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Summary

Systematic reviews and meta-analyses are principal tools to synthesize evidence from multiple 

independent sources in many research fields. The assessment of heterogeneity among collected 

studies is a critical step when performing a meta-analysis, given its influence on model selection 

and conclusions about treatment effects. A common-effect (CE) model is conventionally used 

when the studies are deemed homogeneous, while a random-effects (RE) model is used for 

heterogeneous studies. However, both models have limitations. For example, the CE model 

produces excessively conservative confidence intervals with low coverage probabilities when the 

collected studies have heterogeneous treatment effects. The RE model, on the other hand, assigns 

higher weights to small studies compared to the CE model. In the presence of small-study effects 

or publication bias, the over-weighted small studies from a RE model can lead to substantially 

biased overall treatment effect estimates. In addition, outlying studies may exaggerate between-

study heterogeneity. This article introduces penalization methods as a compromise between the 

CE and RE models. The proposed methods are motivated by the penalized likelihood approach, 

which is widely used in the current literature to control model complexity and reduce variances 

of parameter estimates. We compare the existing and proposed methods with simulated data and 

several case studies to illustrate the benefits of the penalization methods.
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1 | INTRODUCTION

Meta-analysis is a set of statistical methods for synthesizing evidence from a collection 

of multiple independent studies on a common scientific question. The application of meta-
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analysis has become a powerful tool in many scientific areas.1,2,3,4 Though not always the 

case, conventionally, meta-analyses are implemented via either the common-effect (CE) or 

random-effects (RE) model.5,6,7 The CE model assumes that each study shares a common 

true effect size; i.e., all studies are homogeneous. However, in practice, studies frequently 

differ in terms of study and patient characteristics, such as patient selection and baseline 

disease severity, among others.8,9 In such situations, the RE model is used to account for 

systematic heterogeneity between studies.

To select an appropriate meta-analytic model, it is critical to accurately measure the 

heterogeneity among the collected studies. Many methods have been proposed to detect 

and measure such heterogeneity. A classic assessment of heterogeneity is the Q test.10,11 It 

has low statistical power when the number of studies in a meta-analysis is small, and we 

cannot depend entirely on the Q test for selecting the CE or RE model.12,2 In addition, the 

Q statistic is influenced by the number of studies, while the between-study variance depends 

on the scale of measurement. Several alternative methods, such as the I2 and RI statistics, 

have been proposed to quantify heterogeneity.12,13,14,15,16 Despite their widespread use 

in applied meta-analyses, these methods are subject to several important limitations. For 

example, the I2 and RI statistics should not be used as an absolute measure.17,18,19,20 As 

the studies’ sample sizes increase, these measures would approach 100%. This issue may 

be addressed by the between-study coefficient of variation, CVB, proposed by Takkouche et 

al.12,18; it is the ratio of the between-study standard deviation (SD) estimate divided by the 

random-effect meta-estimate. Recent literature advocates reporting prediction intervals for a 

future study alongside conventional confidence intervals (CIs) of overall treatment effects to 

properly describe heterogeneity. Such intervals incorporate the between-study variance and 

represent the range of future study results.21,22,23,24

The aforementioned approaches are based on either the CE or RE model. The CE model 

produces CIs with poor coverage probabilities when studies have heterogeneous effect 

sizes.25 On the other hand, the estimate of the overall effect size produced by the RE model 

may be more biased compared to that of the CE model in the presence of publication bias 

or small-study effects.26 Alternative methods, which are neither the conventional CE nor 

RE model, have been proposed.26,27,28,29 These methods use the CE model to yield a point 

estimate, obtaining robustness to publication bias, and use the RE model to compute its CI 

for maintaining a nominal coverage probability.

We propose a novel penalized method to naturally balance between the CE model and 

RE model. The benefit of penalized likelihood has been extensively studied and applied 

in high-dimensional data analysis to control model complexity and reduce variances of 

parameter estimates.30,31 In the context of linear regression, when the penalty on regression 

coefficients increases, estimates of small coefficients shrink toward 0, removing nuisance 

variables and achieving variable selection. This article considers penalty terms for the 

between-study variance in a meta-analysis to select an optimal estimate. When no penalty 

is applied to the between-study variance, the proposed method is identical to the RE model. 

When the penalty is large enough, the estimated between-study variance shrinks toward 0, 

and the proposed method reduces to the CE model. Therefore, the new method pursues 
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a trade-off between the conventional CE and RE models. It is useful in the presence of 

outlying studies that may lead to an overestimation of between-study variance.

This article is organized as follows. Section 2 presents four meta-analyses with and without 

potential outlying studies. Section 3 presents a brief review of conventional methods to 

assess heterogeneity, introduces and illustrates the penalization methods, and provides loss 

functions for selecting an optimal estimate. In Section 4, we evaluate the performance of the 

proposed and existing methods, and Section 5 applies these methods to the four examples of 

meta-analyses presented in Section 2. Section 6 closes with a brief discussion.

