
Open-Source Deep Learning-Based Automatic Segmentation of 
Mouse Schlemm’s Canal in Optical Coherence Tomography 
Images

Kevin C. Choy1, Guorong Li2, W. Daniel Stamer2,1, Sina Farsiu1,2

1Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States

2Department of Ophthalmology, Duke University, Durham, North Carolina, United States

Abstract

The purpose of this study was to develop an automatic deep learning-based approach and 

corresponding free, open-source software to perform segmentation of the Schlemm’s canal 

(SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes. A novel 

convolutional neural network (CNN) for semantic segmentation grounded in a U-Net architecture 

was developed by incorporating a late fusion scheme, multi-scale input image pyramid, dilated 

residual convolution blocks, and attention-gating. 163 pairs of intensity and speckle variance (SV) 

OCT B-scans acquired from 32 living mouse eyes were used for training, validation, and testing 

of this CNN model for segmentation of the SC lumen. The proposed model achieved a mean 

Dice Similarity Coefficient (DSC) of 0.694 ± 0.256 and median DSC of 0.791, while manual 

segmentation performed by a second expert grader achieved a mean and median DSC of 0.713 

± 0.209 and 0.763, respectively. This work presents the first automatic method for segmentation 

of the SC lumen in OCT images of living mouse eyes. The performance of the proposed model 

is comparable to the performance of a second human grader. Open-source automatic software 

for segmentation of the SC lumen is expected to accelerate experiments for studying treatment 

efficacy of new drugs affecting intraocular pressure and related diseases such as glaucoma, which 

present as changes in the SC area.
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1 Introduction

Glaucoma, a leading cause of irreversible blindness worldwide, is characterized by impaired 

outflow facility, which results in high intraocular pressure (IOP) (Brubaker, 2003). The 

secretion of aqueous humor into the eye and regulation of its outflow are physiologically 

important processes for IOP homeostasis and proper functioning of anterior eye tissues. 

Schlemm’s canal (SC) is a structure in the anterior segment of the eye and a part of the 

conventional outflow pathway which is responsible for the drainage of the majority of 

aqueous humor. Abnormal outflow resistance at the SC and trabecular meshwork (TM) 

interface, a critical region in regulating outflow and IOP, results in elevated IOP, a major 

risk factor in the progression of glaucoma (Gordon et al., 2002). Reduced cross-sectional 

area of SC has been observed at elevated IOPs (Kagemann et al., 2014). Further, SC in 

glaucomatous eyes has a significantly smaller cross-sectional area compared to healthy 

eyes (Allingham et al., 1996; Hong et al., 2013; Imamoglu et al., 2016; Wang et al., 

2012). In addition, changes in SC dimensions in living eyes have been used to predict TM 

biomechanical properties and outflow function (Li et al., 2019; Li et al., 2021; Wang et al., 

2017). Therefore, the size of the SC lumen can provide useful insight into the function and 

health of the conventional outflow pathway and serve as a biomarker for elevated IOP.

Spectral-domain (SD) optical coherence tomography (OCT) has been demonstrated to be 

an effective tool for visualizing changes of the SC lumen in vivo (Kagemann et al., 2010; 

Sarunic et al., 2008; Usui et al., 2011). In addition, OCT-angiography techniques such as 

speckle variance (SV) OCT can be used to visualize SC due to the presence of blood cells in 

the SC lumen (Li et al., 2014a). This method calculates the interframe variance of intensity 

between structural images, utilizing differences in the time-varying properties between fluids 

and non-moving tissue to create contrast (Mariampillai et al., 2008). OCT has been used to 

study the properties of SC in human and animal models (Ang et al., 2018). Xin et al. (2016) 

utilized OCT to measure dynamic pressure-dependent changes of SC in ex vivo human 

eyes. Huang et al. (2017) developed a three-dimensional model of circumferential aqueous 

humor outflow and an automated SC detection algorithm using SD-OCT in a living human 

eye. Daniel et al. (2018) measured SC cross-sectional area to study morphologic changes 

in aqueous outflow structures during accommodation in humans. Previous studies have also 

used OCT to monitor anatomical changes to SC due to canaloplasty and phacoemulsification 

(Fuest et al., 2016; Paulaviciute-Baikstiene et al., 2016; Zhao et al., 2016).

