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SUMMARY

How cells become specialized, or “mature”, is important for cell and developmental biology. 

While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation 

not as a switch, but a dynamic continuum of adaptive phenotypic states set by genetic and 

environment programming. The hallmarks of maturity comprise changes in anatomy (form, 

gene circuitry, interconnectivity) and physiology (function, rhythms, proliferation) that confer 

adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, growth factors) 

and physical (mechanical, spatial, electrical) triggers in vitro and in vivo, and how maturation 

strategies may support disease research and regenerative medicine.
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Alvarez-Dominguez and Melton propose a framework for understanding cellular “maturity” that 

incorporates modern views on plasticity. Using this framework, they describe the known chemical 

and physical regulators of maturity and summarize approaches and progress in regulating maturity 
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INTRODUCTION

Understanding how metazoan cells become specialized for specific tasks is a challenge for 

cell and developmental biology. Applying that knowledge can provide mastery over cell 

states for applications in regenerative medicine. While much progress has been made in 

making functional tissues from stem cells, a common problem is their immature phenotype. 

Often, the in vitro products only become fully functional following transplantation to a 

living host. If it were possible to crack what makes differentiated cells physiologically 

specialized, it may be possible to build—in the laboratory—replacement tissues to study and 

treat disease more effectively.

While many have referred to this issue, often called cell “maturity”, little agreement exists 

as to what makes cells mature. Some define maturity by anatomy; enucleated red blood cells 

are deemed mature after losing residual RNA and acquiring a disc shape. For others this 

is about physiology—how cells accomplish specialized functions; mature pancreatic beta 

cells, for instance, responding accurately to glucose levels for insulin secretion. And in other 

cases, gene markers come to the fore as a definition for mature cells, as with immune cell 

types. Consensus on what is meant by cell maturation may provide further clarity in the 

literature and help focus goals for clinical applications.

We review this subject through the lens of recent in vitro maturation efforts and cell 

plasticity during development, senescence, and disease. We propose that maturation is 

neither terminal nor unidirectional, but a continuum of adaptive states dynamically set 

by genes and the environment that achieve adaptive functioning (Figure 1). Within this 

framework, we examine hallmarks of maturity and their determinants across several cell 

types, survey efforts to harness them to foster maturity in vitro and combat loss in vivo, and 

discuss how maturation strategies and their products may support new applications.

Defining cell maturation

Following fate specification and determination, metazoan cells develop specialized 

physiological and morphological features to become fully functional. To the extent that 

these traits typify a fully grown organism, or a relatively stable part of its life, the specialized 

cell has been called “mature”. The term implies an “end state” of completed development, 

reached by an age-dependent unidirectional progression (Figure 1A). Yet, maturity may not 

be a development endpoint; cells may change in morphology and function with chronic or 

acute stress. Moreover, maturity may be attained independent of age. The progression of 

a cell from its formation to specialization can occur early in life (as with vascular, lung 

epithelia), repeatedly through life (as with red blood cells, intestinal epithelia), or in parallel 

with organismal development (as with cardiac, neuronal, pancreatic cells). And maturation 

need not be a one-way progression; specialized features are lost and regained as part of 

dedifferentiation in regeneration and disease.

Where does this leave the cell maturation concept? It may be useful to conceive of 

maturation as systematic processes that achieve maximally adaptive behavior. Viewed as 

an “adaptive state”, maturity reflects a time-dependent interplay of genetic and environment 

programming. Maturation is then closely related to development, but not synonymous. 
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Development trajectories include entropic function declines that lack the systematic adaptive 

changes characterizing maturation. When we talk about maturation, we thus mean a 

development phase when specialized cell states are dynamically established in response 

to genetic and environment programming to attain maximal adaptation. Maturation defined 

in this way is neither terminal nor a one-way progression, but a fluid continuum of reversible 

adaptive states (Figure 1B). It pertains to fully differentiated cells and involves phenotypic 

plasticity, and it is independent of age: cell maturation can occur early, late, or throughout a 

lifespan.

How should we assess maturity? Molecular or genetic criteria are yet to be fully enumerated 

in most cell types, whereas structural, functional characteristics are better defined. Maturity 

traits may be catalogued into anatomy (form, gene circuitry, interconnectivity) and 

physiology (function, rhythms, proliferation) hallmarks (Figure 2). Each represents an 

adaptation needed for specialization of differentiated cells. We consider these hallmarks 

and their determinants below, using select examples to illustrate their role in the maturation 

process, and highlight common features that may be used as criteria to assess maturity.

Form—The generation of form is central to how cells become specialized for specific 

tasks. A mature red blood cell’s biconcave disc shape (Figure 3A) confers excess surface 

area relative to cell volume, enabling large deformations needed to transit through narrow 

capillaries. Red cell deformability is also determined by membrane elasticity, bestowed 

by transmembrane proteins tethered to a mechanically stable skeleton (Discher, 2000; 

Elgsaeter et al., 1986), and by cytoplasmic viscosity, set by ion and hemoglobin content 

(Mohandas and Gallagher, 2008; Renoux et al., 2019). Red cells turn spherical or 

crenate in hypotonic or hypertonic fluids, illustrating adaptability of their mature form 

to the environment. Underscoring its importance, altered form underlies hereditary red 

cell disorders (spherocytosis, elliptocytosis, sickle cell disease) (An and Mohandas, 2008; 

Delaunay, 2007). Form also decays with age, as senescent red cells lose the deformability 

needed to traverse capillaries, resulting in breakdown and removal from circulation 

(Mohandas and Gallagher, 2008).