2 | EXAMPLES

This section presents four real meta-analyses, all of which are publicly available in the 

Cochrane Library. The first meta-analysis, consisting of 21 studies, was reported by 

Bohren et al.32 to investigate the effects of continuous, one-to-one intrapartum support 

on spontaneous vaginal births, compared with usual care. The second meta-analysis was 

reported by Storebø et al.33 to assess the effect of methylphenidate on serious adverse events 

for children and adolescents with attention deficit hyperactivity disorder; it included a total 

of 20 studies. The third meta-analysis, also consisting of 20 studies, was reported by Carless 

et al.34 to assess the efficacy of platelet-rich-plasmapheresis in reducing peri-operative 

allogeneic red blood cell transfusion in cardiac surgery. The fourth meta-analysis, consisting 

of 53 studies, was conducted by Bjelakovic et al.35 to assess beneficial and harmful effects 

of vitamin D supplementation for the prevention of mortality in healthy adults and adults in 

a stable phase of disease. The second meta-analysis measured treatment effects using risk 

ratios (RRs); the remaining three meta-analyses all used odds ratios (ORs). Both RRs and 

ORs were analyzed on a logarithmic scale.

Figure 1 presents forest plots of these four meta-analyses, which present their study-specific 

observed effect sizes and their 95% CIs. They suggest high between-study variability among 

studies, both in magnitude and direction. For example, in the first meta-analysis, study 18 

has a wide 95% CI, which does not overlap with the CIs of the overall OR produced by both 

the CE and RE models. Similarly, in the second meta-analysis, the 95% CI of study 16 does 

not overlap with the CIs of the overall RR produced by both the CE and RE models. The 

fourth meta-analysis perhaps contains the most heterogeneous studies among the four case 

studies; more than 10 studies’ CIs do not overlap with the CIs of the overall OR produced by 

both the CE and RE models.

To detect potential outliers, we apply diagnostic procedures to the four meta-analyses under 

both CE and RE settings.36,37 These procedures are based on the study-specific standardized 

residuals, which are expected to be approximately normally distributed when no outliers 

are present. Studies with standardized residuals larger than 3 in absolute magnitude may be 

considered outliers. Figure 2 shows plots of standardized residuals of the four meta-analyses. 

In Figure 2(a), the standardized residual of study 4 is less than −3 under both CE and RE 

settings; study 18’s standardized residual is greater than 3 under both settings. These two 

studies might cause the between-study variance to be overestimated. The p-value of the Q 
test is 0.119 after excluding studies 4 and 18, whereas the p-value is 0.001 in the original 
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dataset. In Figure 2(b), the standardized residual of study 5 is less than −3 under both CE 

and RE settings; study 16’s standardized residual is greater than 3 under both settings. The 

p-value of the Q test is 0.697 after excluding studies 5 and 16, whereas the p-value is far less 

than 0.001 in the original dataset. Figure 2(c) indicates two outliers identified under the CE 

setting but no outliers under the RE setting in the third meta-analysis. Figure 2(d) indicates 

eight outliers identified under the CE setting but no outliers under the RE setting.

3 | METHODS

3.1 | Existing methods

Suppose a meta-analysis collects n independent studies. Let μi be the true effect size in study 

i (i = 1, …, n). Each study reports an estimate of the effect size and its sample variance, 

denoted by yi and si2, respectively. These data are commonly modeled as yi N μi, si2 . 

Although si2 is subject to sampling error, it is usually treated as a fixed, known value. This 

assumption is generally valid if each study’s sample size is large. If study-specific true effect 

sizes are assumed μi
 iid N μ, τ2 , this is the RE model, where μ is the overall effect size and 

τ2 is the between-study variance. If τ2 = 0 and thus μi = μ for all studies, this implies that 

studies are homogeneous and the RE model is reduced to the CE model.

The Q statistic is widely used to test for the homogeneity among the studies (i.e., H0 : τ2 

= 0). Specifically, Q = ∑i = 1
n wi yi − y 2, and it approximately follows a χn − 1

2  distribution 

under the null hypothesis. Here, wi = 1/si2 and y = ∑i = 1
n wiyi/∑i = 1

n wi. If the studies are 

assumed to be heterogeneous, it is critical to estimate the between-study variance τ2. 

Various estimators of τ2 are available. A popular choice is the method-of-moments (MOM) 

estimator.10 The MOM estimator performs well when τ2 is small, but it can underestimate 

the true heterogeneity when τ2 is large and the number of studies is small, leading to 

substantial bias.38,39,40 Several alternative estimators, such as those based on the maximum 

likelihood (ML) and the restricted maximum likelihood (REML), may be suitable alternative 

choices.41,42

3.2 | Penalizing the between-study variance

We propose a new approach to estimating the overall effect size in a meta-analysis by 

penalizing the between-study variance when the heterogeneity is overestimated. Marginally, 

the RE model yields yi N μ, si2 + τ2 , and its log-likelihood is

ℓ μ, τ2 = − 1
2 ∑

i = 1

n
log si2 + τ2 +

yi − μ 2

si2 + τ2 + C,

where C is a constant. The ML estimates of μ and τ2 can be obtained by maximizing ℓ(μ, τ2), 

or equivalently,
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μML, τML
2 = argmin

μ, τ2 ≥ 0
∑
i = 1

n
log si2 + τ2 + yi − μ 2

si2 + τ2 . (1)

In the past two decades, penalization methods have been rapidly developed for variable 

selection in high-dimensional data analysis to control model complexity and reduce 

variances of parameter estimates. Such methods aim at removing nuisance variables by 

applying various penalty functions to shrink their regression coefficients toward 0. In 

the context of mixed-effects models, Bondell et al.43 use penalization methods in linear 

models for simultaneous selecting fixed and random effects; Ibrahim et al.44 extend them to 

generalized linear models.

