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Abstract

Statistical shape modeling (SSM) is widely used in biology and medicine as a new generation 

of morphometric approaches for the quantitative analysis of anatomical shapes. Technological 

advancements of in vivo imaging have led to the development of open-source computational tools 

that automate the modeling of anatomical shapes and their population-level variability. However, 

little work has been done on the evaluation and validation of such tools in clinical applications 

that rely on morphometric quantifications. Here, we systematically assess the outcome of widely 

used, state-of-the-art SSM tools, namely ShapeWorks, Deformetrica, and SPHARM-PDM. We use 

both quantitative and qualitative metrics to evaluate shape models from different tools. We propose 

validation frameworks for anatomical landmark/measurement inference and lesion screening. We 

also present a lesion screening method to objectively characterize subtle abnormal shape changes 

with respect to learned population-level statistics of controls. Results demonstrate that SSM tools 

display different levels of consistencies, where ShapeWorks and Deformetrica models are more 

consistent compared to models from SPHARM-PDM due to the groupwise approach of estimating 

surface correspondences. Furthermore, ShapeWorks and Deformetrica shape models are found to 

capture clinically relevant population-level variability compared to SPHARM-PDM models.
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1. Introduction

Shape is the geometric information that remains when all the global geometrical properties 

are factored out, such as translation, orientation, and size (Mardia and Dryden, 1989). 

Since the pioneering work of D’Arcy Thompson (Thomson, 1917), morphometrics or shape 
analysis has evolved into an indispensable quantitative tool in medical and biological 

sciences to study shapes. Shape analysis has several applications in archaeology (Woods 

et al., 2017), medical imaging (Joskowicz, 2018; Heimann and Meinzer, 2009), computer-

aided design (Joskowicz, 2018; Zadpoor and Weinans, 2015; Kozic et al., 2010), and 

biomechanics (Bredbenner et al., 2014; Nicolella and Bredbenner, 2012).

Statistical shape modeling (SSM) is the application of mathematics, statistics, and 

computing to parse the shape into some quantitative representation that will facilitate testing 

of biologically relevant hypotheses. SSM can help answer various questions about the 

population under study. Among the many examples, SSM can answer whether a specific 

bone can be used to classify a group of species in evolutionary biology (Dominguez and 

Crowder, 2012), how a gene mutation contributes to skeletal development (Twigg et al., 

2009), the shape changes of brain structures in patients with depression and schizophrenia 

(Styner et al., 2006; Zhao et al., 2008; Davies et al., 2003), and the extent of bone 

deformation due to genetic diseases that can cause a specific type of cancer (Liu et al., 

2015; Cates et al., 2017b). The quantitative, population-level analysis of anatomical shapes 

can also assist in different clinical applications, including disease diagnosis (Kohara et al., 

2011), optimal implant design and selection (Goparaju et al., 2018), anatomy reconstruction 

and segmentation (Gollmer et al., 2014) from medical images for computer-aided surgery 

(Zachow, 2015), and preoperative and postoperative surgical planning (Rodriguez-Florez 

et al., 2017; Markelj et al., 2012; Zheng et al., 2009). These advancements in biomedical 

and clinical applications that benefit from SSM have the potential to make clinical-decision 

making more objective.

Computational tools for shape modeling define an anatomical mapping among shapes to 

enable quantifying subtle shape differences and performing shape statistics. That is, the 

shapes that differ in a manner that is typical of the shape variability in the population are 

considered similar compared to the shapes that differ in atypical ways. For example, extra 

bone growth on a femur that is indicative of a pathology differs from a control femur 

in an atypical way. A growing consensus in the field is that such a metric should be 

adapted to the specific population under investigation, which entails finding correspondences 
across an ensemble of shapes (Srivastava et al., 2005; Kulis et al., 2013). Manually 

defined landmarks, defined consistently on each shape instance have been the most popular 

choice for a light-weight shape representation that is suitable for statistical analysis and 

visual communication of the results (Zachow, 2015; Sarkalkan et al., 2014). However, 
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manual annotation is tedious, time-consuming, and expert-driven (hence subjective). Manual 

annotation is prohibitive for three-dimensional (3D) shapes, especially with large shape 

ensembles. SSM is an important shift from manually defined anatomical homologies to 

computationally derived correspondence shape models. Finding correspondences across an 

ensemble of shapes can be posed as an optimization problem leading to the development of 

various open-source SSM tools.

The scientific premise of existing correspondence techniques falls in two broad categories, 

pairwise and groupwise (Oguz et al., 2015). The pairwise approach treats each shape 

instance independently and estimates correspondences by mapping the subject to a 

predefined atlas or template (e.g., SPHARM-PDM (Styner et al., 2006)). The groupwise 
approach, on the other hand, estimates point correspondences by considering the variability 

in the entire cohort of shapes to quantify the quality of correspondences (e.g., ShapeWorks 

(Cates et al., 2017a), Minimum Description Length - MDL (Davies, 2002), Deformetrica 

(Durrleman et al., 2014)). Hence, groupwise methods learn a population-specific metric in 

a way that does not penalize natural variability and therefore can capture the underlying 

parameters in an anatomical shape space. Other publicly available tools, e.g., FreeSurfer 

(Fischl et al., 1999), Brain Voyager (Goebel et al., 2006), FSL (Jenkinson et al., 2012), and 

SPM (Ashburner and John, 2012), provide shape modeling capabilities, but they are tailored 

to specific anatomies or limited topologies. Shape analysis tools, such as R shapes package 

(Dryden, 2018) and MorphoJ (Klingenberg, 2011), require point correspondences, defined 

manually or automatically via an SSM tool, for the input shapes to perform statistical 

analysis.

Better understanding of the consequences of different SSM tools for the final analysis is 

critical for the careful choice of the tool to be deployed for a clinical application. This 

study is thus motivated by the potential role of SSM in clinical scenarios that (1) are driven 

by anatomical measurements, which could be automated by relating patient-level anatomy 

to population-level morphometrics, and (2) entail pathology screening, which could be 

informed by population-level statistics of controls. In this paper, we significantly extend the 

preliminary analysis presented in (Goparaju et al., 2018) to expand the clinical application 

under analysis. In particular, we demonstrate the significance of evaluation and validation 

of SSM tools in the context of clinical applications, such as implant design and selection, 

motion tracking, surgical planning, and screening of bony lesions. Here, we consider a 

representative set of open-source, widely used SSM tools that support shape modeling of 

general anatomies; namely ShapeWorks (Cates et al., 2017a), Deformetrica (Durrleman et 

al., 2014), and SPHARM-PDM (Styner et al., 2006) (recently incorporated into SlicerSALT 

(Vicory et al., 2018)). We propose evaluation and validation frameworks for anatomical 

landmark/measurement inference and lesion screening. We also present a lesion screening 

method to provide an objective characterization of subtle abnormal shape changes with 

respect to learned population-level statistics of controls.

2. Related work

Open-source SSM tools rely on different modeling approaches and assumptions to establish 

surface correspondences. However, evaluating shape models is a nontrivial task due to 
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the lack of ground-truth correspondences. Shape models can be intrinsically evaluated 

using quantitative metrics that reflect the correspondence quality (Davies, 2002). However, 

such metrics have been criticized since relevant shape information may be lost while still 

obtaining excellent evaluation measures (Ericsson and Karlsson, 2007). Hence, there is an 

unmet need to benchmark SSM tools via extrinsic validation metrics that signify the impact 

of shape models in clinical applications.

(Ericsson and Karlsson, 2007) relied on manually picked landmarks to validate the 

computationally derived correspondences. (Munsell et al., 2008) developed a similar 

approach to benchmark correspondence optimization techniques using synthetic shapes. 

These two approaches require ground-truth correspondences to evaluate shape models, 

which is not trivial, and is instead prohibitive, for non-synthetic 3D shapes (e.g., anatomies). 

Furthermore, (Munsell et al., 2008) conducted experiments for 2D shapes. Extending these 

techniques to 3D shapes would not be feasible, given the complexity of medical and 

biological shapes. These evaluation studies have theoretical grounds, yet have not considered 

real-world applications.

Very few studies have evaluated SSM tools in the context of biomedical applications. SSM 

tools have been evaluated in nonclinical applications such as image segmentation to quantify 

the influence of a shape model on the image segmentation accuracy (Gollmer et al., 2014). 

(Gao et al., 2014) proposed a framework for the generation of synthetic, ground-truth 

correspondences via a shape-deformation synthesis approach to compare shape models from 

SPHARM-MAT, SPHARM-PDM, ShapeWorks, and tensor-based morphometry (TBM). 

This study focused on shapes with simple geometric complexity and simulated pathologies. 

The comparison of the shape models found inconsistencies and disagreement among the 

different tools. However, little work has been done in the evaluation and validation of SSM 

tools in clinical applications. Hence, a systematic evaluation and validation framework that 

enables assessment of shape models from different tools can assist in SSM tool selection in 

clinical scenarios.

To demonstrate the need for and significance of SSM tool assessment, we performed a 

proof-of-concept experiment on an ensemble of 3D shapes of boxes with a moving bump, 

where computationally derived point correspondences were obtained using ShapeWorks 

(Cates et al., 2017a), Deformetrica (Durrleman et al., 2014), and SPHARM-PDM (Styner et 

al., 2006). This example is interesting because we would, in principle, expect an SSM tool to 

discover a single mode of variability, which is the moving bump, by generating surface 

correspondences that respect the natural shape variability in the population. However, 

different tools have yielded different results (Goparaju et al., 2018). ShapeWorks (Cates 

et al., 2017a), which adopts a groupwise approach, correctly discovered the underlying 

population variability and generated shape more faithful to those described by the training 

set, even out to three standard deviations. This proof-of-concept motivates the need to 

perform a systematic evaluation and validation of these SSM tools as related to application-

specific clinical needs.
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3. Background

Here, we give an overview of the SSM tools considered for the performance analysis and 

provide the clinical scenarios that can benefit from such analysis.

3.1. Statistical shape modeling (SSM) tools

A shape model provides both a detailed 3D geometrical representation of the average 

anatomy of a given population and a representation of the population-level geometric 

variability of the anatomy, in the form of a collection of principal modes of variation. SSM 

tools for point-based models automate the point-correspondence estimation of an ensemble 

of shapes via an optimization problem that quantifies the notion of correspondences. Once 

correspondences are obtained in a common coordinate system where rigid or similarity 

transformations are factored out, principal component analysis (PCA) can be performed to 

identify the dominant modes of variation in the shape space. Here, we overview the shape 

modeling approach pertaining to each of the considered SSM tools.

3.1.1. ShapeWorks—ShapeWorks is a groupwise particle-based shape modeling (PSM) 

method (Cates et al., 2017a, 2007) that is not constrained to any specific topology, handles 

open surfaces, and does not rely on any surface parameterizations. The PSM formulation 

details can be found in Appendix A.1. The scientific and clinical utility of ShapeWorks 

has been demonstrated in a range of applications, including neuroscience (Datar et al., 

2013; Oguz et al., 2009), biological phenotyping (Jones et al., 2013; Cates et al., 2017b), 

orthopaedics (Harris et al., 2013; Jacxsens et al., 2019; Atkins et al., 2017b), and cardiology 

(Bieging et al., 2018b,a).

3.1.2. Deformetrica—Deformetrica is a groupwise correspondence method that is based 

on the large deformation diffeomorphic metric mapping (LDDMM) framework (Durrleman 

et al., 2014). This SSM tool is not constrained to any specific topology and supports open 

surfaces, but it requires an initial atlas that defines the topology of the shape class under 

study to estimate the template complex . Correspondences are not explicitly optimized; 

rather diffeomorphic deformations enable the correspondence establishment between the 

template complex and each input shape. The template complex captures the common 

characteristics of the shapes, and the deformations capture the variability in the shapes, 

as shown in Fig. 1(b). The technical details of Deformetrica can be found in Appendix 

A.2. Applications of Deformetrica include quantitative assessment of craniofacial surgery 

(Rodriguez-Florez et al.), classification of patients with Alzheimers disease (Routier et al., 

2014), and cranioplasty surgical planning (Rodriguez-Florez et al., 2017).

