation coefficients were 

also within the range of all IMU systems that compute kinematics offline [35], [39]–[41] 

except for one system that reported smaller errors [42]. The higher errors associated with 

the upper-limb joints may be due to their larger range of motion and increased degrees of 

freedom compared to the lower limbs.

B. Feasibility for estimating kinematics during real-world use

The OpenSenseRT system has usability and technical specifications that support estimating 

kinematics in real-world settings. The system is designed for continual monitoring 

applications: it is lightweight to minimize fatigue, it has a rechargeable battery capable 

of recording for most of a day, it can store days or weeks of kinematic estimates in memory, 

and it allows for recordings to be manually started and stopped with the press of a button. 

The system is also meant to be easily reproducible–the device consists of low-cost and 

off-the-shelf components that can be assembled in approximately 20 minutes using common 

tools without soldering or coding [20].

The error in joint kinematic estimates drifted over time as expected, since our sensor fusion 

approach did not use magnetometer information. Investigation into the sources of the drift, 

such as the heading or inclination estimates of the IMU [43], as well as the variability 

among the IMU sensors might help reduce this drift. When using the OpenSenseRT 

system for extended recordings, we suggest recalibrating the system periodically to reduce 

the average error. For example, in an all day monitoring experiment it may be possible 

to automatically re-calibrate the OpenSenseRT system by trying to detect when a quiet 

standing pose occurred.
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C. Extending the system to custom applications

The OpenSenseRT relies on open-source software and hardware for transparency and 

extension to new applications. The software builds upon OpenSim [21], a software 

framework with well documented musculoskeletal analysis and simulation tools that can 

be integrated for future uses, such as computing muscle-tendon lengths and velocities. Prior 

research has shown that IMUs can be used with musculoskeletal analysis tools to estimate 

ground reaction forces [44] and joint kinetics [45], [46]. Although the use of a physiological 

skeletal model can be more computationally intensive than other approaches for computing 

kinematics, it allows kinematics estimates to be constrained to realistic joint limits and 

provides access to other biomechanics tools that rely on musculoskeletal modeling [21]. 

The open-source software also allows for custom additions to compute IMU metrics such 

as energy expenditure [47] or spatiotemporal metrics such as gait cycle duration (e.g., using 

the approach of [48]), which are important for clinical analysis of lower-limb motion. The 

OpenSenseRT system provides hardware flexibility by allowing additional sensors, such as 

pressure insoles or electromyography sensors, to be connected to the microcontroller and 

open-source hardware, enabling customized measurements.

D. Limitations

We have benchmarked the OpenSenseRT system’s basic functionality, but additional work 

is required to validate the system for more challenging applications, such as activities that 

require measuring both the upper- and lower-limbs or dynamic activities with a large range 

of motion or high speeds, such as squatting or sprinting. The computation rate is limited 

by the performance of the microcontroller, which prevents fast computation rates with many 

sensors, making a task like estimating full-body kinematics during running challenging. 

The CPU speed may be increased by overclocking the microcontroller or adding additional 

computation sources, such as a USB accelerator. Using all cores of the microcontroller 

significantly increased the computation rate, but would require additional cooling to prevent 

overheating.

The accuracy of the OpenSenseRT system is dependent on the initial calibration which 

requires firmly and precisely attaching the IMUs to each body segment, which could 

pose challenges for real-world use. Methods for simplifying the calibration process and 

generalizing to any initial pose would allow for easier recalibration. In order to accurately 

capture motion, the IMUs need to be firmly attached to the body as any shift in their 

placement accumulates error in the joint kinematics over time. Integrating the IMUs into 

clothes may also improve consistency for monitoring applications over extended periods of 

time. Accurately estimating the positions of body segments, such as the hand or foot would 

require making the lengths of the musculoskeletal model to match the subject. The IMUs 

do not require the musculoskeletal model to be scaled to each subject, but the model can be 

scaled, if desired.

V. Conclusion

OpenSenseRT is an open-source, low-cost, easy-to-assemble, and customizable system 

for computing real-time kinematics. This system will enable researchers to translate 
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biomechanics, rehabilitation, and sports performance research that rely on kinematics into 

real-world solutions. The system’s accuracy meets clinical standards for several common 

use cases in biomechanics and rehabilitation research. We have also documented and 

openly shared all hardware and software to allow other researchers to use the system in 

a wide range of new applications that leverage the biomechanics software tools included 

in OpenSim. For example, wearable and real-time joint kinematics will allow research 

to test biofeedback for gait retraining or sports performance outside of the lab, and the 

low cost could enable large-scale and longitudinal collection of free-living biomechanics 

data. The accessibility of this technology could also reduce the financial and technological 

barriers to perform state-of-the-art quantitative biomechanical analysis in low-income or 

developing countries with limited access to laboratory equipment, offering tools to improve 

musculoskeletal health on a global scale.
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Fig. 1. 
The components and default IMU orientations of the OpenSenseRT System. (A) An IMU 

on the pelvis is required and acts as the base in order to compute the relative orientation 

of other sensors. The OpenSenseRT System accommodates a variable number of additional 