Borrowing the idea from the penalization methods, we employ a penalty term on the 

between-study variance τ2 in the setting of meta-analysis. The penalty term increases with 

τ2. Specifically, we consider the following optimization problem:

μ(λ), τ2(λ) = argmin
μ, τ2 ≥ 0

∑
i = 1

n
log si2 + τ2 + yi − μ 2

si2 + τ2 + λp τ2 , (2)

where p(τ2) is a penalty function for τ2 and λ ≥ 0 is a tuning parameter that controls the 

penalty strength. Generally, the penalty function should have the minimum value at τ2 = 0, 

thus the estimate τ2(λ) shrinks toward 0 when λ is large. Different penalty functions may be 

used, which in turn may result in different estimates. Regardless of the choice of the penalty 

function, the estimated between-study variance is expected to have a decreasing trend as 

λ increases. Unlike the penalty function used for variable selection, we aim to apply the 

penalty function in a meta-analysis to reduce the overestimation of heterogeneity. In this 

sense, the choice of the penalty function for a meta-analysis might play a less critical role 

as in the context of variable selection; see more details in Section 3.4. This article primarily 

considers p(τ2) = τ2 to illustrate the penalization methods.

Using the technique of profile likelihood by taking the target function’s derivative in 

Equation (2) with respect to μ for a given τ2,45 the optimization is achieved at

μ τ2 =
∑i = 1

n yi/ si2 + τ2

∑i = 1
n 1/ si2 + τ2

.

The bivariate optimization problem is reduced to a univariate minimization problem:

τ2(λ) = argmin
τ2 ≥ 0

∑
i = 1

n
log si2 + τ2 + yi − μ τ2 2

si2 + τ2 + λp τ2 ;

μ(λ) = μ τ2(λ) =
∑i = 1

n yi/ si2 + τ2(λ)
∑i = 1

n 1/ si2 + τ2(λ)
.

(3)
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When λ = 0, the minimization problem in Equation (2) is equivalent to that in Equation (1), 

so the penalized-likelihood method is identical to the conventional RE model. By contrast, 

it can be shown that a sufficiently large λ produces the estimated between-study variance as 

0, leading to the conventional CE model; see Appendix A.1. Therefore, a moderate tuning 

parameter λ corresponds to a trade-off between the CE and RE models.

3.3 | Selection of the tuning parameter λ

As different tuning parameters lead to different estimates of μ(λ) and τ2(λ), it is important 

to select the optimal λ among a set of candidate values. We perform the cross-validation 

process and construct a loss function of λ to measure the performance of specific λ values. 

The λ corresponding to the smallest loss is considered optimal.

Because λ ∈ [0, +∞) does not have an upper bound in theory, meta-analysts may only 

consider a finite number of candidate values, calculate their respective loss functions, 

and select the corresponding optimal λ. If the range of candidate values is too narrow, 

the true optimal λ may be beyond the constructed range and thus is missed by the cross-

validation. On the other hand, if the range is too wide, all candidate values may have large 

gaps, producing the possibility that the optimal λ is within a certain gap and away from 

the selected candidate values. Therefore, to implement the cross-validation in practice, a 

reasonable range of potential λ values is required. Appendix A.1 provides a threshold, 

denoted by λmax, based on the penalty function p(τ2) = τ2. For all λ > λmax, the estimated 

between-study variance is 0. Consequently, we may select a certain number of candidate 

values (say, 100) from the range [0, λmax] for the tuning parameter.

For a set of candidate tuning parameters, the leave-one-study-out (i.e., n-fold) cross-

validation is used to obtain the loss function, defined as

L(λ) = 1
n ∑

i = 1

n yi − μ( − i)(λ) 2

si2 + τ2 + Var μ( − i)(λ)

1/2
. (4)

The subscript (−i) indicates that study i is removed. The loss function is essentially the 

square root of the average of study-specific squared standardized residuals. In each element 

of the summation, the numerator represents study i’s residual. The overall effect size is 

estimated using all studies except study i; if study i is a potential outlier, this procedure 

removes its potential impact on the overall effect size estimate. The denominator in Equation 

(4) is the sum of two variance components: the marginal variance of yi and the variance 

of μ( − i)(λ). The two variance components are based on study i and the remaining n − 1 

studies accordingly; they are statistically independent. Because each study’s standardized 

residual approximately follows the standard normal distribution under the true model, the 

loss function is expected to be close to 1.

More specifically, for a given λ and using all data except that from study i, the estimated 

between-study variance, τ ( − i)
2 (λ), can be obtained from Equation (3), so the overall effect 

size is estimated as:
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μ( − i)(λ) =
∑j ≠ iyj/ sj2 + τ( − i)

2 (λ)

∑j ≠ i1/ sj2 + τ( − i)
2 (λ)

.

To standardize the study-specific residuals and obtain the loss function in Equation (4), we 

also need the variance of the estimated overall effect size, excluding study i:

Var μ( − i)(λ) =
∑j ≠ i sj2 + τ2 / sj2 + τ ( − i)

2 (λ) 2

∑j ≠ i1/ sj2 + τ ( − i)
2 (λ) 2 . (5)

The loss function in Equation (4) depends on the true value of τ2, which needs to be 

properly estimated in practice. Three options may be used for τ2, including τ2 = 0 under 

the CE model, τ2 = τ ( − i)
2 (λ) using the penalized between-study variance estimate, and 

τ2 = τRE( − i)
2  under the RE model.

