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Abstract

Motivation: Almost all protein residue contact prediction methods rely on the availability of deep

multiple sequence alignments (MSAs). However, many proteins from the poorly populated families

do not have sufficient number of homologs in the conventional UniProt database. Here we aim to

solve this issue by exploring the rich sequence data from the metagenome sequencing projects.

Results: Based on the improved MSA constructed from the metagenome sequence data, we devel-

oped MapPred, a new deep learning-based contact prediction method. MapPred consists of two

component methods, DeepMSA and DeepMeta, both trained with the residual neural networks.

DeepMSA was inspired by the recent method DeepCov, which was trained on 441 matrices of co-

variance features. By considering the symmetry of contact map, we reduced the number of matri-

ces to 231, which makes the training more efficient in DeepMSA. Experiments show that DeepMSA

outperforms DeepCov by 10–13% in precision. DeepMeta works by combining predicted contacts

and other sequence profile features. Experiments on three benchmark datasets suggest that the

contribution from the metagenome sequence data is significant with P-values less than 4.04E-17.

MapPred is shown to be complementary and comparable the state-of-the-art methods. The success

of MapPred is attributed to three factors: the deeper MSA from the metagenome sequence data,

improved feature design in DeepMSA and optimized training by the residual neural networks.

Availability and implementation: http://yanglab.nankai.edu.cn/mappred/.

Contact: zhenling@tju.edu.cn or yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein contact map is a 2D representation of protein’s 3D structure.

The information included in a contact map can be used as distance

restraints to guide protein structure modeling (Hopf et al., 2012;

Kim et al., 2014; Kosciolek and Jones, 2014; Marks et al., 2011,

2012; Nugent and Jones, 2012; Ortiz et al., 1999; Ovchinnikov

et al., 2015, 2016; Sadowski et al., 2011; Skolnick et al., 1997;

Sułkowska et al., 2012; Vendruscolo et al., 1997; Weigt et al., 2009;

Wu et al., 2011; Yang et al., 2015). This paves a new avenue

for solving the grand challenge of the de novo protein structure

prediction. Therefore, significant efforts have been made to improve

the prediction of protein contact map, starting from the pioneer

work by Göbel et al. in the 1990s (Göbel et al., 1994; Korber et al.,

1993; Taylor and Hatrick, 1994).

The last decade has witnessed a significant progress in the develop-

ment of algorithms for protein contact map prediction. The existing

methods can be broadly divided into three categories: coevolution-

based, machine learning-based and meta-based. The boundary between

these methods is blurred. For example, many deep learning-based

methods rely on predictions from the coevolution-based methods.
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The coevolution-based methods are based on the idea of evolu-

tion, i.e. if a residue is mutated, other neighboring residues in the

spatial structure need to mutate accordingly to maintain the pro-

tein’s structure and biological function. The information on muta-

tions is usually derived from a multiple sequence alignment (MSA)

of homologous sequences. Representative methods in this category

include EVfold (Hopf et al., 2012; Marks et al., 2011) and mfDCA

(Morcos et al., 2011) using the mean-field approximation; PSICOV

(Jones et al., 2012) using sparse inverse of covariance matrix;

PLMDCA (Ekeberg et al., 2013), GREMLIN (Kamisetty et al.,

2013) and CCMpred (Seemayer et al., 2014) using pseudo-

likelihood maximization.

In the second group of methods, the contact map prediction is

viewed as a pattern recognition problem and solved with machine

learning algorithms. Support vector machines and/or neural net-

works were used in the early development of such methods, with

SVMcon (Cheng and Baldi, 2007), SVMSEQ (Wu and Zhang,

2008) and NNcon (Tegge et al., 2009) falling into this category. In

recent years, with the advancement of deep learning techniques, the

precision of the predicted contact maps has increased significantly.

Methods in this category include plmConv (Golkov et al., 2016),

DeepCov (Jones and Kandathil, 2018), RaptorX-contact (Wang

et al., 2017), DNCON2 (Adhikari et al., 2018), SPOT-contact

(Hanson et al., 2018), DeepContact (Liu et al., 2018), DeepConPred

(Xiong et al., 2017) and so on.

The meta-based methods, such as LRcon (Yang and Chen,

2011), R2C (Yang et al., 2016), MetaPSICOV (Jones et al., 2015)

PconsC2 (Skwark et al., 2014) and NeBcon (He et al., 2017), work

by combining predictions from complementary predictors.

Improvement over individual predictors can be achieved in a meta

predictor but the scale may be limited, which can be seem from the

reported data in the corresponding methods articles.