3.1.3. SPHARM-PDM—SPHARM-PDM is a pairwise parameterization-based 

correspondence method (Styner et al., 2006) that is restricted to anatomies with 

spherical topologies. The spherical parameterization is obtained by mapping each shape 

to a unit sphere through an area-preserving and distortion-minimizing objective using 

spherical harmonic (SPHARM) basis functions, as shown in Fig. 1(c). The SPHARM 

description is obtained from the surface mesh and its spherical parameterization, which 

are then aligned using a first-order ellipsoid from the SPHARM coefficients to establish 
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correspondences across shapes. The technical details of SPHARM-PDM can be found 

in Appendix A.3. Applications of SPHARM-PDM include boundary and medical shape 

analysis of the hippocampus in schizophrenia (Styner et al., 2004), orthognathic surgical 

displacement analysis (Paniagua et al., 2011), and quantification of temporomandibular joint 

osteoarthritis.

3.2. Clinical applications

Clinical applications, such as implant design and selection, surgical planning, bone 

resection, and bone grafting, require patient-specific anatomical representation, which can 

be automatically estimated by relating patient-specific anatomical shape to the learned 

population-level morphometrics. Such automation reduces manual and subjective clinical 

decisions (Kohara et al., 2011; Rodriguez-Florez et al., 2017). In this paper, we consider a 

representative set of clinical needs that would benefit from SSM-informed decisions.

3.2.1. Implant design and selection – LAA closure—The left atrial appendage 

(LAA) is a small sack-like structure in the human heart. In atrial fibrillation (AF) patients, 

blood clots can form due to irregular heartbeat . LAA can be one of the sources for thrombus 

formation and may be responsible in circulating the blood clots through the body, causing 

stroke in AF patients (Regazzoli et al., 2015). To reduce the risk of stroke, clinicians 

occlude the appendage using a closure device (i.e., an implant) (Fig. 2(a)) (Regazzoli et al., 

2015). LAA morphology is complex and categorized into four types (Wang et al., 2010): 

cauliflower, chicken wing, wind sock, and cactus (Fig. 2(b)), and hence closure implants are 

available in various sizes (Fig. 2(d)) (Romero et al., 2014). A clinician typically selects an 

appropriate device size by examining the patient-specific LAA morphology (Wang et al., 

2010). Nonetheless, such examination entails significant manual effort for marking relevant 

anatomical landmarks and measurements, and thereby could lead to subjective and error-

prone decisions. Inappropriate device selection would lead to an incomplete LAA closure 

that is worse than no closure (Regazzoli et al., 2015). SSM could thus provide an automated 

approach for developing less subjective categorizations of LAA morphology and anatomical 

measurements that can be used for more objective clinical decisions regarding suitability for 

LAA closure. SSM could further assist in designing more accurate, representative implant 

sizes for different LAA morphologies.

3.2.2. Surgical planning – Total shoulder arthroplasty—The scapula is part of the 

shoulder girdle and has shallow concave glenoid upon which the quasi-spherical humeral 

head articulates (Fig. 3(a)). The glenohumeral joint can be impaired and worn as seen 

in osteoarthritis. In these cases, joint replacement with a prosthetic implant, the anatomic 

total shoulder arthroplasty (aTSA), can reduce pain and restore the normal function of 

the shoulder joint. In aTSA, restoration of the glenohumeral joint to a nonpathologic state 

aims to obtain balanced forces on the glenoid and prosthetic components to maintain joint 

stability and improve the overall shoulder function. Because of the large anatomic variability 

of the glenoid (De Wilde et al., 2010), no consensus exists on which anatomical references 

should be used intraoperatively to restore the native glenoid. The inferior section of the 

glenoid has been found to be the most consistent, and was therefore proposed as a reference. 

The landmarks defining the native glenoid (Fig. 3(b) bottom row) are manually defined 
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on the glenoid and are expert-driven, and thereby their identification can be subjective and 

error-prone. A patient-specific landmark inference of the scapula can be automated using 

SSM by relating subject-specific metrics to population-level metrics. Hence, SSM could 

assist in the restoration of the glenoid plane by providing an objective, automated solution 

for estimation of landmarks.

3.2.3. Surgical planning – Reverse total shoulder arthroplasty—Reverse 

shoulder arthroplasty is a good treatment option in shoulder pathology with dysfunction of 

the rotator cuff muscles (Saltzman et al., 2010), including cuff tear arthropathy, irreparable 

cuff tears, or proximal humerus fractures. In this surgical process, the ball-like structure 

(i.e., humerus) and socket-like structure (i.e., scapula) are interchanged, hence reversing the 

anatomy of the shoulder. By distalizing and medializing the glenohumeral center of rotation 

(COR), the lever arm of the deltoid muscle is increased so that it can take over shoulder 

function from the deficient rotator cuff. Lateralization of the humerus without changing the 

COR can also optimize muscle tension. On the other hand, too much COR lateralization or 

distalization can lead to bony impingement between the humerus and scapula, nerve lesions, 

or stress fractures of the scapula. This interplay amongst range of motion, implant stability, 

and avoidance of complications is determined by the design of the implant and the clinicians 

expertise. SSM could thus automate the inference of optimal COR and landmarks of the 

humerus to assist in better implant design and implant configuration selection. Furthermore, 

SSM could also improve the surgical process by objectively characterizing patient-level 

variability.

3.2.4. Bone grafting – Hill-Sachs lesion—In cases of shoulder dislocation, the 

humeral head slips out of the shoulder socket and becomes compressed against the rim of 

the glenoid, which may lead to compression fractures on the humeral head, also known as a 

Hill-Sachs lesion (Fig. 3(d)). Large Hill-Sachs lesions have a high risk of recurrent shoulder 

instability, leading to impaired shoulder function and debilitating pain (Provencher et al., 

2012). In cases of large Hills-Sachs lesions, bone grafting of the lesion has been suggested 

as a viable treatment option. The lesion characteristics are typically evaluated preoperatively 

on 2D CT-scans. During surgery, measurements are reevaluated using a ruler to choose the 

fresh frozen allograft that best fits into the defect. Translating this information into a 3D 

printed model (Fig. 4(a)) provides the surgeon with a hands-on template with which to 

properly template the allograft. Cuts on the allograft are made to shape the graft until it fits 

the lesion properly (Fig. 4(b)). This entire process is performed by trial and error and can 

vary based on the expertise of the clinician. SSM could assist in the systematic evaluation 

of the lesion, the lesion depth, and the objective characterization of the filling void to enable 

objective decisions for sizing and shaping the bone graft.

3.2.5. Bone resection - cam-type FAI lesion—The hip is a ball-socket joint, with the 

femoral head acting as a ball, and the acetabulum, a component of the pelvis bone, acting 

as the socket. Femoroacetabular impingement (FAI) occurs when there is extra bone growth 

along one or both of the bones that form the hip joint (Fig. 5(a)), which thereby hampers 

smooth movement. Over time, this abnormal contact can cause damage to the labrum, 

which is a fibrocartilagenous tissue structure that surrounds the bony rim of the acetabulum. 
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Patients with lesions on the femoral head and head-neck junction are diagnosed with cam-

type FAI. Cam is a specific type of FAI in which the bone growth occurs to the femoral neck 

This lesion reduces the clearance between the femur and the pelvis since the femoral head 

does not remain round due to a formed bump (Fig. 5(c)). Cam-type morphology is believed 

to cause abnormal motion; notably, rotation of an aspherical femoral head within a relatively 

spherical socket likely causes the femur to lever-out, in turn leading to high shear stresses on 

cartilage and the acetabular labrum, leading to tears, fibrillation, and chronic inflammation. 

In cam-type FAI patients, the extra bone growth is removed through a surgical resection. 

Underestimating the resection depth can lead to revision surgery, whereas overestimating 

the resection depth can lead to hip fractures. Clinicians estimate the cam lesion and the 

resection depth through inspection of 2D radiographs and visual inspection at the time of 

surgery. However, these approaches are only semiquantitative, and may result in over or 

underestimation of the areal extent and magnitude of the deformity. SSM can automate 

the detection of the lesion and resection depth, resulting in fewer cases of revision hip 

arthroscopy.

4. Methods: Evaluating and validating SSM tools

The assessment of an SSM tool is a multifaceted process where no single metric captures all 

performance aspects of the resulting shape models. Hence, we present systematic evaluation 

and validation frameworks (Fig. 6) to assess the point correspondences obtained from 

different SSM tools. The evaluation framework intrinsically assesses the quality of the shape 

model when the ground-truth correspondences are unavailable. The validation framework, 

on the other hand, is performed in the context of clinical applications where some ground-

truth information, extrinsic to the shape model, is available. These frameworks can be 

applied to any SSM tool, beyond those considered here in this paper.

4.1. Evaluation and validation frameworks: common steps

The common steps in the proposed evaluation and validation frameworks are as follows: 

(1) data collection; (2) data preprocessing; (3) data split; and (4) shape modeling. The data 
collection step entails segmenting anatomies-of-interest from the population under study and 

saving them as binary images for statistical analysis.

The data preprocessing step includes the following: closing small holes in the given 

segmentations; resampling volumes to have isotropic voxel spacing; antialiasing to remove 

the staircase effect on the image contours due to discretization (Whitaker, 2000); aligning 

center of mass; rigidly aligning shapes using the ensemble mediod as a reference and the 

advanced normalization tools (ANTs) (Avants et al., 2014) for registration; cropping using 

the largest bounding box that encapsulates all shape samples to remove the unnecessary 

background that can slow down the correspondence estimation; fast marching to convert 

segmentations to signed distance transforms; and topology-preserving smoothing. The 

preprocessed segmentations are then converted to the appropriate data type needed for each 

SSM tool.

The rigid registration step factors out only rotational and translational variations across 

the training samples, which are global geometric information that is not relevant to the 
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shape modeling task. The reference shape for the rigid alignment was selected as a 

representative shape of the given shape ensemble using K-medoids clustering, assuming 

the ensemble belongs to one single cluster. Hence, the reference shape can be considered 

as the closest training sample to the average/mean shape of the ensemble. If registration 

is not performed prior to the shape modeling step, the resulting shape model would 

capture alignment differences as shape modes of variation and could dominate and hide 

the true factors of variations. Furthermore, training objectives for optimizing groupwise 

correspondences might not converge to useful population statistics. Different anatomies 

require different pre-alignment strategies. The goal is to remove misalignment prior to 

generating a correspondence model, but what that alignment is, depends on the data and the 

clinical application of interest.

The data split step involves creating training and test subsets. The training samples are 

used to train the shape model, and the testing samples are used for validation. Here, 

we use importance sampling to determine the training/testing splits, where a dataset is 

clustered and training/testing samples are selected from each cluster. The advantages of 

importance sampling are threefold. It obtains a sample population that best represents the 

entire population being studied, ensuring that each subgroup of interest is represented in 

the training dataset. It avoids too many experiments using cross-validation or bootstrapping, 

which are prohibitively expensive given the extent of analysis involved in this study. It also 

provides representative and viable comparisons across SSM tools in scenarios where the 

domain shift between training and testing data is minimal. However, the use of importance 

sampling could result in an optimistic estimation of the shape model performance. Hence, 

the presented results should not be considered as a baseline for the SSM tools in arbitrary 

training/testing scenarios.

Importance sampling is performed as a way of generating stratified samples. To this 

end, K-medoids clustering is performed to determine the training data. The input images 

to the k-medoids algorithm are signed distance transforms that are obtained from the 

data preprocessing step using fast marching. The k-medoids algorithm uses the squared 

Euclidean distance metric and the k-means++ (Arthur and Vassilvitskii, 2006) algorithm for 

choosing the initial mediod for each cluster. The choice of the number of clusters is the 

same for all datasets except for the LAA dataset. Based on the existing literature about the 

inherent clusters of the LAA morphology (Wang et al., 2010), we use 4 clusters of LAA and 

then randomly draw training and testing samples from each cluster based on the required 

percentage for the training/testing split. For the other datasets, we determined the number of 

clusters based on the percentage of the training samples we need. For example, if we need 

K samples of training data, k-medoids algorithm is run on the entire dataset with K clusters. 

If the training data consists of only controls, then only controls are provided as input to the 

k-medoids algorithm. The medoid of each cluster is then used as a training sample.