Previous work monitoring the SC lumen using in vivo OCT imaging in mouse eyes is of 

particular interest. Mice have several advantages for studying conventional outflow function: 

First, the conventional outflow pathway of mice is similar to that of humans in terms of 

anatomy, physiology, and pharmacology (Aihara et al., 2003; Boussommier-Calleja et al., 

2012; Lei et al., 2011; Li et al., 2014b; Millar et al., 2011). Second, mouse eyes can be 

cannulated to control aqueous humor content (e.g., drug concentration or contrast agent) or 

IOP level while imaging (Li et al., 2014a). Third, in terms of imaging advantages, mice 

have a thin nonpigmented sclera, large SC, and a small eye (enabling 360° visualization 

of outflow). Fourth, since aging is a major risk factor for glaucoma, the short lifespan 

of mice enables the study of outflow function in normal, aged, and diseased eyes. Li et 

al. (2019) used a mouse model to investigate the effects of rho-kinase inhibitors on the 
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perfusion of outflow tissues by monitoring the size of SC in OCT images. Additionally, 

Li et al. (2016) monitored the effects of ocular corticosteroid treatment, which can lead to 

steroid-induced glaucoma, on the cross-sectional area of the SC lumen in mice. Furthermore, 

Zhang et al. (2020) utilized visible-light OCT for visualization of the entire SC and limbal 

microvascular network in mice. Although analysis of SC can provide useful insight on 

intraocular hypertension and glaucoma, image segmentation is a current bottleneck. Manual 

segmentation of the SC lumen is time-consuming and also susceptible to inter-observer 

variability. There have been several attempts at automating the segmentation of SC in 

human eyes. Huang et al. (2017) used a Bayesian Ridge method on confocal laser scanning 

ophthalmoscopic images to approximate the location of SC as a starting point for a fuzzy 

hidden Markov Chain segmentation approach on OCT images. Tom et al. (2015) used a 

region-growing method for segmentation of SC in OCT images. Wang et al. (2020) used 

K-means, fuzzy C-means, and the level set method for segmentation of SC in ultrasound 

biomicroscopy (UBM) images. Yao et al. (2021) performed full circumferential imaging of 

the SC using swept-source OCT and semi-automatic segmentation using active contours. 

However, these algorithms which are based on classic machine learning techniques still 

require manual intervention, or are not evaluated on an adequate independent dataset, or 

do not provide delineation of the SC boundary. Also, none of these algorithms are directly 

applicable for the segmentation of the SC lumen in OCT images of living mouse eyes.

Recently, deep convolutional neural networks (CNNs) have achieved remarkable 

improvements in a wide range of computer vision tasks, including image classification, 

object detection, and segmentation (Long et al., 2015). Although deep learning-based 

methods have been widely utilized in many areas of ophthalmic image analysis (Cabrera 

DeBuc and Arthur, 2019; Devalla et al., 2018a; Fang et al., 2017a; Guo et al., 2020; Loo 

et al., 2020; Venhuizen et al., 2017; Xiao et al., 2017), they have yet to be applied for the 

segmentation of the SC lumen, which is a challenging task due to the variable size of the SC 

and low contrast with surrounding tissues.

In this paper, we present LF-DRAG-UNet (Late Fusion Dilated Residual Attention-Gated 

U-Net), a deep learning-based approach for segmentation of the SC lumen in OCT images 

of living mouse eyes, which is trained end-to-end on a dataset of paired OCT and SV-OCT 

images. This proposed model uses separate encoders to learn features for each input image 

and utilizes an input image pyramid, dilated residual convolutions, and attention gating to 

enhance segmentation performance. To facilitate future studies on the assessment of outflow 

facility, we made our dataset and algorithms freely available online as an open-source 

software package.

2 Materials and supplies

2.1 Animals

All data used in this study were imaged at the Duke Eye Center. The animals were 

handled in accordance with approved Institutional Animal Care and Use Committee of Duke 

University protocol (A001-19-01) and in compliance with the Association for Research 

in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic 

and Vision Research. C57BL/6 (C57) and 129s mice were obtained from the Jackson 
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Laboratory. Loxl1+/− mice on mixed 129s/ C57BL/6 background were generously provided 

by Profs. Tiansen Li and Janey Wiggs (Massachusetts Eye and Ear Infirmary/National 

Institutes of Health) and inbred to generate Loxl1+/+, Loxl1+/−, and Loxl1−/− littermates. 