Morphology also defines cardiomyocyte maturation. An elongated rod-like shape (Figure 

3A) permits assembly of long aligned myofibrils that generate larger contractile forces 

(McCain and Parker, 2011; Siedner et al., 2003). Capacitance expands with surface area in 

maturing cardiomyocytes, raising the speed of action potential upstroke and propagation 

(Karbassi et al., 2020; Spach et al., 2004). And excitation-contraction coupling rises 

with increased sarcoplasmic reticulum volume and calcium content, and with formation 

of membrane invaginations that bring excitatory stimuli closer to contractile machinery 

(Bers, 2002; Ziman et al., 2010). Altered morphology underlies hereditary cardiomyocyte 

hypertrophy (Marian and Braunwald, 2017), while aging-associated hypertrophy, and 

excitation-contraction coupling decline, can lead to heart failure (Feridooni et al., 2015; 

Sheydina et al., 2011).

A third example is cell polarity, key for the retinal pigment epithelium. A morphology 

that facilitates polarized distribution of membrane channels, transporters, and receptors 

permits directional flow of water, nutrients, and waste products between choroid capillaries 
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and photoreceptors (Figure 3A). Polarized traffic is supported in mature retinal pigment 

epithelial cells by basal membrane infoldings, which expand the surface area for transport, 

and by apical microvilli, which enwrap photoreceptors to facilitate retinoid exchange 

and signal-mediated phagocytosis (Lakkaraju et al., 2020; Strauss, 2005). As with heart 

and red cells, defects in specialized structural features of retinal pigment epithelial cells 

(ciliogenesis, polarized traffic) characterize congenital retinal disorders (May-Simera et al., 

2018; Storm et al., 2020), while their decay with senescence characterizes age-associated 

macular degeneration (Sparrow et al., 2010).

Gene circuitry—Gene expression is a common criterion for calling a cell mature. In 

pancreatic beta cells, genetic circuits set by the MAFA and ERRγ transcription factors 

define maturation states (Figure 3B). MAFA programs glucose sensitivity of insulin release 

by binding genes for insulin and effectors of its glucose-sensitive secretion (Artner et al., 

2010; Kataoka et al., 2002; Olbrot et al., 2002; Zhang et al., 2005). ERRγ programs 

higher insulin responsiveness to glucose by targeting genes tuning mitochondrial oxidative 

metabolism (Yoshihara et al., 2016). Inducing MAFA or ERRγ promotes these behaviors in 

immature beta cells (Aguayo-Mazzucato et al., 2011; Wang et al., 2007; Yoshihara et al., 

2016), which informs efforts to make fully functional beta cells in vitro.

In cardiomyocytes, the HOPX transcription factor drives late maturation circuits. Inducing 

it prompts hypertrophic signaling, upregulating genes that promote growth and maturation 

in native (Kook et al., 2003) and in vitro-derived cardiomyocytes (Friedman et al., 2018). 

Interestingly, HOPX also marks maturity of native and in vitro-derived beta cells (Hrvatin et 

al., 2014; Veres et al., 2019), suggesting broad roles in steering maturational growth.

Post-transcriptional circuits can also steer maturation. AMPK and mTOR signaling mediate 

a shift from glycolysis to fatty acid oxidation that marks cardiomyocyte maturation 

(Figure 3B). Activated AMPK phosphorylates client proteins to promote fatty acid uptake, 

mitochondrial biogenesis and fission, and inhibits mTOR-dependent mitophagy suppression 

(Hang et al., 2018; Stuck et al., 2008). This enhances mitochondrial oxidative capacity 

with fatty acids as major substrates, enabling greater ATP production to support greater 

contractility (Karbassi et al., 2020). Interestingly, activating AMPK or inhibiting mTOR 

signaling fosters in vitro metabolic maturation of both cardiomyocytes (Garbern et al., 2020; 

Sarikhani et al., 2020) and pancreatic beta cells (Helman et al., 2020; Jaafar et al., 2019). 

Metabolic shifts illustrate adaptive states set by environmental conditions that not only 

accompany, but can drive maturation, as discussed below.