The shape modeling step estimates surface correspondences across the training samples 

using different SSM tools. Each tool (in particular, ShapeWorks and Deformetrica) has a set 

of algorithmic hyperparameters that need tuning. The hyperparameter tuning is performed 

on a representative subset of the training samples using K-mediods (Fig. 7). Evaluating the 

shape models with different sets of hyperparameters for the entire training data can easily 
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become a prohibitively expensive and time-consuming process. Based on our experience 

with the SSM tools, not all hyperparameters can equally influence the resulting shape 

model. Hence, we considered those that typically impact the optimized shape models 

and used different combinations of these hyperparameters to build shape models for rapid 

evaluations. The tuning process is automated using bash scripts. This process is not needed 

for SPHARM because it follows a pairwise approach in generating point correspondences. 

The settings for SPHARM-PDM tool are the maximal degree for the SPHARM computation 

(spharmDegree) and the subdivision level for the icosahedron subdivisions (subdivLevel). 

subdivLevel of 10 and spharmDegree of 15 have been used to generate all the shape 

models. The models resulting from different hyperparameters parameters are compared 

qualitatively based on two criteria (since ground-truth correspondences are unavailable): 

(a) correspondence points are evenly spaced to cover the entire geometry; and (b) points 

are in good correspondence across the training data by inspecting their neighboring 

correspondences. The best set of hyperparameters is then used for training the shape model 

on the entire training subset. The trained shape models from SSM tools are used for both 

evaluation and validation.

4.2. SSM evaluation

We use quantitative and qualitative metrics to evaluate shape models when ground-truth 

correspondences are not available.

4.2.1. Quantitative evaluation metrics—We adopt the quantitative metrics of 

compactness, generalization, and specificity (Davies et al., 2002) to assess different aspects 

of a shape model. These measures are functions of the number of modes of variation K ∈ 
{1,..., min(N, dM)} that are computed by PCA on correspondences, where N is the number 

of training shapes, d is the dimension of the configuration space, and M is the number of 

correspondences.

Compactness.: Although high-dimensional, the shape space can be parameterized by a low-

dimensional subspace (defined by eigenvectors and associated eigenvalues) that explains the 

shape variability. A compactness measure echoes the Occam’s razor principle; “a simple 

explanation is more likely to be better than a complicated explanation.” Compactness can 

be computed as C(K) = ∑j = 1
K λj (Munsell et al., 2008), where K indicates the number of 

eigenvectors to explain the shape variability, and λj indicates the eigenvalue of the j–th 

mode. A compact shape model can thus explain a specific level of explained shape variance 

with fewer modes of variation, and the more compact a model is, the better (Fig. 8(a)).

Generalization: quantifies whether the probability density function learned by the shape 

model is able to spread between and around the given training shapes (Fig. 8(b)). We 

compute the generalization metric, denoted as G(K), using the left-out testing samples as 

follows: Consider a testing shape vector, zn ∈ ℝdM, where n ∈ {1, …, Nts} and Nts is the 

number of testing samples, and a shape model that is obtained from the training shape 

vectors. Generalization can thus be quantified as G(K) = 1
Nts

∑n = 1
Nts εn(K), where εn(K) = 

∥zn(K) − zn∥2 is the approximation error using the squared Euclidean distance when using 
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the first K eigenvectors to represent the left-out shape instance. The generalization metric 

is monotonically decreasing with respect to the number of modes considered, provided the 

modes are of decreasing dominance. With more modes considered, the degrees of freedom 

of a shape model increase, and hence the capacity of the shape model increases. Thereby, the 

reconstructed samples will be more closer to the ground truth. A generalizable shape model 

can thus represent unseen shapes with a given level of error tolerance using fewer modes of 

variation.

Specificity: is the ability of the shape model to generate new, but valid, instances of shapes 

by constraining the variability in the shape space such that only legal/plausible shapes can be 

generated (Fig. 8(c)). Specificity can be quantified by randomly generating J (a large number 

of) samples z(K) from the shape space using the first K eigenvectors and eigenvalues, 

assuming a multivariate normal distribution, and computing the Euclidean distance to the 

closest training sample z′. Specificity is computed as S(K) = 1
J ∑j = 1

J ‖zj(K) − zj′‖2 (Munsell 

et al., 2008). The specificity metric is monotonically increasing with respect to the number 

of modes considered due to the increased intrinsic dimensionality of the shape space, where 

the expected distance between two shape samples is, with high probability, approximately 

twice the space dimensionality. Thereby, the generated samples tend to be farther away from 

the training data with the increased number of modes. A specific shape model can thus 

generate realistic shape samples within a given distance to training samples using fewer 

modes of variation.

It is worth noting that these metrics assume a multivariate Gaussian shape model, which 

is parameterized using PCA. PCA assumes linear correlations, and hence a very compact 

non-linear shape model might appear less compact through the lens of PCA. However, the 

specificity of such model will be penalized (i.e., higher values), since the assumed Gaussian 

model would generate shape samples from high-density regions in the shape space that are 

not faithful to the underlying shape distribution. Hence, these evaluation metrics should not 

be considered in isolation. To further justify the use of PCA for compactness evaluation, 

we conducted normality tests for all the shape models produced by the three SSM tools 

(see Appendix D for more details.) Furthermore, we computed compactness using kernel 

PCA to capture nonlinearities for all the shape models produced by the three SSM tools. 

We computed the compactness using the eigenvalue decomposition of the centralized kernel 

matrix. We did not observe significant changes in the compactness curves compared to using 

PCA (see Appendix E for more details).

4.2.2. Qualitative evaluation metrics—The qualitative assessment of shape models 

is performed using modes of variation and cluster analysis. The modes of variation may 

reflect clinically relevant variations/patterns. For instance, the anterior-posterior dilation 

of the left atrium shape is found to be statistically correlated with the severity of atrial 

fibrillation (Cates et al., 2014). Clustering is an approach to find groups in a population that 

are as distant as possible while ensuring the samples within a given group to be as similar 

as possible. Shape populations under analysis in clinical applications may exhibit natural 

clusters, different levels of illness, and disease progression. For instance, clustering analysis 

of the left atrium with different pulmonary veins branching might reveal clusters linked to 
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atrial fibrillation pathology (Cates et al., 2014). A shape model is assessed by the ability to 

discover such hidden patterns in the shape class of interest.

Modes of variation:  PCA on the point correspondences generated by SSM provides a 

ranking on the uncorrelated modes of shape variation based on the amount of variance 

explained (quantified by eigenvalues) relative to the total variance. The modes that explain 

maximum shape variability are called dominant ones. For instance, size is a common 

dominant mode of variation (Fig. 9) in several anatomies, but in few studies, the size 

variation may be factored out for different purposes (e.g., if not considered as a biological 

factor). In clinical applications, the modes of variation encoded by a shape model can help 

to objectively characterize normal deformities (Harris et al., 2013; Jacxsens et al., 2019),, 

discover localized pathologies (i.e., abnormalities) in anatomies (Atkins et al., 2017a,b; 

Jacxsens et al., 2019), and identify the severity of a disease (Atkins et al., 2017b). Shape 

models are qualitatively assessed based on the ability to discover clinically relevant modes 

of variation in the shape class of interest.

Cluster analysis:  Clustering can discover hidden patterns/groups in the data. In clinical 

applications, such patterns can assist in morphological classification (Goparaju et al., 2018), 

disease diagnosis (Khanmohammadi et al., 2017), and treatment planning (Soler et al., 

2016). Here, clustering analysis is performed on the point correspondences to assess the 

ability of a shape model to discover natural clusters. The inherent number of clusters in a 

dataset is discovered using the elbow method (Hardy, 1994), which quantifies the percentage 

of variance explained as a function of the number of clusters found in the data. The first 

few clusters are expected to explain significant variance, but by adding more clusters, the 

marginal gain in the explained variance will drop, resulting in an elbow. The input shapes 

and the number of clusters are then provided as input to a clustering algorithm to assign the 

input shapes to clusters. For instance, using the elbow method, four clusters, corresponding 

to the LAA morphological classes, were found in the LAA shape ensemble (Fig. 2). Here, 

we used signed distance transform images to serve as a baseline, and the ground-truth cluster 

labels (i.e., morphology class) were obtained from a clinical expert. To qualitatively assess 

a shape model, the point correspondences are clustered to obtain SSM tool-specific clusters. 

The mean cluster shapes from the ground-truth labeling are then obtained to compare 

with the clustering results from each shape model. This qualitative assessment informs the 

performance of a shape model in discovering the inherent clusters in the input data.

4.3. SSM validation

We propose two validation frameworks, namely anatomical landmarks/measurement 
inference and lesion screening, respectively, where relevant ground-truth for the validation is 

obtained from clinical experts. The validation frameworks add two more steps to the steps 

outlined in Section 4, validation and statistical tests, which are detailed below for the two 

proposed frameworks.

4.3.1. Landmarks/measurements inference—SSMs can be used to automate the 

inference of patient-specific anatomical morphometrics such as anatomical landmarks and 

measurements by defining such morphometrics on the mean shape of a model and using 

Goparaju et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the correspondences to map these morphometrics to the patient space. In this work, patient-

specific anatomical landmark estimation is performed for the scapula and the humerus 

anatomies to assist motion tracking and surgery planning of shoulders. Moreover, estimating 

patient-specific anatomical measurements is performed for the LAA anatomy to assist in 

LAA closure device design and selection. The subjective decisions involved in these clinical 

applications can be reduced by leveraging SSM.

Given a pretrained shape model, landmark/measurements inference is performed as follows: 

Ground-truth landmarks are manually annotated by an expert or with guidance from an 

expert. The point correspondences for each test sample are then obtained using the shape 

model learned during the training process. For ShapeWorks, the mean training shape is 

provided as an initialization for each test sample, where the correspondence optimization is 

performed only on the test sample. For Deformetrica, a deterministic atlas method is used 

to generate the point correspondences for each test sample by providing the input atlas as 

the trained output template. For SPHARM-PDM, which follows a pairwise correspondence 

method, the correspondence generation is the same for train and test samples.

For ShapeWorks and Deformetrica, the patient-specific landmarks are warped from the 

subject space to the mean space using thin plate splines (TPS) (Bookstein, 1989) to compute 

the mean warped landmarks. For SPHARM-PDM, the landmarks on the mean shape are 

manually annotated as the tool does not provide correspondences in the subject space. Using 

correspondences of the mean shape and the patient-specific anatomy as control points, a 

TPS warp is built to define a mapping between the mean and patient space where the mean 

landmarks are warped to patient space to obtain patient-specific, SSM-predicted landmarks. 

The landmark predictions from the SPHARM-PDM are aligned to the patient space using 

a Procrustes fit (Gower, 1975). For the LAA population, which exhibits natural clustering, 

the ostium is manually annotated using ParaView (Ayachit, 2015) for every cluster mean 

shape, and the ostium is warped back to the individual samples belonging to the cluster 

using correspondences as control points for TPS fitting. Finally, the warped ostia shapes are 

used to compute the LAA ostia measurements (min and max diameters (Fig. 2)), which can 

be used for the implant design and selection process.

Validation entails comparing the SSM-predicted patient-specific landmarks (using Euclidean 

distance) and measurements (using absolute differences) against the ground-truth ones (Fig. 

6). Statistical tests identify whether the landmarks/measurements inferred from the SSM 

tools are statistically equivalent to the ground-truth (i.e., manually annotated landmarks and 

measurements), which can assist in drawing conclusions about the relative performance of 

SSM tools in a clinical application. Specifically, these statistical tests indicate if the errors 

in SSM-based landmarks/measurements inference are significant, and thereby determine 

whether SSM can replace manual inputs.

Paired sample t-tests (Zar, 1999) are used to compare SSM-based landmarks/measurements 

versus the manually annotated ones. For measurements, which are scalars, the paired 

samples are tested using a univariate paired t-test. For landmarks, the paired samples are 

tested using both a univariate paired t-test for each of the 3 dimensions (X, Y, and Z) in 

the Euclidean space and using a 3D multivariate test. An insignificant result of testing the 
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difference between SSM-based and ground truth landmarks (in each of the three dimensions) 

with enough statistical power will establish the equivalence of the SSM estimated landmarks 

with manually picked landmarks. Power here is the probability to reject the null hypothesis, 

i.e., the predicted and ground truth landmarks/measurements are not different, when the null 

hypothesis is not true. Since the validation hopes to accept the null hypothesis to establish 

statistical equivalence, the power to reject the null hypothesis needs to be high enough. 