Generation of Loxl1−/− mice has been previously described in detail (Liu et al., 2004). 

The mice were bred/housed in clear cages and kept in housing rooms at 21°C with 

a 12-hour light-dark cycle. Mice were between two and twelve months of age during 

experiments. Mice were anesthetized using intraperitoneal injection of ketamine (100 mg/ 

kg) and xylazine (10 mg/kg) and maintained by injection of ketamine (60 mg/kg) every 

20 minutes if necessary. During experiments, mice were kept at room temperature because 

(1) a temperature-controlled heating pad could not be placed on the custom-built mouse 

platform due to limited space, and (2) OCT experiments were end point measurements, 

usually lasting about 30 minutes, and mice were euthanized after imaging.

2.2 OCT imaging

Mice imaging data was sourced from our previous experiments in (Li et al., 2019; Li 

et al., 2020). In vivo imaging of mouse eyes was performed using an Enisu R2200 

SD-OCT system (Bioptigen Inc., Research Triangle Park, NC) following our previously 

established methodology (Li et al., 2014a; Li et al., 2019; Li et al., 2020). Briefly, mice were 

anesthetized then placed on a custom-made OCT imaging mount, equipped with an onboard 

micromanipulator which was used to insert a glass cannula into the anterior chamber to 

control and measure IOP. The OCT probe was aimed at the inferior lateral limbus and the 

image was centered and focused at SC.

While collecting images at the same region of SC, eyes were subjected to a series of 

IOP steps and imaged sequentially at each pressure (Li et al., 2019; Li et al., 2020). In a 

subset of mice, the IOP was returned to the initial pressure of 10 mmHg for an additional 

measurement, resulting in no more than two samples collected at each IOP, for each eye. 

OCT scans were collected from 32 living mouse eyes, with 5 – 7 samples obtained per eye. 

These samples were attained from IOP values of 10, 12, 15, 17, 20, 22, and 25 mmHg. 

IOPs that far exceeded this were not included since the SC lumen of normal mice is almost 

entirely collapsed at 20 mmHg. For each sample, two hundred consecutive B-scans (each 

with 1,000 A scans spanning 0.5 mm in lateral length) were captured at the same imaging 

location. Image registration was performed using ImageJ (National Institutes of Health, 

Bethesda, MD, USA) with the StackReg plugin using a rigid body transformation (Thevenaz 

et al., 1998).

2.3 Dataset

For each sample, the average intensity OCT image was obtained by taking the pixel-wise 

mean across all B-scans to create a high signal-to-noise ratio image. The SV-OCT image 

was obtained by taking the pixel-wise variance over five consecutive B-scans and then 

computing the pixel-wise average of the resulting interframe variance calculations. Images 

were cropped to remove border artifacts from image registration. OCT image quality was 

assessed using the Quality Index (QI) introduced by Stein et al. (2006), and images with a 

QI < 50 were excluded from the dataset since the SC in these images was not discernable, 
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and therefore could not be accurately segmented even by experienced graders. Out of 167 

images collected, 163 (97.6 %) images met this criterion and were included in the dataset.

Manual segmentation of SC in OCT images was performed by an expert reader using a 

freehand annotation tool provided by the SchlemmSeg software (Li et al., 2016). The grader 

performed segmentation based on the intensity and SV-OCT images. Speckle variance 

was monitored to provide a complementary source of information to help identify the SC 

boundary. In an OCT image, the SC typically appears as a dark oblong closed contour. In 

contrast, the SC in an SV-OCT image is brighter compared to the surrounding area, due to 

increased speckling generated by the flow of blood cells through the SC. Also, the grader 

observed the two hundred B-scan frames as a video to aid in the accurate identification of 

the boundaries of the SC lumen. Additionally, manual segmentation was performed by a 

second grader to assess inter-observer variability and to obtain a benchmark for human-level 

performance for segmentation.