Interconnectivity—Emergent properties of complex systems are forged by the 

organization of their components. Higher-order network organization can thus determine cell 

maturation. Precise connectivity between neurons is key for specialized sensory transduction 

(Figure 3C). Following migration and outgrowth of axons and dendrites, neurons form 

premature synapses. Maturing neurons selectively expand or disassemble these structures, in 

response to spontaneous or stimulus-triggered activity, to form the precise local circuits that 

coordinate adult sensory processing (Katz and Shatz, 1996; Kirkby et al., 2013). Activity-

dependent neural circuit refinement underlies learning and memory, illustrating lifelong 

maturational plasticity guided by the environment (Abbott and Nelson, 2000).
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After growing polarized protrusions, kidney podocytes similarly interlink with each other to 

support blood filtration. Maturing podocytes wrap around glomerular capillaries by forming 

branching projections in an interdigitating pattern (Figure 3C). Interlinking projections shift 

from tight and adherens to porous intercellular junctions, which serve as filtration slits 

allowing selective retention of high-mass plasma components (Ichimura et al., 2017; Scott 

and Quaggin, 2015). This key glomerular filtration barrier feature is disrupted upon loss 

of podocyte interconnectivity due to injury or genetic mutation (Garg, 2018; Scott and 

Quaggin, 2015).

Connectivity also allows retinal pigment epithelial cells to establish an outer blood-retinal 

barrier. Maturing cells form tight junctions, shifting from fusiform to “cobblestone” 

organization (Figure 3C). Tight packing permits selective flow of solutes between blood 

and the neural retina (Rizzolo et al., 2011; Strauss, 2005). Directional flow of ions via active 

transport fosters the ionic environment that photoreceptors need to function properly. This 

increases electrical resistance across the cell monolayer, a key determinant of the mature 

retinal pigment epithelium barrier function that is lost in retinal diseases (Lakkaraju et al., 

2020; Rizzolo et al., 2011).

Function—Specialized functioning defines mature behavior. Mature pancreatic beta cells 

respond selectively to supraphysiologic blood glucose with increased insulin secretion 

(Figure 4A). Selective responsiveness emerges gradually after birth, as beta cells adapt to 

a glucose- and oxygen-rich environment by increasing the glucose coupling and threshold 

for insulin secretion. These adaptations are determined by the beta cell’s affinity for glucose 

uptake, phosphorylation, and oxidation, and by its electrical excitability (Huang et al., 2018; 

Prentki et al., 2013; Rorsman and Ashcroft, 2018). Underscoring their importance, glucose 

metabolism and excitability defects underlie maturity-onset forms of diabetes (Fajans et 

al., 2001; Pipatpolkai et al., 2020; Rubio-Cabezas and Ellard, 2013). Disturbed nutrient or 

oxygen exposure during pregnancy or at birth alter the course of maturational adaptations, 

which are also remodeled by metabolic stress in diabetes, illustrating lifelong programming 

by the environment (Baeyens et al., 2016; Weir et al., 2001). Restoring mature glucose 

responsiveness in stressed beta cells thus presents an attractive opportunity to reverse 

pathology associated with obesity and diabetes.

Metabolic specialization similarly defines maturity of hepatocytes. Their ability to process 

metabolites, bile, urea, serum proteins, toxic compounds is set by metabolic adaptations to 

postnatal feeding, oxygenation, and hormonal changes (Figure 4A). Postnatal intermittent 

feeding introduces fasting periods of high glucagon signaling that induce enzymes enabling 

fat oxidation, glucose synthesis, and glycogen breakdown (Bideyan et al., 2021). Shifting to 

an oxygen-rich environment furthers albumin, urea synthesis and the activity of transporters 

and cytochromes mediating detoxification (Kidambi et al., 2009; Tilles et al., 2001). And 

raised glucocorticoid and cAMP signaling foster specialization of gluconeogenesis and 

glycogen storage (Shin and Monga, 2013; Trefts et al., 2017). These adaptations allow 

hepatocyte-specific control of metabolic homeostasis, and their response to overnutrition is 

tightly linked to diabetes, fatty liver disease, and cardiovascular dysfunction (Bechmann et 

al., 2012; Trefts et al., 2017).
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A third example is the electrical specialization of motor neurons. Mature motor neurons 

adapt to steady stimulation by gradually decreasing the frequency of electrical firing (Figure 

4A), enabling sustained muscle contraction (Granit et al., 1963; Meehan et al., 2010). Upon 

stimulus termination, rebound membrane depolarization drives a bursting firing pattern, 

key for rhythmic muscle movement (Bertrand and Cazalets, 1998; Hinckley et al., 2005). 

Adaptive activity modulation is determined by intrinsic excitability and synaptic function 

(Grillner, 2003; Kanning et al., 2010). Excitability is tuned by transmembrane ion channels 

controlling membrane polarization, and thus its conductance and potential. Synapse function 

involves synthesis, exocytosis, and sensing of neurotransmitters for effective electrical signal 

propagation, enabling network-level activity. Both intrinsic excitability and synaptic efficacy 

undergo activity-dependent modulation, illustrating flexible adaptive states that are impaired 

in motor neuron diseases (Bertrand and Cazalets, 2013; Kanning et al., 2010; Rekling et al., 

2000).