Almost all contact prediction methods depend on the availability

of MSAs with enough number of non-redundant homologous

sequences, especially the coevolution-based methods (Wuyun et al.,

2018). However, many proteins with poorly populated families do

not have sufficient number of homologs in the conventional UniProt

database. Recently, in the work of Ovchinnikov et al. (2017) it was

demonstrated that this problem can be partially solved using

the metagenome sequence data. The contact maps predicted by the

coevolution method GREMLIN made it possible to build reliable

structural models for 614 protein families with currently unknown

structure; the predicted contacts were used as distance restraints

for guiding the Rosetta de novo structure prediction pipeline

(Leaver-Fay et al., 2011). However, it remains unknown whether

the metagenome sequence data are useful for improving deep learn-

ing based contact prediction methods.

In this work, we aim to make use of the metagenome sequence

data to improve the prediction of protein contact map, which results

in the development of MapPred, a new deep learning-based contact

prediction method. MapPred consists of two components, both

trained with the residual neural networks. The first one (named

DeepMSA) is trained on a reduced set of covariance features derived

directly from MSAs; while the second one is a meta predictor which

combines predicted contacts and other sequence profile features.

2 Materials and methods

2.1 Benchmark datasets
To train our methods, a training set and a validation set were con-

structed as follows. We first downloaded a list of 12 275 sequences

with sequence identity less than 25% and X-ray structure resolution

at least 2.5 Å from the PISCES website (Wang and Dunbrack, 2003)

on October 2017. We then removed sequences that satisfy one of

the following conditions: (i) corresponding structure was released in

the Protein Data Bank (PDB) (Berman et al., 2000) after May 1,

2016; Note that this filtering by date is only valid for the CASP12

dataset as other datasets were not collected based on this date.

(ii) has less than 50 or more than 1000 residues; (iii) shares more

than 20% sequence identity with any of the sequences in the bench-

mark datasets (described in the next paragraph); (iv) has detectable

profile similarity to any of the sequences in the benchmark datasets,

i.e. with an E-value � 0.001 by HHsearch (Soding, 2005). After this

process, 7277 sequences were kept. A validation set was composed

of 590 randomly selected sequences, and the remaining 6687

sequences were used for training.

Three benchmark datasets from previous studies are used as in-

dependent test sets of our method. The first one is from the work of

SPOT-Contact (Hanson et al., 2018), which consists of 228 hard

targets (denoted by SPOT-228). The second one is from the work of

RaptorX-Contact, which contains 41 CAMEO hard targets

(denoted by CAMEO-41). The last one is from the CASP12 experi-

ment, containing 38 free modeling targets (denoted by CASP12-38).

2.2 MapPred architecture
The overall architecture of the proposed method for contact map

prediction, named MapPred, is shown in Figure 1A. It consists of

two major stages. The first stage generates an MSA for the query se-

quence with the MSA generator (Fig. 1B); predicts the two prelimin-

ary contact maps with a new deep learning based method (named

DeepMSA) and the CCMpred method, respectively; and generates

sequence profile features for the second stage. The second stage con-

sists of a meta predictor (named DeepMeta) which combines the

predicted contact maps and the sequence profile features.

Training and prediction are based on the dilated residual neural

networks (ResNet) (Yu et al., 2017). We also tried other two var-

iants of neural networks: convolutional neural networks (CNN) and

common ResNet (He et al., 2016). Tests on the validation set

(Supplementary Table S1) show that the common ResNet and the

dilated ResNet consistently outperform the CNN. The dilated

ResNet leads to slightly higher precision than the common ResNet.

Thus the dilated ResNet is used here.

2.3 MSA generator
In this work, two databases are used for MSA generation. The first

one is Uniclust30 (version 2017_10) with �13.6 million precom-

piled HMM profiles (Mirdita et al., 2017). The second one is an

updated database from the work of (Ovchinnikov et al., 2017)

(denoted by MetaDB). It currently includes about 7 billion unique

sequences from the following resources: (i) JGI Metagenomes (7835

sets), Metatranscriptomes (2623 sets) and Eukaryotes (891

genomes); (ii) UniRef100; (iii) NCBI TSA (2616 sets); (iv) genomes

collected from various genomic centers and online depositories

(2815 genomes). Note that metagenomes and metatranscriptomes

may contain noisy and fragmented sequences due to large-scale and

high-throughput nature of the experimental setup. This may affect

the quality of MSA and the final prediction results, which will be

discussed experimentally later.