In total, the dataset used in this study was comprised of 163 pairs of intensity OCT and SV-

OCT images. Figure 1 displays sample images from one eye in the dataset. The dataset was 

partitioned into independent training, validation, and test sets using six-fold cross-validation 

as discussed in Section 3.3. The following data augmentation steps were performed during 

training. Images were first resized so that pixels were isomorphic in x- and y-directions. 

Images were then transformed by applying random horizontal flips, random translations in 

the x- and y-directions up to 20% of the image size, random scalings from 75% to 125% 

of the image size, and random rotations within a range of 30 degrees. Images were then 

cropped to 512 by 512 pixels. The pixel values for each input image were linearly scaled by 

subtracting the mean and dividing by the standard deviation and normalized to [0, 1].

3 Detailed methods

3.1 Network architecture

In this work, we propose LF-DRAG-UNet, a custom CNN architecture for the segmentation 

of SC using intensity and SV-OCT images. The structure of the proposed network is 

illustrated in Figure 2. Our model was based on U-Net (Ronneberger et al., 2015), a 

popular architecture for semantic segmentation, in which each pixel in an image is assigned 

a probability of belonging to a particular class: SC or background. A standard U-Net is 

composed of symmetric encoder (contractive) and decoder (expansive) paths. The encoder 

is made up of four encoder blocks, in which each block consists of two successive series 

of a convolution layer, batch normalization layer (Ioffe and Szegedy, 2015), and rectified 

linear unit (ReLU) activation, followed by a max pooling layer. Similarly, the decoder is 

made up of four decoder blocks, whereby the input to each decoder block is upsampled 

using a transposed convolution layer and concatenated to features passed through a skip 

connection from the corresponding encoder block. This is followed by two successive series 

of a convolution layer, batch normalization layer, and ReLU activation. In the proposed 

LF-DRAG-UNet, several modifications were made to the standard U-Net by incorporating 

dilated residual convolutions, an asymmetrical encoder-decoder structure, a multi-scale input 

image pyramid, and attention gating.
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Residual learning with dilated convolutions was used, which has been shown to improve 

segmentation performance in previous works (Apostolopoulos et al., 2017; Chen et al., 

2018; Devalla et al., 2018b; Diakogiannis et al., 2020). The standard encoder block found in 

U-Net was modified using parallel atrous convolutions with dilation rates of d = 1, d = 3, 

and d = 5 to increase the receptive field of each layer with little overhead in computational 

cost (Chen et al., 2018). The outputs of the atrous convolution branches were added to the 

input of the block for residual learning, which has been demonstrated to improve gradient 

flow through the network (He et al., 2016a; Zhang et al., 2018). Batch normalization and 

activations were applied in the pre-activation design (He et al., 2016b). The structure of this 

dilated residual convolution block is illustrated in Figure 3.

In addition, the proposed network possessed an asymmetrical structure, consisting of two 

encoders and one decoder. In order to learn meaningful representations for both the intensity 

and SV-OCT images, a separate encoder path was used for each input, and their features 

were fused downstream in the network. This type of late fusion technique is common in 

tasks involving multiple inputs (Cunefare et al., 2018; Hazirbas et al., 2017; Karpathy et al., 

2014). An input image pyramid was also used, whereby sequentially downsampled inputs 

were injected into the encoders to capture features at multiple scales.

In addition, attention gating was used to highlight salient regions of the image. Attention 

gating involves taking an element-wise product of the feature maps with learned attention 

coefficients (Oktay et al., 2018). This has the effect of pruning regions of the image with 

less useful information and has been shown to be effective for the segmentation of targets 

with high variability in size. A gating signal, g, obtained from a coarser resolution, was 

used to determine salient regions in the image. For a feature map xl at layer l, the attention 

coefficient αl was computed with the following equations:

qattl = ψ⊤ σ1 W x⊤xil + W g⊤gil + bxg + bψ,

αl = σ2 qattl xl, g; θatt ,

where σ1(x) is a ReLU nonlinearity, σ2(x) is a sigmoid normalization, and θatt is a set of 

parameters consisting of linear transformations and bias terms: ψ, Wx, Wg, bxg, and bψ.