Rhythms—Synchronizing cellular processes to energetic rhythms is vital for maximally 

adaptive behavior. Mature hepatocytes tune their physiology to circadian feeding-fasting 

cycles (Figure 4B) (Bideyan et al., 2021). During daytime feeding, they consume glucose 

for energy, storing the excess as glycogen, while turning dietary and newly synthesized fatty 

acids into triglycerides for export. With nighttime fasting, they shift to producing glucose, 

via glycogen breakdown and neogenesis, and instead consume fatty acids for energy and 

to make ketones for export. Glucose/lipid consumption-production rhythms are enforced 

by transcriptional feedback control between circadian integrators and metabolic effectors 

(Bass and Takahashi, 2010), and are entrained by food intake periods (Damiola et al., 2000; 

Sinturel et al., 2021; Stokkan et al., 2001). Alignment of the mature hepatocyte’s clock 

with meal timing optimizes clearing and processing of circulating nutrients, while chronic 

misalignment can lead to obesity, metabolic syndrome, and diabetes (Bass and Lazar, 2016; 

Panda, 2016).

Non-transcriptional rhythms also govern mature physiology. Despite lacking a nucleus or 

mitochondria, mature red blood cells sustain daily metabolic cycles to manage oxidative 

stress (Figure 4B). At night, when blood oxygen dips, glucose consumption to make ATP 

via anerobic glycolysis peaks (Mortola and Seifert, 2002; Sinturel et al., 2021). During 

the day, when oxygenation is highest, flux is re-routed to the pentose phosphate pathway 

to yield NADPH, needed to reduce reactive oxygen species. This causes 24-hour rhythms 

in glycolysis-generated ATP driving ion transport and membrane depolarization, and in 

the activity of peroxiredoxin enzymes mitigating hemoglobin oxidation (Cho et al., 2014; 

Henslee et al., 2017; O'Neill and Reddy, 2011). Metabolic and reduction-oxidation cycles 

persist without new RNA or protein synthesis in red blood cells, and disruptions due to 

genetic mutation or senescence result in anemia (Kuhn et al., 2017; Mohanty et al., 2014).

Proliferation—Cell proliferation and maturation are generally anticorrelated during 

development. After birth, most cardiomyocytes exit the cell cycle as part of metabolic 

maturation (Figure 4C). Shifting to fatty acid oxidation elevates reactive oxygen species that 

damage DNA, triggering cell cycle arrest via suppression of cyclin and cyclin-dependent 

kinases (Mohamed et al., 2018; Puente et al., 2014). A final DNA synthesis round 
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without cell division causes increased ploidy and size, hallmarks of mature cardiomyocytes 

(Laflamme and Murry, 2011) (Figure 4C). Notably, this adaptive state is reversible, as 

quiescent cardiomyocytes can reenter the cell cycle with injury and aging (Bergmann et al., 

2009; Karbassi et al., 2020).

Quiescence plasticity also distinguishes mature beta cells. Their self-replication rate in 

adults is slow (<1%/day), but increases upon metabolic stress. This adaptive ability develops 

after postnatal weaning to a carbohydrate-rich diet (Jacovetti et al., 2015; Stolovich-Rain et 

al., 2015). Maturing beta cells adjust to this nutritional change by increasing dependence 

on glucose as fuel for oxidative phosphorylation, and by restraining basal in favor of 

glucose-coupled replication, as with insulin secretion. Beta cell replication in response to 

metabolic stress depends on mitogenic glucose responsiveness, and loss of this adaptive trait 

of mature beta cells contributes to obesity-linked diabetes (Butler et al., 2003; Dor et al., 

2004; Porat et al., 2011).

Like other neurons, mature motor neurons are postmitotic. Exit from the cell cycle is 

intrinsic to the neuronal differentiation program set by developmental patterning signals 

(Davis-Dusenbery et al., 2014). These activate bifunctional regulators that simultaneously 

foster differentiation, by inducing proneural genes, and cell cycle arrest, by suppressing 

cyclins and activating proarrest proteins (Bertrand et al., 2002; Politis et al., 2008). Lifelong 

cell cycle arrest is critical for the mature motor neuron phenotype, and cell cycle reentry, 

following injury or neurodegeneration, can cause fatal vulnerability (Herrup and Yang, 2007; 

Marlier et al., 2020).

In summary, cell maturation involves complex adaptations that may be reduced to a small 

set of underlying themes (Figure 2). These comprise interrelated changes in anatomy and 

physiology that respond to genetic and environment programming to confer maximally 

adaptive behavior. The hallmarks of anatomical (Figure 3) and physiological maturation 

(Figure 4) are shared across diverse cell types, and may thus be used as general criteria 

to assess maturity, while their disruption or decay can underlie numerous pathological 

conditions.

Harnessing cell maturation for research and clinical applications

How can we apply knowledge of cell maturation? Realizing cell maturation in the 

laboratory will permit modeling human development beyond its earliest stages, and may 

yield replacement cells and tissues for disease treatment and drug screening. How gene-

environment interactions steer adaptive change in health and disease will be best studied 

using maturation-capable models. Drug discovery, safety and efficacy studies will likely 

benefit from screening products that closely recap the physiology of endogenous cell and 

tissue targets. And patients receiving mature cell transplants may experience faster and more 

durable therapeutic benefits.