The first option of τ2 = 0 may not be practical because the studies in many meta-analyses are 

expected to be heterogeneous; it is not advisable to simply ignore τ2 in the loss function. If 

we used the second option of τ2 = τ ( − i)
2 (λ), the variance in Equation (5) is estimated as

Var μ( − i)(λ) = ∑
j ≠ i

1/ sj2 + τ ( − i)
2 (λ)

−1
, (6)

which leads to the loss function

L(λ) = 1
n ∑

i = 1

n yi − μ( − i)(λ) 2

si2 + τ ( − i)
2 (λ) + ∑j ≠ i1/ sj2 + τ ( − i)

2 (λ) −1

1/2

. (7)

This loss function might also not be a suitable choice. Its denominator increases as τ ( − i)
2 (λ)

increases, so the loss function shrinks toward 0. Therefore, this loss function may favor a 

choice of λ that leads to large values of τ ( − i)
2 (λ).

Consequently, we may prefer the third option of τ2 = τRE( − i)
2  to construct the loss function, 

due to the conservative quality of the RE model. There are many options to compute the 

RE estimate of τ2. This article uses the ML estimator for consistency with the convention of 

penalization methods. Using data without study i, the ML estimator is

τRE( − i)
2 = argmin

τ2 ≥ 0
∑

j ≠ i
log sj2 + τ2 +

yj − μ( − i) τ2 2

sj2 + τ2 ,

where μ( − i) τ2 = ∑j ≠ iyj/ sj2 + τ2 / ∑j ≠ i1/ sj2 + τ2 .
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Unlike the second option of τ2 = τ ( − i)
2 (λ), the estimate τRE( − i)

2  does not depend on λ. As 

a result, the loss function bypasses a trivial decreasing trend with respect to the estimated 

between-study variance. Specifically, using the estimated between-study variance under the 

RE model yields the loss function as follows:

L(λ) = 1
n ∑

i = 1

n yi − μ( − i)(λ) 2

si2 + τRE( − i)
2 +

∑j ≠ i sj2 + τRE( − i)
2 / sj2 + τ( − i)

2 (λ)
2

∑j ≠ i1/ sj2 + τ( − i)
2 (λ)

2

1/2

. (8)

3.4 | Tuning the between-study standard deviation

The above procedures focus on tuning the parameter λ to control the penalty strength 

for the between-study variance. As mentioned earlier, though λ ∈ [0, +∞), the range 

of the candidate values may effectively be restricted to the bounded set λ ∈ [0, λmax]. 

Nevertheless, the relationship between the tuning parameter λ and the resulting between-

study variance is unclear and may lack interpretability. For example, when performing 

the cross-validation described in Section 3.3, withdrawing studies from the meta-analysis 

could lead to different τ ( − i)
2 (λ) estimates. Tuning λ also requires a considerable amount of 

computation time if the number of studies n in a meta-analysis is large. For each candidate 

value of λ, the optimization in Equation (3) needs to be implemented for each i in the 

cross-validation process to obtain μ( − i)(λ) and τ ( − i)
2 (λ).

Alternatively, for the purpose of shrinking the potentially overestimated between-study 

heterogeneity, we may directly treat the between-study SD, τ, as the tuning parameter. A 

set of candidate values of τ are considered, and the value that produces the minimum loss 

function is selected. Compared with tuning λ from the perspective of penalized likelihood, 

tuning τ may be more straightforward and intuitive from the practical perspective of meta-

analyses. By doing so, the computation time could also be greatly reduced as the candidate 

values for τ can be directly applied to calculate the loss function without performing the 

optimization as in Equation (3). In addition, the candidate values for τ can be naturally 

chosen from [0, τRE], with the lower and upper bounds corresponding to the CE and RE 

models, respectively. To distinguish these candidate values from the true between-study SD, 

we introduce the notation of τt, where the subscript “t” denotes tuning.

The loss functions with respect to each τt can be similarly defined as in Section 3.3. 

Specifically, by performing leave-one-study-out cross-validation and tuning τ, the loss 

function corresponding to Equation (8) is
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L τt = 1
n ∑

i = 1

n yi − μ( − i) τt
2

si2 + τRE( − i)
2 +

∑j ≠ i sj2 + τRE −i
2 / sj2 + τt2

2

∑j ≠ i1/ sj2 + τt2
2

1/2

, (9)

where the overall effect size estimate (excluding study i) is

μ( − i) τt =
∑j ≠ iyj/ sj2 + τt2

∑j ≠ i1/ sj2 + τt2
.

Similar to the loss function by tuning λ, the tuning parameter τt is used primarily for 

weighting the overall effect size; the RE estimate, τRE( − i)
2 , is used to derive the variance of 

study-specific residuals for standardization. One may argue that the tuning parameter τt may 

also be used to derive the residuals’ variances, leading to the following loss function that 

corresponds to Equation (7) for tuning λ:

L τt = 1
n ∑

i = 1

n yi − μ( − i) τt
2

si2 + τt2 + ∑j ≠ i1/ sj2 + τt2
−1

1
2

. (10)

Again, this loss function may not be proper due to the following reasons. As τt increases 

toward +∞, the denominator in Equation (10) also increases toward +∞, while the 

numerator is bounded because μ( − i) τt  converges to the arithmetic mean of yj (j ≠ i). 