Otherwise, accepting the null hypothesis could be due to the lack of power. In this study, we 

perform power analyses with at least 85% power for the two-sided tests at the 0.05 test level.

4.3.2. Lesion screening—Lesion screening localizes the abnormal changes in a 

subject-specific anatomy and classifies the subject’s anatomy as a control or a pathology 

based on the extent of the lesion. Applications for lesion screening considered here are 

the cam-type FAI lesion in femurs and the Hill-Sachs lesion in the humerus. In the cam-

type FAI lesion, the extra bone growth that forms on the edge of the femoral neck is 

removed through a surgical resection (Atkins et al., 2017a) (Fig. 5). Hill-Sachs lesion is 

a compressive bone loss on the humerus head due to dislocation that is filled through a 

surgical allograft (Provencher et al., 2012) (Fig. 4). Accurate lesion extent identification is 

the key to the success of these surgeries (Atkins et al., 2017a).

SSM can provide an objective characterization of a patient’s lesion extent by relating a 

patient-specific anatomy to the population-level shape statistics of controls. In particular, 

given a shape model trained on control subjects, a pathologic sample can be represented 

in the context of the controls population using its closed-form, orthogonal projection onto 

the PCA subspace of controls. The lesion can then be detected by quantifying the deviation 

of the pathologic shape from the shape reconstructed based on the model of controls. 

However, such deviation would result in false positives and fail to determine the accurate 

representation of the given pathology with respect to the controls’ model, primarily because 

the lesion is a localized abnormal shape change that is not explained by the controls’ 

statistics. If detected or known in advance, the lesion could be discarded, allowing only 

the healthy parts of the shape to predict the closest control shape to the given pathologic 

sample, similar to (Albrecht et al., 2013). In lesion screening, lesions are not known a priori, 

and hence representing a pathologic sample with respect to the controls’ statistics should 

down-weight the lesion in the projection of the pathologic shape to reduce false positives in 

the lesion identification process (Fig. 10).

To reduce false positives, we formulate the projection onto the controls’ subspace as an 

optimization problem that simultaneously estimates the sample’s projection and identifies 

the anatomical regions not supported by the controls shape model. The optimization is 

formulated using a slack-variables-based approach. In particular, slack variables or surface 

offsets capture the pointwise differences in the surface normal direction between the 

pathology sample and the reconstruction of the pathology sample with respect to the controls 

statistics. Since we do not know in advance whether a sample is control or pathology, 

offsets should be minimal in the case of a control subject, and thereby the solution to this 

nonorthogonal projection should converge to that of the orthogonal projection. Furthermore, 

surface offsets should only be nonzero for those point correspondences that belong to the 

spatial support of the lesion. Hence, the nonorthogonal projection of a pathology sample to 
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the closest control match is formulated as the solution of the following energy function that 

balances the trade-off between surface reconstruction based on a pre-trained shape model 

and a sparsity inducing regularization for the surface offsets.

E(α, Δx(α)) = ∑
i = 1

M
‖xi − [xi(α) + Δxi(α) ∘ η(xi(α))]‖2 + λ‖Δxi(α)‖1 (1)

where:

• x ∈ ℝdM is a pathology sample represented as M–correspondence points xi ∈ ℝd

for i ∈ {1, …, M}, and d = 3 for 3D shapes.

• The controls PCA subspace is parameterized by Θ = {μ, U}, where μ ∈ ℝdM is 

the mean shape and U ∈ ℝdM × K are the dominant K–eigenvectors, i.e., modes 

of variation, explaining 97% of the variability in the population.

• α ∈ ℝK is the orthogonal projection (i.e., shape parameters) of a pathology 

sample onto a controls PCA subspace.

• x(α) ∈ ℝdM denotes the reconstructed pathology correspondences from the 

controls PCA subspace, computed in closedform as x(α) = Uα + μ, with an 

orthogonal projection of shape parameters α.

• xi(α) ∈ ℝd represents the i–th reconstructed correspondence point. To avoid the 

clutter of notations, we removed the explicit dependency of the reconstructed 

correspondences on the pretrained shape model, i.e., xi(α) = xi(α∣Θ).

• η(x(α)) ∈ ℝdM is the surface normal vectors for the correspondences on the 

pathology reconstruction and η(xi(α)) ∈ ℝd is the normal vector of the i–th 

correspondence xi(α).

• Δx(α) ∈ ℝdM is vector of surface offsets for the correspondence points on the 

pathology reconstruction. Δxi(α) = Δxi(α)1d ∈ ℝd represents a vector of offsets 

with equal elements Δxi(α) for the i–th correspondence in the direction of 

surface normal η(xi(α)) on the shape x(α).

• ∘ denotes elementwise (i.e., Hadamard) product.

• λ is the regularization parameter of the sparsity prior on the surface offsets to 

force zero offsets for regions/samples that are explained by the controls statistics.

The energy function in (1) is minimized using gradient-descent optimization. The derivation 

of the objective gradient and the algorithm for slack variables optimization are detailed 

in Appendix B. The gradients obtained are used to minimize the objective function in an 

iterative manner using an adaptive learning rate (see Algorithm 1 in Appendix B). The 

parameters that minimize the energy function in (1) are used to compute the closest control 

to the given pathology sample x(α), and the offsets Δx(α) indicate the extent of the lesion.

Goparaju et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The offsets are used to validate the performance of the SSM tools in identifying the lesion. 

A qualitative assessment of shape models from SSM tools is performed as follows: (1) the 

group differences between the original controls, held-out samples, and the reconstructed 

controls with offsets are not expected to provide any significant differences because the 

shape model should explain controls variability; and (2) the group differences between the 

pathology and the reconstructed pathology samples with offsets are expected to inform 

differences localized to a particular region. The group differences are visualized, and the 

offset values are assessed across shape models.

The estimated offsets are also used in a pathology classification task (Fig. 6). A random train 

and test split is performed on the controls and pathology samples. The offsets of the training 

samples are fed to a multilayer perceptron classifier, with labels 0 and 1 indicating control 

and pathology, respectively. The accuracy of the classifier is then obtained by testing the 

model on the test, held-out samples, consisting of controls and pathology subjects. Multiple 

train-test splits are performed, and the average accuracy of the classifier is reported for each 

SSM tool.

5. Results

This section presents the evaluation and validation results of the considered SSM tools 

(Section 3.1) for a representative set of clinical applications (Section 3.2) that demonstrate 

common and important clinical utilities of shape modeling. The time and memory analysis 

for generating shape models using ShapeWorks and Deformetrica are detailed in Appendix 

C.

5.1. Experimental setup

Here, we cover datasets and training/testing splits for building shape models considered for 

the benchmark study.

5.1.1. Datasets—The segmented binary volumes of each of the following datasets were 

preprocessed as detailed in Section 4.

Left atrial appendage (LAA).: The population study was conducted on 130 LAA images 

that were retrospectively obtained from the AFib database at the University of Utah. The 

LAA dataset is representative of the AFib population (Navaravong et al., 2014). The MRI 

images were served with a single-handed segmentation by an expert. The ground-truth 

landmarks consisting of five points on the LAA ostium were manually annotated for each 

LAA sample using Corview (Marrek inc., Salt Lake City, UT), as shown in Fig. 2(f), and 

reviewed by a clinical expert.

Scapula.: CT scans and corresponding scapula segmentations of 31 cadaveric control 

scapulae and 54 scapulae of patients with shoulder instability were obtained from the 

coracoacromial morphology study in (Jacxsens et al., 2019). The results from the study 

provide support to conduct further research on all types of shoulder instability using CT 

scans. Furthermore, an explanation was provided in (Jacxsens et al., 2019) to justify and 

rule out any bias involved in the controls and pathology samples. The anatomical landmarks 
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obtained for the scapulae participants under the coracoacromial morphology study were 

used here for the validation of the landmarks inference. The ground-truth landmarks were 

manually annotated for six curves, as shown in Fig. 3(b). A best-fit circle of the glenoid 

was used for the glenoid landmark annotation. The significance of such landmarks is as 

follows: Curve 1 landmarks represent the anatomy of acromion, curves 2 and 3 landmarks 

capture the coracoid process, curve 4 and 5 landmarks obtain the curvature of the concave 

articular surface of the glenoid, and curve 6 landmarks encode the anterior rim of the 

glenoid to address potential anterior defects. These landmarks are of interest to address 

both the glenoid and the coracoacromial anatomy to understand the pathoanatomy and 

pathomechanics of shoulder instability. The data as part of the coracoacromial morphology 

study (Jacxsens et al., 2019) were preprocessed as follows- The left scapulae shapes were 

mirrored to right scapulae shapes to ensure a consistent orientation of all the shapes in the 

cohort. Scapulae shapes were aligned to the glenoid-based coordinate system.

Humerus.: CT scans and humerus segmentations of 31 cadaveric control humeri and 54 

humeri of patients with shoulder instability and a Hill-Sachs lesion were obtained as part 

of the study in (Jacxsens et al., 2019). The ground-truth landmarks were obtained for three 

anatomical curves, as shown in Fig. 3(c), which encode the morphological information of 

the humeral head. Information on the articular surface is encoded in curves 1 to 3 (Fig. 3(c)). 

The inference of these landmarks can help in surgical planning.

Femur.: The femurs data were collected through CT scans of 59 control and 37 FAI patients 

with cam-type lesions. These scans were obtained as part of the cortical bone thickness 

study (Atkins et al., 2017b). The demographics of all the patients were analyzed using the 

Wilcoxon rank sum test. The metrics between the sub-groups of male and female control and 

cam subjects were not signicantly different.

5.1.2. Train/test splits and shape modeling—We used importance sampling as 

detailed in section 4.1 to define random training/testing data splits for each dataset. For 

each random split, the training data were fed to each SSM tool to build the shape model. 

Since ShapeWorks and Deformetrica rely on a groupwise optimization approach, the point 

correspondences for each of the test samples were obtained by using the mean shape for 

initialization and fixing the correspondence of the training samples (i.e., the shape model). 

Due to its pairwise approach, the process of obtaining the correspondences for each test 

sample from SPHARM-PDM is the same as training. Specific details on the training/testing 

splits for each dataset are presented in the following paragraphs.

LAA.: Using the elbow method (Hardy, 1994), the number of clusters in the LAA dataset 

was identified as four, matching the LAA morphology classification reported in the literature 

(Wang et al., 2010). Seventy percent of the samples were selected using random sampling 

without replacement from each cluster to serve as training data. The remaining samples from 

each cluster were considered as testing data. Two such random train and test splits were 

sampled to perform the analysis.

Scapula.: Controls and pathology cohorts were used to generate two random splits. 

Split-1 had controls as training data and pathology samples as testing, whereas split-2 
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was constructed with pathology samples as training data and controls as testing data. The 

purpose of these splits is to assess the performance of SSM tools in inferring landmarks 

for both control and pathology subjects when trained using only the morphology of one of 

these groups. Testing samples of controls and pathology for split-1 and split-2, respectively, 

were randomly sampled without replacement using a 75%/25% train/test split to validate 

landmark inference on held-out samples from the same group considered to build the shape 

model of each split.

Humerus.: Two random splits, split-1 and split-2, were defined similarly to the scapula 

dataset.

Femur.: The data split for the femurs was random, and the split-1 and split-2 (similar to the 

scapula dataset) were used for evaluation. Split-1 alone was used for lesion screening.

5.2. Evaluation results

Evaluation of shape models is performed using quantitative and qualitative metrics detailed 

in Section 4.2. The compactness and specificity metrics are obtained using the training data. 

The generalization metric is computed as the ability of the shape model to represent held-out 

samples.

5.2.1. LAA shape models—Fig. 12(a) shows the quantitative metrics (compactness, 

generalization, and specificity) of LAA shape models trained using the two random splits. 