Harnessing cell maturation demands understanding its causes. Beyond delineating maturity 

states, recent studies have advanced knowledge of the cues instructing them. These may 

be organized into chemical (nutrients, oxygen, growth factors) and physical (mechanical, 

spatial, electrical) triggers (Figure 5). Below, we consider how such triggers can be 
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manipulated to elicit phenotypic maturity or to prevent its loss, using select examples to 

illustrate how these applications may be useful (Figure 6).

Harnessing chemical maturity triggers—Nutrients, oxygen, and growth factors in 

the environment trigger physiologic maturation (Figure 5). This logic has been applied 

to cells derived in vitro from pluripotent stem cells, which often function like fetal or 

neonatal but not adult counterparts. Mimicking the postnatal shift to a lipid-rich diet 

fosters adult-like features in human stem cell-derived cardiomyocytes. Mature form, gene 

circuitry, function, and proliferation hallmarks (Figures 3A and 4C) are promoted by fatty 

acid supplementation, and hindered by glucose (Correia et al., 2017; Mills et al., 2017; 

Nakano et al., 2017). Dietary manipulations (amino acid, serum deprivation) also promote 

adult-like traits in pancreas beta cells derived from human stem cells (Helman et al., 2020; 

Velazco-Cruz et al., 2019; Veres et al., 2019). A third example is supplementation with 

vitamin K2 or lithocholic acid (an intestinal flora metabolite) promoting fetal and stem-cell 

derived hepatocyte maturity (Avior et al., 2015). These cases illustrate how environment 

nutrients/metabolites steer maturation. How nutritional shifts are transduced into the nucleus 

to program genetic change, and the role of energy metabolism in this process, remain 

unclear.

Oxygenation also steers maturational change. The shift to autonomous breathing at birth 

increases oxygen levels, suppressing hypoxia signaling. Emulating adult oxygen levels 

improves the generation of hepatocyte-like cells from human stem cells (Si-Tayeb et al., 

2010) and prevents adult hepatocytes from losing their mature phenotype in culture (Guo et 

al., 2017). While suppressing hypoxia signaling, via HIF1a inhibition, recreates the postnatal 

switch from glycolytic to oxidative metabolism in stem cell-derived cardiomyocytes, 

promoting adult-like anatomy and physiology (Gentillon et al., 2019; Hu et al., 2018). 

Inhibiting HIF1a thus presents an attractive opportunity to rescue delayed tissue maturation 

caused by hypoxic injury at birth.

Growth factors are another readily pliable maturational cue. Glucocorticoids, which rise 

around birth, promote specialized physiology and morphology in both fetal (Kamiya et al., 

2001; Rog-Zielinska et al., 2015) and stem cell-derived (Parikh et al., 2017; Zhu et al., 2014) 

hepatocytes and cardiomyocytes. Thyroid hormone, which rises postnatally, has similar 

effects in both fetal and stem cell-derived cardiomyocytes (Chattergoon et al., 2012; Lee et 

al., 2010) and beta cells (Aguayo-Mazzucato et al., 2015; Aguayo-Mazzucato et al., 2013). 

How these effects occur is emerging, and likely involves central metabolic modulators 

(Rog-Zielinska et al., 2015; Takano et al., 2013). Administering growth factors (or synthetic 

analogs), and manipulating their transducers and effectors, is thus a major focus of in vitro 
cell maturation efforts. Greater understanding of how these pathways tune maturity will 

likely benefit from detailed profiling of the gene circuits active at distinct cell maturity states 

by single-cell technologies.

Not just the nature, but the timing of chemical cues governs mature behavior. Nutrients, 

oxygen, and hormones are not constant, but fluctuate with sleep-wake and feeding-fasting 

cycles (Bass and Takahashi, 2010). Harnessing conditions promoting maturity thus demands 

recreating physiologic rhythmicity. Introducing daily glucose, amino acid, or insulin 
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fluctuations fosters mature gene circuitry, rhythms, and function hallmarks (Figure 2) in 

stem-cell derived islets, accelerating their function and ability to reverse diabetes in mice 

upon transplant (Alvarez-Dominguez et al., 2020; Wang et al., 2020). The feeding/fasting 

entrainment imparts metabolic cycling, via chromatin remodeling and rhythmic synthesis 

of circadian clock and energy metabolism factors, enabling mature insulin responses. A 

circadian dietary rhythm may thus help counter neonatal diabetes caused by immature beta 

cell function (Hattersley et al., 2018; Rubio-Cabezas and Ellard, 2013). How circadian, 

nutrient, and gene programming interact during maturation is unclear, but a likely link 

is via clock-regulated synthesis of metabolites involved in both chromatin and clock 

protein modification (Bedont et al., 2020; Rutter et al., 2002). Circadian entrainment 

also fosters mature behavior in adult islets that lost their mature phenotype in culture 

(Alvarez-Dominguez et al., 2020), illustrating dynamic reprogramming of maturity by the 

environment. Circadian behavioral or chemical interventions may thus help rescue mature 

islet function lost in diabetic adults.

With better spatiotemporal control over chemical maturity triggers, it may be possible to 

direct precise maturation trajectories in engineered/explanted tissue (Figure 6). Microfluidics 

and synthetic hydrogels enable patterning or timed release of nutrients, oxygen, growth 

factors (Brennan et al., 2014; Darnell and Mooney, 2017). These may be harnessed to better 

model endogenous development and physiology, and to improve integration, vascularization, 

immunomodulation, and innervation of implanted cell-based products.