Consequently, it is trivial to find an extremely large τt that has a fairly small loss. On the 

other hand, for the loss function in Equation (9), Appendix A.2 shows that it does not have a 

trivial trend as τt changes; as a result, our analyses will use this loss function.

3.5 | Illustration

Sections 3.2–3.4 described the new methods to penalize exaggerated heterogeneity; two 

optional tuning parameters are available for this method, namely λ and τ. Loss functions for 

λ and τ are based on Equations (8) and (9), respectively. The overall effect size estimator of 

the penalization method is

μ =
∑i = 1

n yi/ si2 + τ2

∑i = 1
n 1/ si2 + τ2 .

We propose to estimate its variance as

Var(μ) =
∑i = 1

n si2 + τRE
2 / si2 + τ2 2

∑i = 1
n 1/ si2 + τ2 2 ,
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where τ = τ(λ) for tuning λ and τ = τt for tuning τ. In other words, the RE model is used 

to estimate τ2 for the study-specific variances to produce CIs with satisfactory coverage 

probabilities (detailed below), while the τ2 estimated by the penalization method, i.e., τ2(λ)
or τt2, is used to weight the study-specific variances.

Given a statistical significance level α, a Wald-type (1 − α)% CI of the overall effect size 

can be readily constructed for μ based on the equations above. The standard error (SE) of 

the RE model may be too small to account for potential outlying studies. Appendix A.3 

shows that the SE of the overall effect size estimate of the penalization method by tuning λ 
or τ could be greater than that of the RE model. The corresponding CIs of the penalization 

methods may consequently have better coverage probabilities compared to those under the 

RE model, especially in the presence of outlying studies.

Recall that Section 3.4 presented the rationale for tuning λ from the perspective of penalized 

likelihood may be achieved by tuning τ, which may be more intuitive and computationally 

efficient from the perspective of meta-analysis. Using the first meta-analysis in Section 2, we 

illustrate the relationship among tuning λ, tuning τ, and their losses.

Figures 3(a)–3(c) show results of the penalization method by tuning λ. The transformation 

log(λ + 1) is used in these plots to better visualize the tuning parameter. In Figure 3(a), 

the estimated between-study SD τ  shrinks toward 0 as λ increases. When λ is larger than a 

user-specified threshold, τ = 0. This trend is consistent with our theoretical results provided 

in Appendix A.1. Because there is a monotone relationship between λ and τ  in this example, 

the loss function in terms of λ, shown in Figure 3(b), has a similar trend to that in terms of τ
in Figure 3(c). The left/right tail of the loss function of λ is mapped to the right/left tail of τ , 

with the optimal value of λ corresponding to that of τ .

Figure 3(d) shows the loss function by tuning τ. Compared with Figure 3(c), the loss 

function changes when tuning τ instead of λ, but the general trend is similar. As τt 

increases, the loss decreases to a minimum, followed by an increase. The optimal τt = 0.102, 

achieved by the loss function in Figure 3(d), is smaller than the estimated between-study SD 

of 0.142 that corresponds to the optimal λ when tuning λ in Figure 3(c).

4 | SIMULATION STUDY

4.1 | Simulation settings

We conducted a simulation study to compare the performance of the aforementioned 

approaches: the conventional CE and RE models; the penalization method by tuning λ; 

and the penalization method by tuning τ. Statistical performance was evaluated in terms of 

bias, mean squared error (MSE), and coverage probability of 95% CI. For each scenario 

described below, 5,000 replicates of meta-analyses were independently simulated.

The number of studies in each simulated meta-analysis was fixed as n = 30, and the within-

study SE si was drawn from U(0.1, 1). Without loss of generality, the true overall effect size 

was μ = 0. The between-study SD was set to τ = 0, 0.5, 1, or 2. The true study-specific 
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effect sizes were drawn from μi
 iid N μ, τ2 , and the observed effect sizes were drawn from 

yi N μi, si2 .

Among the 30 studies in each simulated meta-analysis, m studies were modified to be 

outliers, and the number of outliers m was set to be 0, 1, …, or 6. Note that the marginal 

SD of yi is si2 + τ2 and the upper bound of si2 was 1; we added a discrepancy of 3 12 + τ2

to those m studies, creating m outliers. With these seven choices of m, the proportion of 

outliers ranged from 0% to 20%. The penalization methods and the conventional CE and RE 

models were applied to each simulated meta-analysis to estimate the overall effect size and 

its 95% CI.

We additionally conducted more simulation studies to investigate the performance of the 

penalization methods under a broader range of settings, including meta-analyses with low 

to moderate heterogeneity but without outliers and meta-analyses with random effects 

following scaled t5 distributions. See the details in Appendix B.

4.2 | Simulation results

Table 1 presents the simulation results. When τ = 0 and m = 0, the CE model was the true 

model. In this scenario, the 95% CI coverage probability was fairly close to the nominal 

level, while all four methods produced the estimated overall effect size with nearly the same 

biases and MSEs. As m increased, due to the impact of the outlying studies, the CE model 

produced larger biases and MSEs than the RE model, as well as lower 95% CI coverage 

probabilities. The penalization methods, both by tuning λ and by tuning τ, performed 

better than the RE model with noticeably smaller biases and MSEs and higher 95% CI 

coverage probabilities. When τ = 0.5, each set of simulated studies in a meta-analysis were 

heterogeneous. As expected, in these instances, the RE model outperformed the CE model 

with respect to MSEs. When m was not large (e.g., 1 or 2), the RE model also slightly 

outperformed the penalization methods with smaller MSEs. As m increased, biases and 

MSEs produced by the penalization methods became smaller than those by the CE and RE 

models.