ShapeWorks consistently produced a compact model compared to SPHARM-PDM and 

Deformetrica (first column). ShapeWorks generalization was comparable to SPHARM-PDM 

for split-1 with a better performance for split-2 and better than Deformetrica in estimating 

the shape representation of unseen samples (second column). Deformetrica outperformed 

ShapeWorks and SPHARM-PDM in the specificity measure for split-2 and with an 

increasing number of modes in split-1, ShapeWorks’ specificity became comparable to 

Deformetrica (third column). Fig. 13(a) demonstrates the first two dominant modes of 

variation from the entire dataset without any splits. ShapeWorks and Deformetrica models 

were able to discover clinically relevant modes of variation in the data, which are elongation 

of the appendage and ostia size. The SPHARM-PDM model could discover neither the 

representative shape nor the dominant modes of variation correctly. The clustering analysis 

was performed on all the samples without any training and testing splits. Four clusters were 

identified in the data using the elbow method. The ability of shape models to discover the 

natural clusters was assessed as follows: The signed distance transform (DT) images were 

clustered using K-means, and the mean shape from each cluster was obtained to serve as a 

baseline. The ground-truth cluster labels for all the input shapes were manually annotated 

and reviewed by a clinical expert. The point correspondences from each shape model were 

clustered, and the cluster centers discovered from each tool were qualitatively compared to 

the mean shapes of the ground-truth clusters. The results illustrated in Fig. 14 suggest that 

ShapeWorks and Deformetrica were able to discover the natural clusters in the data.

5.2.2. Scapula shape models—Fig. 12(b) shows the quantitative metrics of scapula 

shape models. ShapeWorks consistently produced a compact model compared to SPHARM-
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PDM and Deformetrica for the two random splits. The generalization of Deformetrica 

and ShapeWorks was comparable in modeling unseen samples, specifically with an 

increased number of modes, with a slightly better specificity in favor of Deformetrica for 

split-2 (second column). Deformetrica specificity was better than that of ShapeWorks and 

SPHARM-PDM in split-1. The Deformetrica and ShapeWorks specificity measure were 

comparable in split-2. However, Fig. 12(b) shows that SPHARM-PDM could not generalize 

well, and the samples generated by the shape model were not representative of the shape 

population in both splits. This performance is due to the complex morphology of the scapula 

compared to LAA. Fig. 13(b) shows the dominant modes of variation in the entire dataset for 

controls and pathology. ShapeWorks and Deformetrica were able to discover the clinically 

relevant mode of variation, which is the variation of the glenoid size due to an anterior 

glenoid defect in the pathology subjects in the population. However, SPHARM-PDM could 

neither produce a representative shape of the population nor encode a clinically relevant 

mode of variation. Furthermore, ShapeWorks and Deformetrica models were able to capture 

the clinically relevant group differences between the controls and pathology population (see 

Fig. 15(a)).

5.2.3. Humerus shape models—Fig. 12(c) shows the quantitative metrics of humerus 

shape models trained using the two random splits. SPHARM-PDM produced a compact 

model in split-1, and ShapeWorks produced a compact model in split-2. Nonetheless, the 

three SSM tools similarly struggle to find a compact representation for the humerus shape 

compared to the other anatomies under study. One might think that the humerus variability 

is nonlinear or multimodal, and hence computing compactness using PCA could result in 

a noncompact model. However, as we show in Appendix D, the three tools resulted in 

multivariate Gaussian distributions for the humerus training splits. One possible explanation 

is that the humerus anatomy has subtle localized shape variations that none of the SSM tools 

considered in this study were able to capture in a lower number of modes. Shapeworks 

outperformed both Deformetrica and SPHARM-PDM in generalizing well on held-out 

shapes and generating plausible and realistic shapes. The dominant modes of variation in 

the entire dataset were analyzed from the entire dataset consisting of controls and pathology. 

The first dominant mode of variation, which is the characterization Hill-Sachs lesion, as 

illustrated in Fig. 13(c), was identified correctly by all the models. Moreover, all the models 

were able to capture the clinically relevant group differences between the controls and 

pathology populations (see Fig. 15(b)). Nonetheless, models from SPHARM-PDM encoded 

differences that are not aligned with the underlying morphological characteristics of the 

Hill-Sachs lesion.

5.2.4. Femur shape models—Fig. 12(d) shows the quantitative metrics of femur 

shape models trained using the two random splits. SPHARM-PDM consistently produced 

a compact model compared to ShapeWorks and Deformetrica for the two random splits. 

The generalization of ShapeWorks was better than that of Deformetrica and SPHARM-

PDM in modeling unseen samples. The specificity of ShapeWorks was better than that 

of Deformetrica and SPHARM in both splits. However, Fig. 12(d) shows that SPHARM-

PDM could not generalize well, and the samples generated by the shape model were not 

representative of the shape population in both splits. The dominant modes of variation in 
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the femur data were analyzed from the entire dataset consisting of controls and pathology. 

ShapeWorks and Deformetrica were able to discover the clinically relevant mode of 

variation, which is the extra bone growth in the femoral head (see Fig. 13(c)). However, 

SPHARM-PDM could not encode the clinically relevant mode of variation. ShapeWorks 

and Deformetrica models were also able to capture the clinically relevant group differences 

between the controls and pathology population (see Fig. 15(c)).

5.3. Validation results

The validation is conducted by comparing the ground-truth information with the predictions 

of the SSM tools.

5.3.1. Anatomical measurements inference – LAA—SSM tools were validated 

based on the accuracy of the LAA ostia measurement predictions. The ground-truth 

measurements were obtained, as shown in Fig. 2, where the landmarks on the LAA 

ostium were used to compute the ground-truth measurements of the LAA maximum and 

minimum diameters by fitting an ellipse to each LAA ostium. Fig. 16(a) shows the 

ground-truth measurements and SSM tool predictions for the LAA ostia maximum and 

minimum diameters for the training and testing samples. ShapeWorks and Deformetrica 

models predictions were closely aligned to the ground-truth compared to predictions from 

SPHARM-PDM models. LAA closure implant devices are available in increments of 2-4 

mm (Akinapelli et al., 2015). Identifying a difference of 2 mm is clinically relevant for 

LAA closure implant design and selection. From Fig. 16(a), ShapeWorks and Deformetrica 

models predictions are mostly clinically relevant compared to predictions from SPHARM-

PDM models.

Statistical tests showed the equivalence of the predicted and ground measurements, based 

on Euclidean distances, for ShapeWorks and Deformetrica in split-1 for the maximum 

diameter (p = 0.569 and 0.210, respectively), and Deformetrica in split-2 (p = 0.436). When 

combining the splits with clusters, we found the equivalence for ShapeWorks, SPHARM-

PDM, and Deformetrica (maximum diameter) for split-1-cluster-1, split-2-cluster-1, and 

split-2-cluster-2. In addition, when using Deformetrica, we found the equivalence (for 

maximum diameter) in all splits and cluster combinations except for split-1-cluster-4 (p 

= 0.037).

5.3.2. Anatomical landmarks estimation – scapula—Fig. 16(b) shows the 

Euclidean distance between the ground-truth landmarks and landmarks inference from each 

SSM tool (average of the cumulative distances for the points/landmarks on each curve) for 

the six anatomical curves of scapula. We found smaller errors in the case of curves 4, 5, and 

6 in the two random splits. The performance of the Deformetrica and ShapeWorks models 

is comparable and better than that of the SPHARM-PDM model. The measurement of the 

glenoid radius can be computed from the landmarks of curve 4. The glenoid radius was 

obtained from the ground-truth landmarks and inferred landmarks of the SSM tools.

In split-1, statistical tests showed the equivalence of the predicted and ground-truth 

measurements, based on the distances in Euclidean space, for the glenoid radius in 

ShapeWorks (p = 0.07 for no template for initialization and 0.09 for the mean template 
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for initialization), for the distance between the apex of the coracoid process and anterolateral 

corner (ALC) of the acromion as well as the distance between apex of the coracoid process 

and the posterolateral comer (PLC) of the acromion in Deformetrica (p = 0.112 and 0.209, 

respectively, for the raw measurements; p = 0.416 and 0.140, respectively, for the ellipse 

atlas; p = 0.355 and 0.168, respectively, for the sphere atlas; p = 0.149 and 0.285 for the 

medoid atlas).

5.3.3. Anatomical landmarks estimation – humerus—The landmarks inference of 

Deformetrica and ShapeWorks was better than that of SPHARM-PDM, resulting in lower 

errors (see Fig. 16(c)). Curve 2 had lower errors compared to curves 1 and 3 in both test 

data predictions. The measurement humerus radius can be computed from the landmarks of 

curve 2. The humerus radius was obtained from the ground-truth landmarks and the inferred 

landmarks of the SSM tools. Statistical tests showed the equivalence of the predicted and 

ground truth measurements, based on Euclidean distances, for Deformetrica in split-1 for the 

humerus head radius (p = 0.09).

At present, orthopaedic companies size their shoulder implants in increments of 2-5 mm. 

Furthermore, shoulder instability has been observed with shape differences in the range of 

2-5 mm (Jacxsens et al., 2019). Therefore, we believe that identifying a difference of 2 

mm is clinically-relevant. From Fig. 16 (b) and (c), ShapeWorks and Deformetrica models 

predictions are mostly clinically relevant compared to predictions from SPHARM-PDM 

models, since they can predict shoulder joint measurements to the level of manufactured 

implants intended to replace them.

5.3.4. Lesion screening – femur and humerus—SSM tools were validated based on 

the lesion identification and the accuracy of the classification of the pathology. The lesion 

identification is qualitative because the ground-truth lesion is unavailable for the participants 

with pathology. The accuracy of classification of the pathology from shape models was 

obtained to quantify the performance.

Lesion identification:  The slack variable optimization (Algorithm 1) resulted in the 

identification of the closest control to the pathology and captured the lesion in the slack 

variables or offsets in the normal direction of each correspondence point. The differences 

between the reconstruction and reconstruction with the offsets in the normal direction were 

visualized groupwise for all the control and pathology samples (see Fig. 17). The offsets for 

the controls did not signify a lesion, whereas the offsets for the pathology signified a lesion. 

For femurs, the lesion was correctly identified in the case pathological group differences by 

ShapeWorks and Deformetrica models (see Fig. 17(a)). For humeri, the lesion was correctly 

identified in the case of pathological group differences by all the models (see Fig. 17(b)). 

The SPHARM-PDM model captured false positives in the pathology differences compared 

to ShapeWorks and Deformetrica models (see Fig. 17(b)).

The lesion screening task must identify the spatial distribution of the estimated offsets on 

the anatomy’s surface. Here, we visualize the spatial trends of the estimated offsets using 

the held-out, unseen pathology and controls samples. Events of interest are positive offsets 

that reflect bone protrusions for femurs and negative offsets that reflect bone recession for 
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humerus. We calculate the probability of a positive offset and a negative offset at each 

correspondence point for all the pathology and control held-out samples. The occurrence 

probabilities are calculated by counting the positive and negative offsets at a correspondence 

point and then dividing this count by the number of samples in the testing cohort (pathology 

or control). Both these probability values are then interpolated onto the mean mesh obtained 

from the shape model using the training data (i.e., controls seen). The results are presented 

in Fig. 18.

The positive and negative offset probabilities visualized for unseen femur and humerus 

controls in Fig. 18(a) (second column) and Fig. 18(b) (second column), respectively, 

mostly vary around 0.3 to 0.6 for ShapeWorks and Deformetrica in regions that are not 

spatially lesion-specific, indicating no prominent lesions detected across held-out control 

samples. SPHARM-PDM, on the other hand, shows higher probability values (around 0.8) 

for humerus controls, indicating increased false positives. Fig. 18(a) (first column) shows 

the offset probabilities for held-out femurs pathology, where ShapeWorks and SPHARM-

PDM have higher positive offset probabilities as compared to Deformetrica. In contrast to 

Deformatrica, ShapeWorks results in positive offset probabilities that are better localized 

around the head-neck junction, which is the location for the cam-FAI protrusion. SPHARM-

PDM, on the other hand, results in more positive than negative offsets. Nevertheless, the 

spatial distribution of positive offsets is distant from the cam-FAI lesion, resulting in higher 

false positives. Fig. 18(b) (first column) shows the offset probabilities for held-out humerus 

pathology, where ShapeWorks results in more spatially localized negative offsets compared 

to Deformetrica. SPHARM-PDM produces higher positive and negative offsets that are 

spatially less specific to the Hill-Sachs recession lesion.