Harnessing physical maturity triggers—Mechanical, spatial, and electrical cues are 

key triggers of maturational adaptations (Figure 5). Solid tissues sense forces that steer 

specialization. When mesenchymal stem cells differentiate on substrates mimicking the 

stiffness of brain, muscle, or bone, their products gain phenotypes corresponding to the 

tissue whose mechanical properties were experienced (Engler et al., 2006; Roberts et al., 

2016). Human stem cell-derived cardiomyocytes develop specialized contractility, genetic 

circuitry, and structural features when cultured on gels approximating adult cardiac tissue 

stiffness (Feaster et al., 2015; Martewicz et al., 2017). Culture on micropatterned substrates 

similarly enforces cardiomyocyte elongation, boosting contractility, mitochondrial content, 

and conductance for both fetal (Kim et al., 2010) and stem cell-derived cardiomyocytes 

(Rao et al., 2013; Ribeiro et al., 2015). Fluid mechanics also shape maturity. Shear and 

osmotic stress rise as maturing red blood cells enter the circulation, driving changes in ion 

and water permeability that set internal viscosity and a discoid shape (Larsen et al., 1981; 

Renoux et al., 2019). Blood flow is also critical for the mature arterial cell phenotype 

(Chong et al., 2011), and is harnessed in microfluidic chips to prompt maturation of 

stem cell-derived endothelial cells (Homan et al., 2019; Smith et al., 2018). How cells 

sense and adapt to external forces is best understood in adherent tissue, and involves 

mechanosensitive machinery (integrins, syndecans, ion channels, cytoskeletal proteins) and 

transcription effectors like YAP (Camargo et al., 2007) that establish mechanical memory 

via epigenome changes (Chaudhuri et al., 2020; Humphrey et al., 2014).

Not only static (stiffness, topography, stress) but dynamic tissue mechanics (plasticity, 

deformation, stress relaxation) steer cell phenotypes. Leveraging control over these 

properties, via advances in dynamic materials, can help harness cell maturity states. 
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Viscoelastic hydrogels with fast stress relaxation foster mature form, gene circuitry, and 

proliferation in encapsulated chondrocytes, promoting formation of an interconnected 

cartilage-like matrix (Lee et al., 2017). This informs the design of FDA-approved hydrogel-

based applications such as autologous chondrocyte implantation, engineered skin grafts, and 

bone regeneration devices (Chaudhuri et al., 2020). Porous hydrogels analogously sustain 

glucose-responsive insulin function of encapsulated stem cell-derived beta cells, enabling 

long-term diabetes reversal upon transplant into mice, while protecting from immune attack 

(Vegas et al., 2016; Yang et al., 2021). Future uses for dynamic biomaterial mechanics 

include the gradual or rhythmic activation of forces instructing defined maturation 

trajectories in engineered tissue constructs.

Spatial cues can also mold maturation states. Cell-cell contacts and diffusible signals allow 

cells to sense and adapt to the environment geometry and composition. Keeping a mature 

phenotype in adult chondrocytes, or eliciting one in stem cell-derived cardiomyocytes, 

is guided by culture dimensionality (von der Mark et al., 1977; Werley et al., 2017). 

Three-dimensional culture allowing cells to self-organize is most successful in offering a 

maturation-permissive spatial milieu. Self-guided rather than imparted assembly yields stem 

cell-derived organoids that better recap the anatomy and physiology of eye, brain, heart, 

and kidney tissue (Karbassi et al., 2020; Little and Combes, 2019; Sasai, 2013; Velasco 

et al., 2020). These products fail to recap maturation beyond birth, however, but mature 

to adult phenotypes when transplanted in vivo. Cues derived from proximity or contact 

with support tissues may thus be needed for maximally adaptive behavior. Co-culture with 

endothelial cells or fibroblasts indeed fosters cardiac, liver, and islet cell maturity (Berger 

et al., 2015; Dunn et al., 2019; Kojima, 2014; Lee et al., 2015). How tissue-tissue crosstalk 

fosters maturity is beginning to emerge, and informs the design of multi-tissue three-

dimensional culture systems. These include organs-on-chips and multilineage organoids, 

which can mimic complex spatial and dynamic traits of organ systems. Organs-on-chips 

permit spatiotemporal control of diffusible signals, via microfluidics, and of tissue-tissue 

contacts, via chip architecture (Esch et al., 2011; Huh et al., 2011). However, they offer 

limited scalability for high-throughput applications, like drug or genetic screening, and 

can only model known maturational processes. Multilineage organoids, by contrast, can 

be made at scale, and follow intrinsic self-assembling programs of greater physiologic 

fidelity, but suffer from limited environmental control and stochastic variability (Lancaster 

and Knoblich, 2014; Sasai, 2013).

Realistic mature physiology may be attainable by blending microfluidics and organoids. 