IMUs to customize which kinematics are measured. To monitor movement of the upper 

body, three IMUs may be placed on each arm (on the upper arm, forearm, and hand). An 

additional IMU can be placed on the torso. The orientation frame with axes shown in red, 

green, and blue is used to orient the x, y, and z axes defined on each IMU. These individual 

body frames should align with the world reference frames of the fore-aft, mediolateral, and 

vertical axes, while the subject’s joint segments are aligned in a neutral standing (or other 

known) position. (B) The lower-limb IMU placements also require the pelvis IMU as a base 

and can include up to three IMUs on the thigh, shank, and foot of each leg. OpenSenseRT 

allows for 1 to 14 of these IMUs to be sampled in a custom configuration. (C) A zoomed in 

view of the system components shows the microcontroller, battery, button (for starting and 

stopping recordings), IMU connector, and pelvis IMU.
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Fig. 2. 
Flowchart for computing joint kinematics. The user defines the set of body segments to 

track, the IMU ports associated with the segments, and the computation frequency. The 

calibration process consists of a heading correction for the given IMUs and initializing 

the pose of the musculoskeletal model. The calibrated model and initial pose are passed 

to the inverse kinematics solver. One thread on the microcontroller records raw IMU data 

and computes orientations for each body segment using a Mahony Filter at each step. A 

second thread takes these orientations and the musculoskeletal model to solve the inverse 

kinematics, estimating joint kinematics at each time step.
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Fig. 3. 
Lower-limb joint kinematics computed with the OpenSenseRT system compared to optical 

motion capture. (A) Joint kinematics during walking at 1.25 m/s were computed in real-time 

at 30 Hz with the IMU system for five subjects. The error bands represent one standard 

deviation of the RMSE across all subjects. (B) Joint kinematics during running at 4.0 m/s 

were computed offline (represented with the dash-dot line) at 100 Hz with the IMU system 

for a single subject. The error bands represent one standard deviation of the RMSE across all 

gait cycles for the single subject. Running requires a faster computation rate than the IMU 

system can perform consistently in real-time, although it can be analyzed in real-time over 

short bursts by using all cores.
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Fig. 4. 
RMSEs for joint kinematics computed with the IMU system compared to optical motion 

capture over time for walking. The RMSE increased from approximately 3.5 to 6 degrees 

over the first 2.5 minutes of the condition. Hip rotation had the largest RMSE and drift. The 

black line and grey error band represent the average and standard deviation in RMSE across 

all subjects and joints.
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Fig. 5. 
The average RMSE across each joint for the upper-limb task and the trunk range of motion 

task. The error bars represent one standard deviation of the RMSE across all subjects.
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Fig. 6. 
Upper-limb joint kinematics computed with the IMU system compared to optical motion 

capture. (A) An upper-limb task from the Fugl-Meyer assessment simulated cutting food. 

Subjects picked up a cutting utensil bent over a dish, and performed a cutting motion before 

placing the utensil back down. The task was repeated ten times to emulate an upper-limb 

“activity cycle” to look at average kinematics for one subject. (B) In the trunk range of 

motion task, subjects performed trunk flexion, bending, and then rotation. In both (A) and 

(B), the bands represent one standard deviation of the RMSE across all subjects.
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Fig. 7. 
Comparison of foot progression angle computed by the IMU system and motion capture for 

one subject. The subject varied their foot progression angle with each step. The IMU system 

followed the same trends as the motion capture system but with smaller values across most 

steps. The average RMSE across all steps was 7.6 degrees.
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Fig. 8. 
Computation and temperature limits of the microcontroller. (A) The maximum sampling rate 

and associated average delay depends on the number of sensors attached to the system and 

the mode of computation. We evaluated three modes of computation on the microcontroller: 

using a single core in real-time (solid line), all four cores in real-time (dashed line), and 

offline computation using a single core (dash-dot line). The sampling rates (black) and 

delays (red) were averaged over a one-minute recording. The error band represents one 

standard deviation across 5 trials. (B) The internal CPU processor temperature as a function 

of time was averaged for each of the 14 sensor configurations. The single core (solid line) 

and offline (dash-dot line) tests resulted in a safe steady-state temperature below any CPU 

limits.
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TABLE II

Error and correlation between imu and motion capture lower-limb kinematics

Joint Walking RMSE (Deg) 
Mean±Std

Walking Pearson 
Correlation Coefficient

Running RMSE (Deg) 
Mean±Std

Running Pearson 
Correlation Coefficient

Hip Flexion 4.5±2.3 0.995 8.4±5.9 0.999

Hip Adduction 4.8±1.2 0.981 3.4±3.2 0.964

Hip Rotation 5.2±2.2 0.758 4.1±3.8 0.782

Knee Flexion 4.3±0.7 0.997 7.1±5.4 0.994

Ankle Dorsiflexion 3.9±1.3 0.957 7.2±6.1 0.979
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TABLE III

Error and correlation between imu and optical motion capture upper-limb kinematics

Joint RMSE (Deg) Mean±Std Pearson Correlation Coefficient

Shoulder Flexion 6.9±4.2 0.972

Shoulder Adduction 5.2±0.8 0.871

Shoulder Rotation 7.9±2.6 0.782

Elbow Flexion 5.2±2.1 0.987

Wrist Flexion 5.7±2.1 0.924

Trunk Bending 2.6±0.9 0.983

Trunk Extension 6.2±2.5 0.961

Trunk Rotation 3.9±1.3 0.949
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