Figure 4 illustrates the structure of the late fusion attention gate used to combine attention 

maps learned using features from the dual encoders. The attention coefficients, which were 

optimized to recognize salient regions in each input, were combined by taking a weighted 

element-wise sum of the attention coefficients from both encoder branches as follows:

αi
l = 1

w1w2
w1α1, i

l + w2α2, i
l ,

where αi
l is the final attention coefficient for pixel i, and w1 and w2 are the weights applied 

to each attention map. Finally, deep supervision, which forces intermediate feature maps 
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to be semantically discriminative at every scale, was used to encourage attention gates at 

different scales to be able to influence the responses to a large range of foreground content 

(Lee et al., 2015).

3.2 Implementation and training

Deep learning models were implemented in Python 3.7 with Pytorch (version 1.7.1) and 

trained using NVIDIA RTX 2080 Ti GPUs on a Linux (Ubuntu) machine (Paszke et al., 

2019). Network weights were randomly initialized using He initialization (He et al., 2015). 

Optimization was performed using stochastic gradient descent with Nesterov acceleration 

with an initial learning rate of 0.01 and momentum of 0.9 (Sutskever et al., 2013). L2 weight 

regularization was used with a factor of 0.0001. The learning rate was reduced using a 

cosine annealing schedule with warm restarts to encourage the optimizer to jump out of 

local minima and reach a flatter minimum (Loshchilov and Hutter, 2017).

Networks were trained using a Dice loss objective function, which is defined as

LDice = 1 −
2∑i pigi

∑i pi2 + ∑igi2
,

where pi ∈ p are pixels in the predicted segmentation p and gi ∈ G are pixels in the ground 

truth G (Milletari et al., 2016). Dice loss has been shown to be robust to class imbalance, 

which makes it suitable for the segmentation of SC, since SC occupies a small area relative 

to the size of the background in an OCT image (Milletari et al., 2016).

3.3 Cross-validation

Six-fold cross-validation was used to train and evaluate the networks using all available data 

while avoiding selection bias. Four folds contained B-scans from five eyes and two folds 

contained B-scans from six eyes. Four folds were used for training, one fold was used for 

validation, and the remaining fold was left out for testing. The partition was done so that 

if B-scans of a particular eye were in one set, no B-scans from the same eye appeared in a 

different set, thereby ensuring that training, validation, and test sets were independent.

All networks were trained from scratch for 200 epochs with a batch size of 2. The network 

corresponding to the best validation loss achieved during the last 20 epochs was used 

to evaluate performance on the test set. This process was repeated six times, cycling the 

partitions so that each eye was included in the test set a single time. All code for the 

method proposed in this paper, along with the annotated SC dataset, are available at https://

github.com/kevinchoy/oct-schlemm-seg.

3.4 Testing and evaluation

The output of each network is a 2D probability map in which each pixel value (ranging 

from 0 to 1) represents the predicted probability of that pixel being classified as SC. A 

fixed threshold of 0.5 was applied on the output to obtain a binary mask, such that pixels 

where the network predicted a probability greater than or equal to 0.5 were classified as SC, 

while pixels with probabilities less than 0.5 were classified as background. The following 
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post-processing steps were performed on the binary mask to obtain the final segmentation 

mask. First, a morphological dilation operation was performed with a circular structuring 

element with a radius of 8 pixels to connect nearby discontinuous segments, since gaps 

between these segments were typically only a few pixels wide, while erroneously labeled 

false positive pixels were generally further away (Soille, 2013). Second, since the SC is a 

single continuous structure, all but the largest connected component was discarded. Third, a 

morphological erosion was performed to restore the original size of the mask. Last, a binary 

hole filling operation was used to obtain the final segmentation.

The performance of each network was evaluated using Dice Similarity Coefficient (DSC), 

also known as Sørensen–Dice coefficient or F1 score (Dice, 1945). DSC measures the 

overlap between two binary masks and is commonly used to evaluate the performance of 

segmentation algorithms. The ideal case of perfect overlap between a predicted mask and 

target mask results in a DSC of 1, whereas no overlap results in a DSC of 0. In addition to 

DSC, performance was also evaluated using precision, and recall (also known as sensitivity). 