When the between-study heterogeneity was increased to τ = 1, the MSE produced by the 

RE model was generally smaller than those by the penalization methods. Nevertheless, 

the penalization methods generally outperformed both the CE and RE models with respect 

to biases and 95% CI coverage probabilities. When τ = 2 (i.e., substantial heterogeneity 

among the simulated studies within a meta-analysis), the CE model performed poorly; its 

MSEs were much larger than those for other methods, and its 95% CI coverage probabilities 

were roughly 10%. The RE model continued to have smaller MSEs than the penalization 

methods, possibly due to the variability of selecting the optimal tuning parameters when 

performing the penalization methods via the cross-validation procedure. Despite this, the 

coverage probabilities of the penalization methods were much higher than those for the RE 

model. Although biases and MSEs between the RE model and the penalization methods 

were close when τ and m were large (e.g., τ = 1, m = 6), subtle differences indicated that, 

compared with the RE model, the overall effect size estimates of the penalization methods 

were less biased and their SEs were larger. Therefore, the coverage probabilities of the 
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penalization methods were noticeably higher than that of the RE model in all simulation 

scenarios. Results for the penalization methods by tuning λ were generally similar to those 

when tuning τ. Except when studies in the meta-analysis were truly homogeneous (i.e., τ = 

0), tuning λ performed slightly better than tuning τ.

The penalization methods produced the estimated overall effect sizes with generally small 

biases and MSEs. This is due to the penalization methods incorporating features from both 

the CE and RE models by achieving a compromise between these two meta-analytic models. 

When τ was large, it dominated the discrepancies among studies, diminishing the impact of 

outlying studies. Consequently, the RE model might be favorable in such cases and generally 

produced smaller MSEs than the penalization methods. In addition, because the penalization 

methods used different weighting schemes than the CE and RE models, which reduced the 

influence of outliers on the variance of the estimated overall effect size, the respective 95% 

CI can be considered conservative, and its coverage probability was higher than those for 

both the CE and RE models.

5 | EMPIRICAL DATA ANALYSES

We applied the proposed method to the four examples in Section 2 to further illustrate 

the real-world performance of the penalization methods. Because the performance of the 

penalization methods may depend on the between-study distribution in meta-analyses, we 

examined the normality assumption for the four examples; Appendix C presents the details. 

Table 2 presents the summary results of the four examples.

For the meta-analysis by Bohren et al.,32 the CE model estimated the overall OR as 1.18 

with 95% CI (1.09, 1.26), and the RE model estimated it as 1.33 with 95% CI (1.16, 1.52) 

and τRE = 0.17. The I2 statistic was 57% with 95% CI (28%, 93%),46,39 implying moderate 

or substantial heterogeneity.47,2 Figures 3(c) and 3(d) have shown loss functions for the 

penalization methods. Losses were minimized between 0 and τRE, thus the penalization 

methods favored neither the CE nor RE models. When tuning λ, the overall OR estimate 

was 1.31 with 95% CI (1.14, 1.49). When tuning τ, the overall OR estimate was 1.27 with 

95% CI (1.11, 1.46).

For the meta-analysis reported by Storebø et al.,33 the CE model estimated the overall RR 

as 1.20 with 95% CI (1.11, 1.28), and the RE model estimated it as 1.29 with 95% CI 

(1.10, 1.51) and τRE = 0.27. The I2 statistic was 73% with 95% CI (47%, 88%), indicating 

substantial heterogeneity. Figures 4(a) and 4(b) show the loss functions for the penalization 

methods by tuning λ and τ, respectively. Similar to the first example, losses were minimized 

between 0 and τRE, and the penalization methods favored neither the CE nor RE models. 

When tuning λ, the overall RR was estimated as 1.26 with 95% CI (1.07, 1.48) and τ = 0.16. 

When tuning τ, the penalization for the between-study variance was heavier. The overall RR 

estimate was 1.22 with 95% CI (1.03, 1.44) and τt = 0.08.

For the meta-analysis by Carless et al.,34 the CE model yielded the estimated overall OR 

of 0.46 with 95% CI (0.37, 0.58). The RE model yielded a smaller OR estimate 0.35 with 

95% CI (0.20, 0.63) and τRE = 1.01. The RE model seemed to be preferred based on Figure 
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2(c) because there were no outliers under the RE setting. However, Figures 4(c) and 4(d) 

present the loss functions of the penalization methods by tuning both λ and τ, respectively, 

where the minimum losses were achieved at τ = 0 and τt = 0, both corresponding to the CE 

model. These might not be consistent with the result of I2 = 69% with 95% CI (58%, 92%), 

which implied substantial heterogeneity. The inconsistency was likely due to the impact of 

outlying studies on I2.15 Additionally, the penalization methods estimated the overall OR as 

0.46 with a 95% CI (0.22, 0.98). The point estimate was identical to the CE estimate because 

the optimal between-study SD used for weighting was 0. However, the 95% CI was wider 

than that of the CE model because the penalization methods incorporated the RE setting to 

construct the CI.