To analyze the high-dimensional distribution of the estimated offsets, we use t-Distributed 

Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008) for 

dimensionality reduction. For each SSM tool, the offsets data, which is a scalar per 

correspondence point, from all three groups —pathology unseen, controls unseen, and 

controls seen— are pooled into a single data matrix. We then applied the t-SNE algorithm to 

map all the offsets to a 2D space to visualize the distributional differences between offsets 

estimated for pathology samples versus those estimated for controls. The 2D embedding 

obtained from t-SNE is then passed to a bivariate kernel density estimator, which determines 

the probability density of 2D embedding for the 3 groups. The visualizations of the 

embedding are shown in Fig. 19. The offsets for humerus across all tools show distinct 

clusters (Fig. 19(a)), indicating that the pathology and control offsets are discernible. This 

distinction is reflected in the classification results seen in Table 1(b), where the MLP 

classifier can better discriminate between the controls and pathology groups. The offsets 

for femurs do not show highly distinct clusters (Fig. 19(b)). SPHARM-PDM, in particular, 

shows overlapping densities for controls and pathology, which can be verified by the poor 

classification performance of SPHARM-PDM in Table 1(a) compared to ShapeWorks and 

Deformetrica.

Pathology classification:  The offsets obtained from the optimization process were fed to a 

multilayer perceptron with labels 0 and 1 indicating control and pathology, respectively. The 

dataset was randomly split into training and testing sets. The best set of hyperparameters 
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(activation, hidden layers, number of units in each hidden layer, regularization, and 

solver) was found using three-fold cross validation on the training data of each SSM tool 

independently. The model was then trained using the training data with the best set of 

hyperparameters and used for the classification of pathology on the test data. The random 

train-test split, hyperparameter tuning, and testing were performed for several iterations 

to obtain the average predictions from the trained models. Classification performance 

metrics were obtained from the trained models on the training and testing data (see 

Table 1). In the case of the femur, the performance of ShapeWorks and Deformetrica 

trained models was comparable (see Table 1(a)). The standard deviation of metrics was 

low for ShapeWorks, indicating the minimal deviation of the results for different train-test 

splits. SPHARM-PDM results were inferior in the classification of pathology. In the case 

of the humerus, the performance of ShapeWorks trained model was better than that of 

Deformetrica and SPHARM-PDM (see Table 1(b)). SPHARM-PDM model performance 

was comparable to that of ShapeWorks. The standard deviation of metrics was relatively 

higher for Deformetrica-trained models. The larger generalization error of all the SSM tools 

for the femur data compared to the humerus data. This performance complies with the better 

clusterability of the offsets’ tSNE embedding for the humerus data compared to the femur 

data (see Fig. 19. This performance difference may be attributed to the differences in balance 

of classes in the two datasets. In particular, femurs had 37 pathology and 59 control samples, 

whereas humerus had 52 pathology and 41 control samples. The humerus data is more 

balanced than the femur. The imbalance in the dataset could be one possible reason for the 

inferior performance statistics.

6. Discussion

ShapeWorks produced shape models with consistent quantitative and qualitative 

performances in most of the experiments detailed in the results section. This consistency can 

be attributed to the underlying groupwise correspondence-based approach. For evaluation 

metrics, ShapeWorks resulted in compact models of the LAA, scapula, and humerus 

anatomies (see Fig. 12). ShapeWorks models generalized well for the LAA, scapula, 

humerus, and femur anatomies, and consistently generated plausible shapes of the scapula, 

humerus, and femur anatomies. ShapeWorks models were able to discover clinically relevant 

modes of variation, including the group differences for all the studied anatomies, and the 

natural clusters in LAA (see Fig. 14) and its validation outcomes were closely aligned to the 

ground-truth.

Deformetrica models were comparable to those of ShapeWorks in a few experiments due 

to the underlying groupwise deformation-based approach. However, Deformetrica results 

were not consistent throughout the experiments because of the impact of the input atlas 

that needs to serve as an initialization. A qualitative assessment of the performance of 

Deformetrica models with different atlases was performed on an ensemble of 3D shapes 

of boxes with a moving bump. The first mode of variation from the Deformetrica models 

with different input atlases (mean, medoid, random input, ellipsoid, and sphere) resulted in 

large variability in the first mode of variation (see Fig. 20). The ellipsoid and sphere atlases 

were scaled to match the input shapes. The variability displayed in the discovery of the 

moving bump informs the inconsistency in the Deformetrica models. When the medoid was 
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provided as an input atlas to Deformetrica, the moving bump in the first mode of variation 

was closely aligned to the ground-truth. The modes of variation for the mean and ellipsoid 

input atlases were similar. A quantitative assessment of the performance of Deformetrica 

models with different atlases was performed on scapula landmarks inference task. The 

algorithm could not produce a good shape model when the input atlas was provided as 

an ellipse and sphere. Hence, the sphere and ellipsoid were deformed onto some subject 

as a preprocessing step. The deformed sphere and ellipsoid at an intermediate step of the 

deformation flow were then used as modified initial atlases. The Euclidean distance between 

the ground-truth and predicted landmarks from the Deformetrica models with different input 

atlases (ellipsoid, sphere, medoid, and mean) resulted in different levels of errors (see Fig. 

21 (b)). ShapeWorks does not need an input atlas to generate point correspondences. To 

analyze the performance of ShapeWorks with an input atlas, the point correspondences of 

the training data were initialized to the mean training shape. The Euclidean distance between 

the ground-truth and predicted landmarks with no reference and mean shape initialization 

was compared (see Fig. 21 (a).).

SPHARM-PDM models mostly displayed inferior results compared to those of Deformetrica 

and ShapeWorks in the evaluation and validation experiments. This inferior performance can 

be attributed to the pairwise correspondence-based approach that does observe the entire 

cohort, where the correspondences from SPHARM-PDM are generated by mapping every 

input shape to a unit sphere. This spherical mapping can result in ambiguity in the mapping 

of the axes demonstrated in the LAA modes of variation (see Fig. 13(a)). In the case of 

evaluation metrics, SPHARM-PDM could not produce compact models of the anatomies 

LAA, scapula, and humerus (see Fig. 12). SPHARM-PDM models could not generalize 

adequately for the scapula, humerus, and femur anatomies, and could not generate plausible 

shapes for all the anatomies. The SPHARM-PDM models could not consistently discover 

clinically relevant modes of variation, including the group differences, and were unable to 

discover natural clusters in LAA (see Fig. 14). SPHARM-PDM validation outcomes were 

rarely aligned to the ground-truth.

In summary, the SSM tools produced different levels of consistency in the evaluation and 

validation process, which indicates the need for such an assessment in real-world clinical 

applications. Based on the overall results from all the experiments, we can infer that the 

groupwise correspondence technique can potentially learn the population-level variability 

compared to the pairwise correspondence method.

7. Conclusion and future work

The main contribution of this work is a systematic evaluation and validation of open-source 

statistical shape modeling (SSM) tools in the context of clinical applications, an area in 

which there has been little work (Gollmer et al., 2014).

7.1. Research contributions

In this paper, we have presented an evaluation and clinically driven validation framework 

to assess the performance of shape models from different open-source SSM tools. 

Quantifying the performance of shape models is a challenging task due to the lack of 

Goparaju et al. Page 24

Med Image Anal. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ground-truth correspondences. This problem has been addressed by considering qualitative 

and quantitative metrics to determine the utility of shape models in clinical applications. The 

evaluation of shape models is performed using quantitative metrics such as compactness, 

generalization, specificity (Davies et al., 2002), and qualitative metrics, including modes 

of variation and clustering analysis. The validation of shape models is performed based on 

the differences between ground-truth and SSM tool predictions of anatomical measurements 

and class. The evaluation and validation framework is tested on representative real-world 

clinical applications such as implant design and selection, motion tracking, surgical 

planning, bone resection, and bone grafting. Different tools produced different levels of 

consistencies, which highlights the importance of such an assessment. ShapeWorks (Cates 

et al., 2017a) and Deformetrica (Durrleman et al., 2014) models displayed better results in 

the clinical applications compared to SPHARM-PDM (Styner et al., 2006) models due to 

the underlying groupwise approach for establishing shape correspondences. Deformetrica 

models displayed inconsistencies in results due to the bias introduced by the input atlas 

used for initialization. SPHARM-PDM models were inferior in performance due to the 

underlying pairwise correspondence approach. The evaluation indicated that SPHARM-

PDM models mostly were unable to produce compact models, generalize well to unseen 

shapes, and generate realistic shapes that retain the shape characteristics of the population 

under study. SPHARM-PDM models could not discover clinically relevant modes of 

variation and could not identify natural clusters in a morphology such as LAA, due to 

ambiguity in the mapping of the axes. The validation demonstrated that ShapeWorks and 

Deformetrica models were comparable in performance and outperformed SPHARM-PDM 

models.

7.2. Scientific impact

This research provides a direction to systematically assess different SSM tools available for 

clinical applications. The framework assists in selecting and deploying the right SSM tool 

to address a clinical need. The assessment of SSM tools can motivate further research and 

enhancement of the underlying optimization techniques involved in shape-modeling tools. 

Benchmarking the performance of shape models could motivate the development of a new 

class of shape-modeling tools and techniques, which could take the performance of SSM in 

real-world applications to another level. This study may also drive the development of a new 

set of tools to automate the end-to-end evaluation and validation of SSM tools, when given 

training and test data. The evaluation and validation framework proposed in this paper could 

easily be extended to other clinical situations or other classes of applications of SSM.

7.3. Limitations and future work

This research is confined to three open-source, widely used, state-of-the-art SSM tools 

applicable for general anatomies. However, the framework can be adapted to other SSM 

tools that work on general purpose anatomies or SSM tools that are tailored to specific 

anatomies. The performance results of the SSM tools discussed in this paper cannot be 

baselined for all the clinical applications or other clinical scenarios. The results from SSM 

tools can vary based on the various steps followed in the shape-modeling process, such as 

training data collection, data preprocessing, and parameter tuning for the shape models. The 

hyperparameter tuning process was performed for ShapeWorks and Deformetrica but not 
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SPHARM-PDM due to its pairwise approach. High-quality training data can help improve 

the shape-modeling process. In the future, this study can be extended to other publicly 

available tools and clinical applications to benchmark SSM tools in different scenarios and 

to provide a blueprint for the development of computational methods, tools, and techniques 

for shape modeling.
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Appendix

Appendix A. SSM tools: technical details

Appendix A.1. ShapeWorks

PSM formulation treats each surface as a collection of interacting dynamic particles with 

mutually repelling forces to optimally cover, and therefore describe, the surface geometry. 

The correspondences are freely moving particles, yet they are constrained to lie on the 

surface, and their positions can be directly optimized. This particle-based representation 

avoids many of the problems inherent in parametric representations such as the limitation 

to specific topologies, processing steps necessary to construct parameterizations, and bias 

toward model initialization using initial atlases.

PSM optimization can be summarized as follows: Consider an ensemble of N 
shapes S = {x1, x2, …xN}, each with its own set of M particles (i.e., correspondences) 

xn = [xn1, xn2, …xnM], where ordering implies correspondence among shapes. A correspondence 

lives in a d–dimensional space, i.e., xnm ∈ ℝd, with d = 2 and 3 for 2D and 3D shapes, 

respectively. For groupwise modeling, a rigid or similarity transformation Tn is estimated 

to transform the particles in the n–th shape local coordinate system xnm to the common 

coordinate system znm such that znM = TnxnM. This representation involves two types of 

random variables (Fig. 1(a)): a shape space variable Z ∈ ℝdM and a particle position 

variable Xn ∈ ℝd that encodes the distribution of particles on the n–th shape (configuration 

space). Correspondences are optimized by minimizing a combined shape correspondence 

and surface sampling objective function Q = H(Z) − ∑n = 1
N H(Xn), where H is an entropy 

estimation assuming Gaussian shape distribution in the shape space and Euclidean particle-

to-particle repulsion in the configuration space. This formulation favors a compact ensemble 
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representation in shape space (first term) against a uniform distribution of particles on each 

surface for accurate shape representation (second term).

Appendix A.2. Deformetrica

The diffeomorphic multiobject template complex construction is performed using a 

Bayesian framework (Gori et al., 2017). The complex of a shape instance is modeled 

as a deformed template complex and a residual. The n–th shape complex is defined as 

Sn = ϕn(A) + ϵn, where ϕn(A) is the deformation on the template (A) specific to the 

n–th shape instance,, and ϵn is the residual. The variations in the shapes are modeled by 

these deformations, and each deformation is characterized by a set of parameters αn. The 

assumption here is that the parameters follow a Gaussian distribution, with a mean 0 and a 

covariance matrix Γα. The objective function is defined as estimating the template complex 

and covariance matrix by maximizing the joint posterior distribution of the shape complexes, 

i.e., {A∗, Γα
∗} = argminT, Γαp(A, Γα ∣ {Sn}n = 1

N ). The maximization process is constrained by 

the requirement that the template complex should deform to match the shape complex, and 

the residual ϵn should be small.