These metrics are given by the following equations:

DSC =
2∑i pigi

∑i pi2 + ∑igi2
= 2TP

2TP + FP + FN ,

Precision = TP
TP + FP ,

Recall = TP
TP + FN ,

where true positive (TP) refers to the number of pixels in the output mask that were correctly 

predicted as part of SC, false positive (FP) refers to the number of pixels incorrectly labeled 

as part of SC but were part of the background, and false negative (FN) refers to the number 

of pixels that were incorrectly classified as part of the background but belonged to SC.

3.5 Deep learning-based segmentation is comparable to segmentation by a human grader

We trained our proposed LF-DRAG-UNet model along with a standard U-Net on the dataset 

of intensity and SV-OCT images of living mouse eyes. The outputs of all trained networks 

were corrected using the post-processing steps described in Section 3.4 to obtain final 

segmentation masks. Figure 5 displays an illustrative example, which shows that LF-DRAG-

UNet obtained segmentations that were qualitatively more accurate compared to the baseline 

model. We also evaluated the performance of both U-Net and our modified network when 

trained using OCT images, SV-OCT images, and both OCT and SV-OCT images. When 

training was conducted using either OCT or SV-OCT images alone, only one encoder was 

necessary. We refer to the single-encoder version of the proposed network as DRAG-UNet 

(Dilated Residual Attention-Gated U-Net) since the architecture of this modified network 

did not have a late-fusion component. Evaluation of deep learning models and manual 
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segmentation performed by a second human grader are summarized in Table 1. Comparison 

between proposed and baseline methods was made using the Wilcoxon signed-rank test. 

LF-DRAG-UNet surpassed the baseline U-Net trained using both OCT and SV-OCT images 

in mean and median performance on all metrics except median precision. The differences in 

DSC, precision, and recall were statistically significant (p < 0.05).

Both the standard U-Net and DRAG-UNet trained using only SV-OCT images performed 

significantly worse than their counterparts trained using only intensity OCT images and 

those trained using both input images. The U-Net and DRAG-UNet trained using only 

OCT images performed similarly to the corresponding models trained using both input 

images. The U-Net trained using only OCT images had a higher DSC and recall than the 

U-Net trained on both inputs. However, these differences were not statistically significant. 

Furthermore, we compare the performance of the proposed model with that of a second 

human grader. LF-DRAG-UNet recorded a lower mean DSC and precision than the human 

grader but achieved comparable mean recall. In addition, LF-DRAG-UNet also achieved 

higher median scores for each metric compared to the expert human grader. Differences 

between the proposed model and human grader were not statistically significant.

3.5.1 Discussion—The TM/SC plays a major role in regulating IOP, and is especially 

important in the study of glaucoma, as ocular hypertension is a major risk factor for this 

disease (Allingham et al., 1996). Prior research monitored the size of SC to evaluate the 

effectiveness of glaucoma drugs and treatment (Li et al., 2014a; Li et al., 2019; Li et al., 

2021; Li et al., 2016). Image segmentation is a crucial step in many ophthalmic applications 

and is required for the analysis of the SC cross-sectional area. In previous studies, the SC 

region was annotated by manual segmentation, which is both time-consuming and subject 

to inter-observer variability (Li et al., 2014a; Li et al., 2019; Li et al., 2016). Automatic 

segmentation of SC is expected to accelerate experiments for studying treatment efficacy of 

new drugs affecting IOP and facilitate the study and development of glaucoma treatments.

In this study, an automatic deep learning-based approach was used for semantic 

segmentation of SC. Our proposed CNN model, LF-DRAG-UNet, obtained superior 

segmentation performance compared to the baseline U-Net. A late fusion scheme was used, 

whereby, instead of concatenating the intensity OCT and SV-OCT images as a two-channel 

input to the network, separate encoders were trained for each input, which was better 

able to combine information from both sources. In addition, an input image pyramid and 

dilated residual convolution blocks were used to improve the model’s ability to use global 

information. Furthermore, attention gating was used to prune less important information. 

Figure 6 displays an example heatmap of the attention coefficients for the final attention gate 

in the network, which shows that the model was able to focus on the salient region around 

SC and suppressed activations in the background.