Organoids-on-chips recreate complex organization within and between tissues, like arterial, 

renal, respiratory tubes that transport plasma, nutrients, air to connecting tissues or to the 

outside world, allowing blood flow, renal filtration, respiration (Hofer and Lutolf, 2021; 

Sharma et al., 2020). This may be exploited for systemic developmental, physiological, 

and pharmaceutical studies, or to study pathologic cross-tissue interactions underlying 

autoimmune, neuromuscular, gastrointestinal disorders. It may also be possible to combine 

micro-physiological systems with biomaterials to ultimately attain mature replacement 

tissues that are vascularized and innervated. Bioactive scaffolds can direct morphogenesis to 

mature stages, and facilitate engraftment and long-term survival and function of implanted 

replacements for lost, damaged, or aged tissue (Darnell and Mooney, 2017). Bioprinting, the 
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three-dimensional deposition of cells, cues, and biomaterials by mechanical printers (Moroni 

et al., 2018), may further enhance consistent and accurate tissue fabrication, including 

patient-tailored tissue for personalized toxicology or replacement therapy.

Electrical cues are also emerging as maturity triggers. Ion fluxes, set by ion transporters 

in all cell types and communicated via cell-cell junctions, instruct cell form and behavior. 

Electrical field stimulation of cultured neonatal cardiomyocytes (Radisic et al., 2004) and 

engineered bone tissue (Leppik et al., 2018) induces mature form and interconnectivity. 

Similar effects are seen in human stem cell-derived cardiac tissue (Eng et al., 2016; Nunes 

et al., 2013), whose maturation is accelerated further by combining mechanical stress 

with electric pacing to mimic endogenous cardiac stretching and contraction (Ronaldson-

Bouchard et al., 2018; Ruan et al., 2016). Dynamic stimulation (varying pacing frequency 

to follow an ‘intensity training’ regimen) triggers greater maturation than static pacing, 

promoting adult-like form, gene circuitry, and function hallmarks (Ronaldson-Bouchard et 

al., 2018). This illustrates how maturation is steered by a dynamic environment, as with 

feeding-fasting training. How electromechanical stimuli program cardiac maturity is unclear, 

but it does not seem to require accompanying cell volume or transcriptional changes (Ruan 

et al., 2016). Ion transporters and electrical synapses are gated posttranslationally, and 

may program cell behavior independent of gene expression. Greater understanding of how 

electrical signals shape mature cell states will thus benefit from bioelectrical in addition to 

biochemical profiling.

Recent technological advances enable not just sensing, but actuating electrical circuits 

in single cells with high precision. Optogenetics enables light-induced control of ion 

transporters (Jakesova et al., 2019), which may be used to precisely instruct maturational 

change. Advances in nanoscale biomaterials enable miniaturization of bioelectronic 

interfaces, allowing stimulation of individual cells and membrane proteins without gene 

engineering. These include conducting nanomaterials and soft nanoelectronics. Conducting 

nanomaterials (nanotubes, nanowires, nanoparticles) that contact or traverse the cell 

membrane can directly alter its electric potential with high spatiotemporal precision (Noy, 

2011; Tian and Lieber, 2019). Soft nanoelectronics, like stretchable mesh nanoelectrode 

arrays, allow stimulating single cells with millisecond resolution, and may be seamlessly 

integrated into “cyborg” organoids to direct maturation through systematic stimulation (Li et 

al., 2019; Tian et al., 2012).

The advent of injectable, tissue-like nanoelectronics heralds new opportunities for 

modulating cell maturity in vivo, via minimally invasive cyborg implants (Duan et al., 

2013; Liu et al., 2015). These may incorporate traditional biomaterials, like hydrogel 

scaffolds, to better mimic physical properties of native tissue (Dvir et al., 2011; Feiner 

and Dvir, 2017). Combining sensing and actuation capabilities in wearable implants, though 

technically challenging, may ultimately enable closed-loop control of phenotypic maturity. 

This would be much like closed-loop control in current artificial pacemaker, pancreas, and 

neuromodulatory devices, but applicable beyond excitable tissues. In the future (Figure 6), 

one may exploit such tissue-electronics interfaces to study physiologic maturation, to treat 

the loss of phenotypic maturity in damaged or aged tissue, and to build fully functional 

replacements for any lost tissue.
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In summary, manipulating cell and tissue maturation is actionable through a small set 

of physiologic triggers (Figure 5). These comprise chemical and physical cues that 

instruct maturational adaptation by their nature and timing. Harnessing them is viable 

via spatiotemporal modulation of the culture environment’s composition, design, and 

electromechanical properties. A growing toolbox of biomaterials and miniaturized interfaces 

enable precise, simultaneous control over these features in vitro and in vivo, potentiating 

a new generation of basic research, pharmacology, and regenerative medicine applications 

(Figure 6).

Synthesis

Cell behavior is fundamentally adaptive. Maturity is determined not by age, but by 

anatomical and physiological changes that respond to environmental and genetic inputs 

for maximal adaptation. Better understanding of the mechanisms enabling these changes 

is required (Box 1) to develop mastery over cell maturation, a key step toward greater 

utility of stem cell-derived tissue constructs. Harnessing the triggers and mechanisms 

of maturation may be achieved by tuning the chemical and physical environment, as 

well as their time-dependent variation. Precise spatiotemporal control over these inputs 

is increasingly attainable through advances in materials and electrochemical engineering. 