Last, for the meta-analysis by Bjelakovic et al.,35 the CE model estimated the overall OR 

as 0.50 with 95% CI (0.48, 0.52), and the RE model estimated it as 0.31 with 95% CI 

(0.23, 0.42) and τRE = 0.91. The I2 statistic was 96% with 95% CI (94%, 98%), indicating 

considerable heterogeneity. Figures 4(e) and 4(f) show loss functions. In contrary to the third 

example above, losses were minimized at τRE for both penalization methods, so the RE 

model was favored. The estimated overall ORs of the penalization methods were identical to 

that of the RE model, namely 0.31 with 95% CI (0.23, 0.42). This identical conclusion was 

consistent with the implication from Figure 2(d), where the CE setting led to many outliers 

but the RE setting did not lead to an outlier.

6 | DISCUSSION

We have proposed penalization methods to estimate the overall effect size and its 95% CI in 

a meta-analysis. Simulation studies have shown that the penalization methods generally 

produced estimates with less biases and smaller MSEs and higher 95% CI coverage 

probabilities than the conventional CE and RE models in the presence of outliers. In 

practice, outliers frequently appear in meta-analyses and may have a substantial impact on 

meta-analytic results.15 It is inappropriate to simply remove outliers from meta-analyses 

without solid justification (e.g., evident errors and poor study designs), because such 

removal may lead to research waste and possible selection bias. The penalization methods 

provide a novel way to reduce the impact of outliers in meta-analyses by penalizing 

potentially overestimated heterogeneity and achieving a compromise between the CE and 

RE models.

Although Section 3.5 and the simulation results showed that the penalization method of 

tuning λ performs similarly to the penalization method of tuning τ, this may not always be 

true. When the tuning parameter is λ, from Equations (3) and (8), a single value of estimated 

τ may correspond to multiple loss values (e.g., all values of λ > λmax lead to τ = 0, but they 

could have different loss values). Nevertheless, there is a deterministic relationship between 

τt and the corresponding loss from Equation (9). Appendix D provides two additional 

examples, in which different conclusions could be obtained by tuning different parameters. 

Specifically, in one example, tuning λ yields an estimate between the CE and RE estimates, 

while tuning τ yields the CE estimate. In another example, tuning λ yields the RE estimate, 

while tuning τ yields an estimate between the CE and RE estimates.
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The penalization methods may have several limitations. First, they are motivated to deal 

with the issue when between-study heterogeneity is overestimated (e.g., due to outliers). 

However, the between-study heterogeneity can be underestimated in some cases. For 

example, in the presence of publication bias or small-study effects, studies with unfavorable 

results in a certain direction may be suppressed, leading to a narrower range of study 

results and thus underestimated heterogeneity compared to a “complete” set of studies.48,49 

As a future project, we may extend the penalization methods to handle this problem of 

underestimated heterogeneity by choosing the tuning parameter τt from a wider range of 

candidate values than [0, τRE]. Second, the penalization methods were built on the ML 

estimation. The ML performance, however, has been shown to be slightly inferior to some 

alternative estimators.39,40 The penalization methods may be extended to other estimation 

procedures, such as REML. It will be interesting to explore more robust heterogeneity 

estimators that could improve the penalization methods. Third, as in many conventional 

meta-analysis methods, this article treats within-study sample variances as fixed, known 

values, while they are subject to sampling error in practice and may affect meta-analytic 

results.50 One option would be to extend the penalization methods using generalized linear 

mixed models for binary outcome measures.51,52

In addition, this article has focused on the conventional univariate meta-analysis. 

However, advanced methods have been developed to simultaneously analyze multivariate 

outcomes and multiple treatments to improve the effect size estimates and allow indirect 

comparisons.53,54,55,56,57 The penalization methods may also be extended to multivariate 

meta-analyses by tuning the between-study variances of the multiple endpoints. Moreover, 

we developed the penalization methods under the framework of frequentist meta-analyses. 

From the Bayesian perspective, penalizing the between-study variance is equivalent to 

assigning a prior distribution to the variance component τ2 or τ. Meta-analysts may use 

informative priors based on external evidence to aid the estimation of the between-study 

variance, which may be particularly helpful for meta-analyses with a relatively small number 

of studies.58,59
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FIGURE 1. 
Forest plots of the four examples of meta-analyses.
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FIGURE 2. 
Plots of study-specific standardized residuals of the four examples of meta-analyses under 

the common-effect (denoted by filled triangles) and random-effects (denoted by unfilled 

dots) settings. The plus signs represent truncated standardized residuals whose absolute 

values are greater than 5.
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FIGURE 3. 
Illustration of the penalization methods using the meta-analysis by Bohren et al.32 (a) The 

estimated between-study standard deviation against the tuning parameter λ for the penalized 

likelihood. (b) The loss function against the tuning parameter λ. (c) The loss function 

against the estimated between-study standard deviation by tuning λ. (d) The loss function 

against the tuning parameter τt. Each vertical dashed line in panels (b)–(d) represents the 

optimal value that minimizes the loss function; the horizontal and vertical dashed lines in 

panel (a) correspond to the optimal values from panels (b) and (c).
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FIGURE 4. 
Loss functions for the meta-analyses by Storebø et al.33 (upper panels), by Carless et al.34 

(middle panels), and by Bjelakovic et al.35 (lower panels). The left panels show the loss 

functions by tuning λ against the estimated between-study standard deviation; the right 

panels show the loss functions by tuning τ against τt. Each vertical dashed line represents 

the optimal value that yields the minimum loss.
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TABLE 1

Biases, mean squared errors (MSEs), and 95% confidence interval coverage probabilities (CPs) in percentage 

for simulated meta-analyses using the four methods: common-effect model (CE); random-effects model (RE); 

penalization method for the random-effects model by tuning λ (PRE-λ); and penalization method for the 

random-effects model by tuning the between-study standard deviation (PRE-τ).