3.5.2 OCT and SV-OCT comparison—Table 1 provides a summary of the 

performance of both standard and modified U-Net models trained using OCT images, SV-

OCT images, and both input images. Figure 7 displays illustrative example segmentations 

using these models. In the majority of cases, models that used both intensity and SV-OCT 

images performed better than those that used only one type of input image. The models 
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which used only intensity images performed similarly to the corresponding models which 

used both inputs, while models that used only SV-OCT images performed significantly 

worse than their counterparts. This indicates that the networks relied heavily on the OCT 

images over the SV-OCT images. The benefit of using both input images was especially 

apparent when SC was difficult to see in the intensity images but clearly visible in the 

SV-OCT image. However, models that used both input images would occasionally miss 

the SC lumen when SC was visible in the OCT image but difficult to see in the SV-OCT 

image. While SV-OCT provided an auxiliary source of information, which could aid in 

segmentation when the OCT image was poor, it could also confuse the models when the 

SV-OCT image itself was poor. However, typically, when the SC boundary was visible in the 

OCT image, it was also visible in the SV-OCT image.

4 Potential pitfalls and troubleshooting

Our method generally performed well on samples that had clear boundaries and high 

contrast in both intensity and SV-OCT images. The SC lumen in these images was clearly 

visible and easy to identify. In discussing the limitations of our method, we highlight the 

cases in which our algorithm did not correctly segment the SC lumen. Figure 8 displays 

example cases where the network performed poorly. Several factors make the segmentation 

of SC challenging. Low contrast between SC and surrounding tissue makes it difficult to 

find the boundaries of SC. In addition, the presence of superficial blood vessels with high 

scattering properties and associated shadowing can obscure the SC in the SV-OCT image. 

Furthermore, SC shrinks and can even collapse at high enough pressure in healthy eyes, 

making segmentation more difficult for eyes at elevated IOP (Li et al., 2016). In these cases, 

our deep learning-based method may not be able to successfully annotate the SC lumen, 

and the resulting segmentations may require manual correction. These manually corrected 

datasets can be used to retrain the algorithm and reduce the automatic segmentation 

algorithm’s error in future instances (Loo et al., 2018).

We used averaging to improve the signal-to-noise ratio of OCT images. In applications 

where repeated imaging and averaging is not possible, efficient single or multi-frame 

denoising algorithms can be utilized to reduce the impact of speckle noise on segmentation 

accuracy (Fang et al., 2017b).

Figure 9 shows the performance of the baseline U-Net and LF-DRAG-UNet on OCT scans 

of mouse eyes at different IOP. The proposed network was better able to segment images at 

higher pressure, but both the baseline and proposed networks performed worse with samples 

obtained at increased IOP. Although lower performance on small targets may be attributed 

to the nature of pixel overlap metrics such as DSC, segmentation of SC at high IOP remains 

a challenge and a potential area of improvement. However, these factors are also difficulties 

that are present during manual segmentation by a human grader, and automatic segmentation 

of SC by the proposed deep network was not found to be significantly different than that of 

manual segmentation.
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5 Concluding remarks

In this paper, we proposed the first fully automatic approach for segmentation of the SC 

lumen that is on-par with human-level performance. This study demonstrates that deep 

learning-based methods can be used to automatically segment the SC lumen in OCT 

images. Our method can aid in the study of SC by removing the need for time-intensive 

manual segmentation. This would make it easier to study the effects of drugs and treatment 

affecting the conventional outflow pathway, IOP, and related diseases such as glaucoma, 

which present as changes in SC area.
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Figure 1. 
Visualization and manual segmentation of SC in OCT images of a living mouse eye. Each 

row represents OCT imaging data and corresponding overlayed ground truth annotations 

acquired on the same eye at a different IOP level (from top to bottom: 10, 12, 15, 17, 

20 mmHg). Each column from left to right represents the intensity OCT image, the SV-

OCT image, the ground truth overlayed on the intensity OCT image, and the ground truth 

overlayed on the SV-OCT image.
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Figure 2. 
Proposed CNN Model: LF-DRAG-UNet. The network is trained on OCT and SV-OCT 

images using separate encoder branches that are fused downstream. A multi-scale input 

image pyramid and dilated residual convolutions are used to provide more global 

information. Attention gating is used to prune irrelevant regions of the feature maps.
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Figure 3. 
Structure of the dilated residual convolution block, the encoder sub-unit in LF-DRAG-UNet. 