Appendix A.3. SPHARM-PDM

SPHARM basis functions Y l
k are defined with degree l and order k, 

Y l
k(θ, ϕ) = 2l + 1

4π
(l − k)!
(l + k)!Pl

k (cos θ) eikϕ, where θ ∈ [0; π], ϕ ∈ [0; 2π], and Pl
k the 

associated Legendre polynomials. The surface of the n–th shape can be expressed using 

SPHARM basis functions by decomposing 3 coordinate functions that define the surface 

as xn(θ, ϕ) = (xn(θ, ϕ), yn(θ, ϕ), zn(θ, ϕ))T, and the surface would be of the form 

xn(θ, ϕ) = ∑l = 0
∞ ∑k = − l

l cnl, kY l
k(θ, ϕ), where cnl, k are 3D coefficient vectors due to the 3 

coordinate functions. These coefficients are obtained using a least-squares method to fit the 

n–th shape surface. A correspondence point xnm on the surface is given by a parameter vector 

(θm, ϕm), which represents the m–th location on the predefined sphere parameterization.
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Appendix B. Slack variables-based optimization

Algorithm 1 Nonorthogonal sample projection using slack- variables-based optimization

1: Input: (a) Shape sample (x with M − correspondences), (b)
a signed distance transform (SDT) representation for the
given sample to compute surface normal vectors η(x(α))
for each correspondence in x(α), and (c) controls PCA sub‐
space (mean μ, eigenvectors U defined by K modes) .

2: Output:α: sample projection onto controls subspace, and
Δx(α): pointwise surface offsets .

3: Initialize parameters: Initial sample projection using

PCA orthogonal projection, i.e., α(0) = UT(x − μ), and set
the offset values for each point as 1e − 06 .

4: Compute derivatives for α: Compute ∂E
∂α using (B.1) .

5: Update α: α(t + 1) = α(t) − ω ∂E
∂α if the update reduces the

energy function, where ω is an adaptive learning rate .
6: Reconstruct x: Compute x(t + 1)(α) = Uα(t + 1) + μ .
7: Compute surface normals:Use the gradient of the SDT to

compute the surface normals at the updated correspondence
points, i.e., η(t + 1)(x(α)) = η(x(t + 1)(α)) .

8: Compute derivatives for Δx(α): Compute ∂E
∂Δxi(α) for i =

{1, …, M} using (B.4) .

9: Update Δx(α):Δxi
(t + 1)(α) = Δxi

(t)(α) − γi
∂E

∂Δxi(α) if the up‐

date reduces the energy function . Here, γi is an adaptive
learning rate for the i − th correspondence point .

10:Repeat steps 4‐9 until the maximum number of iter‐

actions or convergence are computed as ∣ α(t) − α(t − 1) ∣
∣ α(t − 1) ∣

and

∣ Δx(α)(t) − Δx(α)(t − 1) ∣
∣ Δx(α)(t − 1) ∣

< 1e − 06

The energy function in (1) is minimized using gradient-descent optimization with an 

alternating coordinate descent on the parameters α and Δx(α). The L2 norm on the 

difference between the pathology sample and the reconstructed sample is minimized by 

encoding the differences attributed to the lesion variations not supported by the shape model 

in the surface/point offsets. The L1 regularization is used to induce sparsity on the offsets 

by allowing the differences to be captured only for the points not supported by the PCA 

subspace of the control (Fig. 11). The partial derivatives with respect to α are as follows:
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∂E
∂α = 2 ∑

i = 1

M
xi − [xi(α) + Δxi(α) ∘ η(xi(α))]

T

× ∂E
∂α { − [xi(α) + Δxi(α) ∘ η(xi(α))]}

(B.1)

Using the closed-form orthogonal reconstruction of a pathology from the PCA subspace, the 

vector representation of the gradient computation is given as

∂E
∂α x(α) = ∂E

∂α {Uα + μ} = U, (B.2)

where ∂E
∂α xi(α) ∈ ℝd × K. In an alternating coordinate descent, surface offsets Δx(α) are 

assumed to be fixed (i.e., lagging) with respect to α. The derivative computations of surface 

normals η with respect to α are approximated using finite differences across iteration (t) and 

(t − 1), with a vector representation written as

∂E
∂α [Δx(α) ∘ η(x(α))] = Δx(α) ∘ η(t)(x(α)) − η(t − 1)(x(α))

α(t) − α(t − 1) . (B.3)

Gradients from (B.3) result in a matrix ℝdM × K, which is summed with the gradients from 

(B.2) and multiplied with the vectorized form of [xi − (xi(α) + Δxi(α) ∘ η(xi(α))], which is 

[x − (x(α) + Δx(α) ∘ η(x(α)] ∈ ℝdM × 1, resulting in a ℝK gradient.

For a given correspondence point offset, the partial derivatives of Δxi(α) are computed as 

follows:

∂E
∂Δxi(α) = 2 xi − [xi(α) + Δxi(α) ∘ η(xi(α))] T

× ∂E
∂Δxi(α){ − Δxi(α) ∘ η(xi(α))}

+ ∂E
∂Δxi(α)λ‖Δxi(α)‖1 .

(B.4)

where

∂E
∂Δxi(α){Δxi(α) ∘ η(xi(α))} = η(xi(α)) . (B.5)

L1 norm is a nondifferentiable penalty. Here, we use a smooth approximation to the L1 

penalty consisting of the sum of the integral of 2 sigmoid functions defined by Schmidt 

(Schmidt et al., 2007), where β = 106 results in the approximation that is within a small-

enough tolerance for the results produced by constrained optimization methods.
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∣ y ∣ ≈ 1
β {log (1 + exp( − βy)) + log (1 + exp(βy))} . (B.6)

Hence, the gradient of the L1 norm approximation can be written as

∂E
∂Δxi(α)λ‖Δxi(α)‖1 ≈ λ 1

1 + exp( − βΔxi(α))
− 1

1 + exp(βΔxi(α)) .
(B.7)

Equations (B.5) and (B.7) are for a given point correspondence. Considering all the M points 

on a pathology reconstruction, (B.5) results in gradients in ℝM × d when converted from a 

flattened vector in ℝdM to 3D points. Equation B.7 obtains gradients in ℝM. The gradient 

from (B.5) is multiplied by the x − (x(α) + Δx(α) × (η(x(α))) converted to 3D points in ℝM × d

and summed up across the resulting gradients of the dimensions in ℝM. These results are 

summed with the gradients from (B.5) to get the final gradients in ℝM.

Appendix C. Computational analysis

As discussed in section 4.3.1, ShapeWorks and Deformetrica use groupwise correspondence 

approaches to learn a population-specific atlas (i.e., mean shape) from the training 

samples. The mean shape can then be used to estimate the surface correspondences 

for the testing samples. This process can be performed in parallel for each testing 

sample. On the other hand, SPHARM-PDM uses a pairwise correspondence and allows 

correspondence estimation in parallel for individual data samples, including both training 

and testing samples. As SPHARM-PDM allows parallel computation on an as-needed 

basis, we compare only the computational performance involved in the training process 

for ShapeWorks v6.0 and Deformetrica v4.3.0.

For the computational performance analysis, we compare the time and memory utilization 

of ShapeWorks and Deformetrica for the training process of the 4 datasets and their 

corresponding two train/test data splits. All the experiments were run serially on a 

dedicated machine with the following configuration: OpenSUSE Leap 15.2, 16 CPU Intel(R) 

Core(TM) i7-9800X CPU @ 3.80GHz,x86_64 architecture. The results are consolidated in 

Table Appendix C.1.

ShapeWorks requires less time as compared to Deformetrica for the training process of 

the same dataset size. Whereas, Deformetrica, on average, has lower memory utilization. 

Nevertheless, ShapeWorks scales well for large datasets,which this can be observed by 

comparing the memory utilization for the LAA dataset.

Appendix D. Normality assumption of the shape models

PCA assumes linear correlations, and hence a multivariate Gaussian shape model. 

Gaussianity could be a simplifying assumption when using PCA to compute a model’s 

compactness. Specifically, a very compact non-Gaussian model (e.g., nonlinear, multimodal) 
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might appear less compact through the lens of PCA. Here, we report the results of statistical 

normality tests on all the shape models to justify the use of PCA for computing the 

compactness metric in 4.2.

The null hypothesis is the data follows multivariate normal (i.e., Gaussian) distribution. A 

necessary but not sufficient condition for a multivariate distribution to be normal is that 

all marginals have to be univariate normal (Small, 1980). Two important properties of a 

dM–dimensional multivariate random variable Z with a multivariate normal distribution are:

• All dimension subsets of the vector Z have a normal distribution.

• Linear combinations of Z are normally distributed.

Considering the properties mentioned above and the computational efficiency of performing 

univariate tests, we test the normality hypothesis by conducting a Shapiro-Wilk (Shapiro 

and Wilk, 1965) normality test for each dimension in a shape model, with a total of dM–

univariate normality tests for each shape model. For each dimension, if the p-value is > 0.05, 

we can accept the null hypothesis, and hence this dimension comes from a univariate normal 

distribution. For a shape model, if more than half dimensions of a model are univariate 

normals, then we deem the shape model as a multivariate normal distribution.

Table Appendix C.1.

Computational performance benchmarking results for the training process of ShapeWorks 

v6.0 and Deformetrica v4.3.0. Lower memory/time is bolded.

Dataset ╲ SSM Tools

Time (hours) Memory (gigabytes, GB)

Training Sample SizeShapeWorks Deformetrica ShapeWorks Deformetrica

Humerus Split-1 0.62 3.80 1.80 0.78 30

Humerus Split-2 0.85 4.77 1.80 0.89 39

Scapula Split-1 0.92 2.22 1.39 0.81 26

Scapula Split-2 0.92 4.95 1.80 0.83 27

Femur Split-1 0.92 1.67 3.96 0.81 44

Femur Split-2 0.63 0.88 2.68 0.90 44

LAA Split-1 2.60 15.36 1.34 1.90 94

LAA Split-2 2.55 10.37 1.36 1.90 94

Normality tests are conducted on the training splits for each dataset since the compactness 

metric is associated with the training data. Results are summarized in Table Appendix 

D.1. The models generated by ShapeWorks are consistently multivariate normals for all 

anatomies except for LAA, which complies with existing literature on the natural clustering 

of LAA morphology (see section 3.2.1). Hence, a strong shape model should reflect such 

a multimodal shape distribution, which can be modeled using a mixture of Gaussians. 

Deformetrica, on the other hand, does not consistently produce multivariate normal models 

for datasets that have no known morphological clusters. Furthermore, Deformetrica does 

not reflect the multimodal structure of LAA shapes for one of the training splits. SPHARM-

PDM is fairly consistent in producing multivariate normal shape models. However, it does 

not capture the clusterings of LAA shapes for one of the training splits.
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To test the multimodality assumption of complex anatomies, we perform k-means clustering 

and use the elbow method (Hardy, 1994) to identify the optimum number of clusters for each 

shape model. Each cluster is tested for normality following the method explained above. 

All clusters from all shape models produced by the 3 SSM tools were found to follow 

multivariate normal distributions. In the case of Scapula split-2, where Deformetrica failed 

the normality test, we performed a similar clustering analysis. All clusters were labeled as 

multivariate normals except one cluster, which did not have enough samples for performing 

the normality test (Deformetrica cluster-2). In Fig. Appendix D.1, we report compactness 

curves for each cluster versus all training data for the LAA splits and the Scapula split-2. 

We expect that clusters of a multimodal distribution are either more compact or on par with 

the compactness of the entire training cohort which is is true for ShapeWorks and SPHARM. 

However, Deformatica shows some discrepancies, especially with lower number of modes. 

Deformetrica’s shape model of the LAA split-2 is not a multivariate normal distribution, 

yet 2 clusters out of 4 are less compact at lower modes compared to all samples from the 

training cohort. Similar to LAA split-2, the LAA split-1 shape model was found to be a 

multivariate normal distribution. For Scapula split-2, 2 of 3 clusters are less compact, for a 

shape model that passed the normality test.