No. of outliers CE RE PRE-λ PRE-τ

Bias MSE CP Bias MSE CP Bias MSE CP Bias MSE CP

τ = 0:

0 0.001 0.004 95.1 0.002 0.004 95.7 0.001 0.004 95.9 0.001 0.004 95.8

1 0.103 0.040 70.2 0.081 0.015 95.7 0.064 0.011 97.2 0.077 0.015 96.0

2 0.205 0.094 45.8 0.184 0.045 90.4 0.149 0.036 95.7 0.176 0.045 92.0

3 0.309 0.169 25.9 0.294 0.098 77.2 0.244 0.081 89.8 0.272 0.092 84.5

4 0.409 0.259 13.2 0.399 0.170 54.2 0.345 0.147 80.2 0.361 0.154 76.2

5 0.507 0.365 5.8 0.501 0.262 28.7 0.451 0.237 68.9 0.459 0.241 67.2

6 0.608 0.493 2.3 0.603 0.374 10.3 0.557 0.349 59.5 0.561 0.350 58.5

τ = 0.5:

0 −0.003 0.031 49.9 −0.001 0.016 92.7 −0.002 0.020 94.2 −0.002 0.019 94.3

1 0.107 0.071 40.4 0.105 0.029 94.2 0.103 0.037 96.3 0.106 0.037 96.5

2 0.217 0.131 32.0 0.218 0.066 89.5 0.199 0.071 94.9 0.202 0.071 94.9

3 0.331 0.221 22.8 0.333 0.130 78.7 0.300 0.127 90.1 0.302 0.127 90.3

4 0.443 0.333 15.7 0.446 0.218 60.2 0.406 0.208 82.5 0.406 0.207 82.8

5 0.555 0.466 10.1 0.559 0.331 39.0 0.518 0.317 72.5 0.518 0.315 73.3

6 0.666 0.621 5.9 0.671 0.470 19.5 0.630 0.450 63.1 0.630 0.448 64.2

τ = 1:

0 −0.006 0.115 28.1 0.001 0.043 93.5 −0.002 0.057 96.5 −0.002 0.057 96.5

1 0.133 0.177 24.1 0.141 0.064 93.8 0.138 0.089 97.4 0.136 0.087 97.7

2 0.272 0.272 20.0 0.283 0.124 88.9 0.266 0.149 94.9 0.264 0.146 95.5

3 0.417 0.414 16.3 0.425 0.225 79.8 0.398 0.244 91.0 0.396 0.241 91.6

4 0.558 0.593 11.8 0.567 0.366 65.4 0.532 0.378 85.0 0.530 0.373 85.9

5 0.700 0.804 8.5 0.709 0.547 47.2 0.672 0.552 76.9 0.669 0.547 78.0

6 0.840 1.051 6.0 0.851 0.768 29.3 0.811 0.764 67.9 0.807 0.757 69.4

τ = 2:

0 −0.013 0.448 14.4 0.003 0.144 93.8 −0.001 0.207 97.3 −0.002 0.205 97.3

1 0.208 0.603 12.9 0.227 0.195 93.5 0.216 0.279 97.4 0.213 0.276 97.6

2 0.428 0.839 10.6 0.451 0.347 88.9 0.429 0.439 95.5 0.423 0.432 95.8

3 0.656 1.190 9.4 0.675 0.599 80.9 0.643 0.690 91.9 0.638 0.682 92.4

4 0.879 1.638 7.3 0.898 0.951 69.2 0.856 1.032 87.0 0.848 1.016 88.0

5 1.103 2.162 5.7 1.122 1.403 53.3 1.076 1.469 80.4 1.070 1.452 81.4

6 1.326 2.778 4.3 1.346 1.955 36.0 1.299 2.014 71.8 1.294 1.994 72.9
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TABLE 2

Summary results of the four examples.

Meta-analysis No. of 
studies

I2 (95% CI) No. of outliers Overall effect size (95% CI)

CE RE CE RE PRE-λ PRE-τ

Bohren et al.32 21 57% (28%, 
93%)

3 2 1.18 (1.09, 
1.26)

1.33 (1.16, 
1.52)

1.31 (1.14, 
1.49)

1.27 (1.11, 
1.46)

Storebø et al.33 20 73% (47%, 
88%)

2 2 1.20 (1.11, 
1.28)

1.29 (1.10, 
1.51)

1.26 (1.07, 
1.48)

1.22 (1.03, 
1.44)

Carless et al.34 20 69% (58%, 
92%)

2 0 0.46 (0.37, 
0.58)

0.35 (0.20, 
0.63)

0.46 (0.22, 
0.98)

0.46 (0.22, 
0.98)

Bjelakovic et al.35 53 96% (94%, 
98%)

8 0 0.50 (0.48, 
0.52)

0.31 (0.23, 
0.42)

0.31 (0.23, 
0.42)

0.31 (0.23, 
0.42)
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