Three parallel branches containing atrous convolutions with dilation rates of d = 1, d = 3, 

and d = 5 are used to expand the receptive field of the convolution layers. The outputs of all 

branches are added to the input for residual learning.
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Figure 4. 
Diagram of the late fusion attention gate. Feature maps xl are scaled by attention coefficients 

α, which are obtained by taking the weighted sum of attention coefficients learned for 

OCT and SV-OCT inputs. A gating signal, g, obtained from a coarser resolution, is used to 

determine salient regions and prune less relevant features.
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Figure 5. 
Illustrative example showing the superior performance of the proposed LF-DRAG-UNet 

compared to baseline U-Net. Columns from left to right depict the intensity OCT image, 

SV-OCT image, ground truth obtained by manual segmentation, segmentation obtained by 

the baseline U-Net, and segmentation obtained by LF-DRAG-UNet.
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Figure 6. 
Attention coefficient heatmap for an OCT image of a mouse eye at IOP = 12 mmHg. The 

attention gate was able to focus in on the region of the image corresponding to the SC lumen 

and suppressed regions in the background.
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Figure 7. 
Comparison of segmentations obtained by proposed and alternative networks trained using 

intensity OCT images, SV-OCT images, and both input images. Row 1 depicts that when 

SC is difficult to see in the intensity image but visible in the SV-OCT image, networks 

using SV-OCT images performed well. Row 2 depicts that when SC is not visible in the 

SV-OCT image, networks using SV-OCT images performed worse than those using only 

intensity images. Row 3 depicts when OCT and SV-OCT images provided complementary 

information, networks that used both inputs had superior results.
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Figure 8. 
Limitations of CNNs for automatic SC segmentation. Columns from left to right represent 

the intensity OCT image, SV-OCT image, ground truth obtained by manual segmentation, 

segmentation obtained by U-Net, and segmentation obtained by the proposed LF-DRAG-

UNet model. Low contrast, shadowing due to superficial blood vessels, and small SC size 

can lead to incorrect segmentations.
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Figure 9. 
Boxplots showing DSC for samples at different IOP. Left plot shows results of the baseline 

U-Net; right plot shows results for the proposed LF-DRAG-UNet. The following summary 

statistics are visualized: lower and upper quartile (range of the box); median (horizontal 

orange line); 1. 5 × the interquartile range below and above the lower and upper quartiles, 

respectively (whiskers). The number above each box denotes the number of samples at the 

specified IOP. DSC scores were lower for samples at higher IOPs which had SCs with 

relatively smaller cross-sectional areas. The proposed model was better able to segment 

samples at higher IOP.
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Table 1

Average (mean ± SD) and median segmentation performance of an expert human grader, proposed model, and 

alternative models evaluated using DSC, precision, and recall.

Models

DSC Precision Recall

Mean ± SD Median Mean ± SD Median Mean ± SD Median

Human grader 0.713 ± 0.209 0.763 0.731 ± 0.212 0.772 0.737 ± 0.250 0.829

U-Net (OCT) 0.677 ± 0.270 0.782 0.688 ± 0.294 0.782 0.710 ± 0.294 0.829

U-Net (SV-OCT) 0.598 ± 0.300 0.724 0.658 ± 0.305 0.775 0.615 ± 0.331 0.763

U-Net (baseline) (OCT & SV-OCT) 0.671 ± 0.282 0.774 0.711 ± 0.299 0.830 0.700 ± 0.314 0.832

DRAG-UNet (OCT) 0.686 ± 0.254 0.784 0.726 ± 0.266 0.813 0.719 ± 0.281 0.821

DRAG-UNet (SV-OCT) 0.613 ± 0.294 0.735 0.649 ± 0.306 0.740 0.655 ± 0.339 0.799

LF-DRAG-UNet (our method) (OCT & SV-OCT) 0.694 ± 0.256 0.791 0.722 ± 0.264 0.812 0.743 ± 0.294 0.849
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