Fig. Appendix D.1. 
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Cluster-level compactness of LAA splits and Scapula split-2.

Appendix E. Kernel principal component analysis

PCA attempts to find a linear subspace of lower dimensionality than the original data space. 

The axes of this subspace align with data directions of maximum variability. Standard PCA 

allows only linear dimensionality reduction. However, if the data manifold is nonlinear or 

multimodal, it cannot be represented in a linear subspace obtained from standard PCA. 

Kernel PCA overcomes this caveat and enables us to perform nonlinear dimensionality 

reduction (Schölkopf et al., 1997) by transforming the input data to a higher dimensional 

feature space using nonlinear kernels.

Kernel PCA was computed using the training samples of each shape model. Here, we used 

a Gaussian kernel with standard deviation σ to compute the kernel matrix K, whose i − 

j–element is defined for every pair of samples (zi, zj) as:

K(zi, zj) = exp( −
‖zi − zj‖2

2σ2 )

Table Appendix D.1.

Normality test results on training model generated by SSM tools. MVN = Multivariate 

Normal, Not MVN = Not a Multivariate Normal. The number next to the result represent the 

percentage of dimensions that were found to be MVN, i.e., they showed p-value > 0.05 in 

the Shapiro-Wilk’s normality test.

Dataset ╲ SSM Tools ShapeWorks Deformetrica SPHARM-PDM

Humerus Split-1 MVN (93.05%) MVN (93.47%) MVN (93.32%)

Humerus Split-2 MVN (91.34%) MVN (91.51%) MVN (93.03%)

Scapula Split-1 MVN (92.82%) MVN (87.22%) MVN (93.45%)

Scapula Split-2 MVN (96.11%) Not MVN (39.22%) MVN (94.59%)

Femur Split-1 MVN (93.53%) Not MVN (9.04%) MVN (91.69%)

Femur Split-2 MVN (91.52%) MVN (67.73%) MVN (91.13%)

LAA Split-1 Not MVN (48.69%) MVN (53.35%) Not MVN (38.52%)

LAA Split-2 Not MVN (40.15%) Not MVN (53.35%) MVN (62.73%)
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Fig. Appendix E.1. 
Compactness (higher is better) computed using kernel PCA for shape models of (a) LAA, 

(b) scapula, (c) humerus, and (d) femur random splits

For a dataset (i.e., a training split), the kernel bandwidth σ was estimated as the average 

minimum pairwise Euclidean distance across all samples in the training split after excluding 

the distance of a sample to itself. The kernel matrix was then centered and the compactness 

curve was computed using the eigenvalue decomposition of the centered kernel matrix.

Fig. Appendix E.1 shows the compactness curves for kernel PCA, where kernel PCA 

shows a comparable compactness and relative performance of SSM tools across datasets 

and training splits when compared to compactness computed using PCA in Fig. 12. This 

behaviour supports the normality test results discussed in Appendix D and shown in Table 

Appendix D.1. Hence, based on the distribution of the datasets under analysis, either PCA or 

kernel PCA can be used to evaluate the compactness of shape models.
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Appendix F. Analysis of SPHARM-PDM parameters

SPHARM-PDM assumes that any shape can be parameterized by a set spherical 

harmonics basis functions. The two essential parameters of SPHARM-PDM are the 

maximal degree for the spherical harmonics computation and the subdivision level for the 

icosahedron subdivision. Changing the maximal degree value (specified with the argument 

spharmDegree) results in different levels of shape details. The uniform icosahedron-

subdivision (specified by the argument subdivLevel) of the spherical parameterization 

determines the dimensionality of the point distribution model (Styner et al., 2006).

Since the performance of SPHARM-PDM was not comparable to Deformetrica and 

ShapeWorks for the scapula dataset and given the complex morphology of scapula related 

to other anatomies considered in this study, we performed more experiments to analyze the 

impact of varying the SPHARM-PDM parameters on the resulting scapula shape model. 

With subdivlevel 10, we obtained 1002 correspondence points, and using subdivlevel 

10 generated 4002 correspondence points. For all scapula models of Deformetrica and 

ShapeWorks, no more than 4002 points were generated. Hence, we set our highest value of 

subdivLevel as 20 in these experiments. Also, we selected 50 as the highest spharamDegree 

as it was noted that spharmDegree values between 40 to 50 should be sufficient for most 

applications (Chung et al., 2006). We generated the scapula model using the different 

combinations of the subdivlevel and spharamDegree parameter values. Refer table Appendix 

F.1 for the list of experiments.

Table Appendix F.1.

Parameters used for different SPHARM-PDM experiments of scapula dataset

Description spharmDegree subdivLevel

Values considered in the paper 15 10

Maximum values 50 20

Maximum spharmDegree, intermediate subdivLevel 50 15

Intermediate subdivLevel, maximum subdivLevel 30 20
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Fig. Appendix F.1. 
Shape modes of variation for scapula using SPHARM-PDM (a) spharmDegree = 50 and 

subdivLevel = 20 (b) spharmDegree = 50 and subdivLevel = 15 (c) spharmDegree = 30 and 

subdivLevel = 20

Fig. Appendix F.1. and Appendix F.2 show the modes of variation and the group difference 

between pathology and controls, respectively, for the SPHARM-PDM model with the 

different parameter values for spharmDegree and subdivLevel. After comparing Fig. 

Appendix F.1 with Fig. 13(b), it can be observed that the modes of variation discovered by 

the SPHARM-PDM models are not clinically relevant and they are not significantly affected 

by SPHARM-PDM parameters. Similarly, comparing Fig. Appendix F.2 with Fig. 15, the 

SPHARM-PDM models can not consistently discover clinically relevant group differences 

even after varying the parameters. These observations are similar to the results discussed in 

section 6. Hence, we can conclude that SPHARM-PDM has difficulty in modeling complex 

anatomies. This can be attributed to the use of spherical basis functions and pairwise 

correspondence generation method.
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Fig. Appendix F.2. 
Mean controls, mean pathology, and group difference for scapula using SPHARM-PDM (a) 

spharmDegree = 50 and subdivLevel = 20 (b) spharmDegree = 50 and subdivLevel = 15 (c) 

spharmDegree = 30 and subdivLevel = 20
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Fig. 1. 
SSM tools: (a) Shapeworks (Cates et al., 2017a) considers two random variables defining 

the configuration space and shape space. The configuration is a collection of M point 

correspondences on a shape, which is mapped to a single point in the dM–dimensional shape 

space; (b) Deformetrica (Durrleman et al., 2014) estimates a template from the set of input 

shapes and an initial atlas by generating point correspondences on the input shapes based 

on deformations; and (c) SPHARM-PDM (Styner et al., 2006) maps each input shape to a 

unit sphere through an area-preserving and distortion-minimizing objective using spherical 

harmonic basis functions, where color indicates correspondences between the sphere and the 

individual samples.
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Fig. 2. 
LAA Anatomy. (a) LAA is a sack-like structure in the human heart; (b) LAA morphology is 

categorized into four types: chicken wing, wind sock, cactus, and cauliflower (Wang et al., 

2010). A 2D projection of the clustered LAA shapes from signed distance transform images 

using t-distributed stochastic neighbor embedding (t-SNE); (c) LAA closure is performed 

using an implant device through interatrial septum using an access system; (d) LAA closure 

device sizes available; (e) LAA ostia landmarks estimated to measure LAA ostia; and (f) 

LAA ostia measurements computed from the landmarks by fitting an ellipse.
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Fig. 3. 
The human shoulder in SSM applications. (a) The cup-like glenoid of the scapula is 

the articulating surface for the ball-like humeral head; (b) scapula landmarks obtained 

for six curves for landmarks inference; (c) humerus landmarks obtained for three curves 

for landmarks inference; and (d) A Hill-Sachs lesion is formed in the humeral head via 

compression against the glenoid rim during a shoulder dislocation.
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Fig. 4. 
Hill-Sachs bone grafting. (a) A 3D printed model of a humeral head with a Hill-Sachs defect 

and a 3D model of the missing bone that fills the void; (b) Shaping a bony allograft to match 

the size, shape, and orientation of the 3D model; (c) The final graft (left) compared with the 

3D template (right); and (d) Postoperative radiograph of the graft in the shoulder.
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Fig. 5. 
Cam-type FAI lesion. (a) A CT scan of cam-type FAI femur (an extra bone growth on the 

femoral head); (b) A CT scan of a control femur; (c) A 3D segmented and preprocessed 

femur shape having cam-type FAI; and (d) A 3D segmented and preprocessed control femur.
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Fig. 6. 
SSM evaluation and validation frameworks
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Fig. 7. 
Hyperparameters tuning. A representative subset is selected using clustering to generate the 

shape model in an efficient manner.
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Fig. 8. 
Quantitative evaluation metrics. (a) A good shape model can encode the shape variability 

with fewer degrees of freedom; (b) a good shape model can spread between and around 

the training shapes to represent the unseen shapes; (c) a good shape model can generate 

plausible shapes.
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Fig. 9. 
Left atrium first dominant mode of variation encoding variability in the size of the left 

atrium in the population (superior and posterior views). Size is not factored out in the 

left atrium analysis as the left atrium shape (anterior-posterior dilation) is found to be 

statistically correlated with the severity of atrial fibrillation (Cates et al., 2014).
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Fig. 10. 
Pathology sample projection onto controls’ subspace. Orthogonal projection of the 

pathology sample onto controls’ subspace falls to determine the accurate representation 

of the given pathology due to lesion being unsupported by the controls’ statistics. Hence, 

down-weighting the lesion in the projection of the pathology sample via an iterative 

optimization can help determine the closest control that matches the healthy region.
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Fig. 11. 
Illustration of nonorthogonal sample projection optimization using slack variables (surface 

offsets). Box bump data with an outlier having a bump on the side. The offsets are captured 

for the points on the side bump alone as the side bump is not present in the rest of the 

samples.
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Fig. 12. 
Compactness (higher is better), generalization (lower is better), and specificity (lower is 

better) computed for shape models of (a) LAA, (b) scapula, (c) humerus, and (d) femur 

random splits.
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Fig. 13. 
Shape modes of variation for (a) LAA, (b) scapula, (c) humerus, and (d) femur datasets. 

(a) Superior (S) and inferior (I) views are shown for LAA. (b) Superior (S) view is shown 

scapula. (c) Left (L) view is shown for humerus. (d) Anterior (A) view is show for femur.
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Fig. 14. 
Superior (S) and inferior (I) views of mean shapes from (a) ground-truth clusters, and 

k-means clustering of correspondences from (b) ShapeWorks (Cates et al., 2017a), (c) 

SPHARM-PDM (Styner et al., 2006), and (d) Deformetrica (Durrleman et al., 2014). Cluster 

centers from ShapeWorks and Deformetrica models closely align with the ground-truth 

cluster centers.
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Fig. 15. 
Mean controls, mean pathology, and group difference for (a) scapula, (b) humerus, and (c) 

femur anatomies. (a) Superior (S) and left (L) views are shown for scapula. (b) Left (L) and 

right (R) views are shown for humerus. (c) Anterior (A) and superior-left (S-L) views are 

shown for femur.
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Fig. 16. 
Validation results of the (a) LAA ostia maximum and minimum diameter measurements, (b) 

scapula landmark differences, and (c) humerus landmark differences, from ground-truth and 

predictions of SSM tools in mm for the two random splits.
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Fig. 17. 
The group differences between the reconstructed samples and reconstructed samples with 

offsets. (a) Femur group differences for pathology (left) and controls (right). (b) Humerus 

group differences for pathology (left) and controls (right).
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Fig. 18. 
Positive and negative offset occurrence probability visualized on the mean training mesh for 

humerus and femur unseen pathology and controls
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Fig. 19. 
Kernel density map of t-SNE clusters of all samples for (a) humerus offsets (b) femur 

offsets.
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Fig. 20. 
Box bump mode of variation of Deformetrica with the input atlas as (a) the medoid, (b) 

the mean, (c) a random shape, (d) an ellipsoid, and (e) a sphere, producing different shape 

statistics.
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Fig. 21. 
Quantitative assessment (scapula landmarks inference task) of SSM tools with different 

input atlases on the unseen samples. (a) ShapeWorks with no reference and input 

initialization as a mean shape, (b) Deformetrica with input atlases as ellipse, sphere, medoid, 

and mean shapes.
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