This general approach may make it possible to not just recreate, but improve upon nature’s 

maturation mechanisms, facilitating consistent and scalable engineering of cell products 

for screening and toxicology, not to mention to better model human organogenesis and 

disease. In the clinic, patients will benefit from receiving faithful replacements for lost 

or damaged tissues that attain maximal engraftment, survival, and function via tunable 

maturation. It might someday be possible to use such products not only to replace tissues, 

but to enhance the function of intact ones. Harnessing cell maturation will thus unlock 

worthwhile opportunities to prevent disease and to restore, or even improve human health.
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Box 1.

Unanswered Questions

• How do gene-environment interactions steer maturation trajectories in health 

and disease?

• How are nutrient shifts communicated to the nucleus to program gene 

circuitry changes?

• What role does energy metabolism play in establishing maturity states?

• How do circadian, metabolic, and gene programming interplay during cell 

maturation?

• How do maturing cells sense and adapt to external electromechanical forces?

• How does crosstalk between tissues promote maturational change?

• How are electromechanical stimuli transduced to program maturational 

adaptations?

• What about the in vivo milieu promotes maturity?
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Figure 1. Cell Maturation
(A) Maturation is classically understood as a unidirectional progression over time. Following 

commitment to a specific fate, differentiated cells mature by gaining specialized phenotypes, 

which decay during senescence. Cells are represented as spheres, their developmental stages 

by changing colors, and their differentiation time course by floating down the river.

(B) An alternative view of maturation as a fluid continuum of adaptive states: specialized 

cellular phenotypes are dynamically gained or lost in response to changes in the environment 

to attain maximally adaptive behavior.
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Figure 2. Maturity Hallmarks
We suggest that most cell types acquire the same set of specialized traits during their 

maturation. These hallmarks are grouped into interrelated changes in anatomy (form, gene 

circuitry, interconnectivity) and physiology (function, rhythms, proliferation) that underlie 

phenotypic specialization.
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Figure 3. Anatomical Maturation
(A) Cells morph to become specialized for specific tasks. Red blood cells turn into discs that 

withstand large deformations as they traverse the vasculature; cardiomyocytes morph into 

elongated rods that generate large contractile forces; and retinal pigment epithelial cells form 

polarized transport networks that support directional flow of cargo.

(B) Gene regulatory networks define maturation states. Transcriptional circuits set by MAFA 

and ERRγ in pancreatic beta cells enact mature coupling of insulin secretion to glucose 

oxidative metabolism, and post-transcriptional circuits mediated by AMPK and mTOR in 

maturing cardiomyocytes direct a metabolic shift toward fatty acid oxidation.

(C) Interconnectivity allows mature cells to execute complex tasks. Networks of synapsing 

neurons coordinate specialized sensory transduction; interdigitating kidney podocytes form 

slits that enable blood filtration; and tightly packed retinal pigment epithelial cells establish 

a semipermeable blood-retinal barrier.
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Figure 4. Physiological Maturation
(A) Function specialization defines maturational change. Mature beta cells respond to 

glucose stimulation with increased selectivity and insulin release capacity; mature motor 

neurons respond to steady stimulation with repeated firing of decreasing frequency; and 

mature hepatocytes expand export of albumin and bile salts, metabolize glycogen, and 

oxidize lipids for energy.

(B) A rhythmic physiology is vital for maximally adaptive functioning. Hepatocytes 

consume glucose and synthesize glycogen and triglycerides with daytime feeding, and shift 

to fatty acid consumption, glycogen breakdown, and ketone synthesis during nighttime 

fasting. Mature red cells turn to anaerobic glycolysis as oxygen dips at night, and re-route 

flux to NAPH synthesis to reduce hemoglobin oxidation as it rises during the day.

(C) Proliferative adaptations underlie maturation states. Mature cardiomyocytes are mostly 

quiescent, as shifting to lipid metabolism for energy triggers cell cycle arrest due to 

increased oxidative DNA damage.
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Figure 5. Maturity Triggers
We propose that cell maturation is instructed by cues from the environment that may be 

grouped into chemical (nutrients, oxygen, growth factors) and physical (mechanical, spatial, 

electrical) triggers. Manipulations to the culture environment in vitro and in vivo enable 

control over each of these triggers. The manipulations listed are but illustrative examples of 

emerging efforts to gain mastery over maturational development on multiple fronts.
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Figure 6. Harnessing Maturation for Research and Clinical Applications
A growing toolbox makes it increasingly possible to harness cell maturation for applications 

in basic research, pharmacology, and regenerative medicine. The toolbox includes 

biomaterials and electromechanical devices offering standardized, scalable, and dynamic 

control over the physical and chemical environment, key for consistent and accurate mature 

cell and tissue production. Applications include modeling human development, physiology, 

and disease; discovering and testing therapeutic drugs and biologicals; and replacing lost, 

damaged, or aged tissues.
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