The search strategy works as follows (Fig. 1B). The HMM-

HMM alignment program HHblits (Remmert et al., 2012) is first

used to search against the Uniclust30 database, with at least 50%

coverage and less than 0.001 e-value. The homologous sequences
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returned are used to construct the first MSA (denoted by MSA1).

As in (Ovchinnikov et al., 2017), Nf is used to measure the depth of

an MSA, which is defined as the number of non-redundant sequen-

ces at 80% sequence identity divided by the square root of the se-

quence length. When the Nf value of MSA1 is greater than 64 [this

value was shown to be sufficient for accurate contact map prediction

and subsequent structure prediction in Ovchinnikov et al. (2017)],

the search is finalized and MSA1 is taken as the final MSA.

Otherwise, the HMM-sequence alignment program hmmsearch

(with default parameters) (Johnson et al., 2010) is used to detect

homologous sequences in the MetaDB database. The returned

sequences are used to construct the second MSA (denoted by

MSA2), which is the final MSA if its Nf value is greater than 64.

If Nf < 64 for both alignments, the one with the greater Nf is used.

2.4 Feature design
In the first stage of MapPred, the query sequence is submitted to the

MSA generator to construct an MSA. Two contact maps are pre-

dicted from the MSA using DeepMSA and CCMpred. DeepMSA is

a deep learning-based method developed in this work. It is an

improved version of the DeepCov method, which uses only about

half of the covariance features compared to the later and, as a result,

enables large-scale training with a significantly reduced amount of

computer memory and GPU time. CCMpred is a coevolution-based

method, which is based on a pseudo-likelihood maximization ap-

proach, similar to GREMLIN but optimized for speed.

In the second stage, the final contact map is predicted with 11 2D

channels, which are introduced below. The methods PSIPRED (ver-

sion 4.01) and SOLVPRED (version 2.0.3) (Jones, 1999) are used to

predict the secondary structure (SS) and the relative solvent accessibil-

ity (RSA), respectively. Each residue is encoded by four features, i.e.

three probability values for secondary structure (a-helix, b-strand and

random coil) and one for the solvent accessibility. These four 1D fea-

tures (i.e. per residue) are converted into eight 2D channels (i.e. per

residue pair) by concatenating the 1D features of the two paired resi-

dues. Another channel is the Frobenius norm matrix computed from

the covariance matrices of the MSA. Together with the two 2D chan-

nels of the predicted contact maps in the first stage, 11 2D channels

are obtained in total. These channels are fed into DeepMeta to predict

the final contact map.

2.5 The DeepMSA method
In the method of DeepCov, the MSA was converted into 441

(¼21�21) matrices of covariance features using Eq. (1):

covðix; jyÞ ¼ pðixjyÞ � pðixÞpðjyÞ (1)

where i and j are the MSA columns i and j (representing two posi-

tions in the original sequence), respectively; ix (jy) is one of the 20

amino acids or a gap at the ith (jth) column; p(�) is the frequency of

observing the corresponding residue or residue pair in the MSA.

We found two issues in this presentation of covariance. The first

is about symmetry of matrix and the second is about the high num-

ber of matrices. Note that the protein contact map is symmetric as

there is no order information for the residues at the positions i and j.

However, the matrices derived from Eq. (1) are not symmetric. In

addition, we observed that these matrices are often sparse and thus

reduced the number by compressing those matrices based on the

properties of amino acid groups (e.g. hydropathy index and side

chain polarity). However, it did not achieve comparable perform-

ance to DeepCov, probably due to the loss of information.

We proposed to use Eq. (2) to calculate the covariance, which

addresses both of the above issues simultaneously, by which the

number of independent matrices was reduced from 441 to 231.

A

B C D

Fig. 1. The architecture of the proposed methods. (A) is the flowchart of MapPred for contact map prediction. (B) is the MSA generator for constructing an MSA

for a protein sequence. (C) is structure for the network used in the method DeepMSA. (D) is the structure for each residual block
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Rcovðix; jyÞ ¼
covðix; jxÞ; if x ¼ y;

covðix; jyÞ þ covðiy; jxÞ; if x 6¼ y;

8<
: (2)

In DeepMSA, the network (Fig. 1C) consists of the input layer,

which contains 231 2D channels derived from the MSA, one 2D

convolutional layer with 128 1�1 filters, one 2D convolutional

layer with 64 7�7 filters, 7 residual blocks (Fig. 1D), two dilated

residual blocks with a dilation ratio of 2, two 2D convolutional

layers with 64 5�5 filters and one 2D convolutional layer with one

1�1 filter as the output layer. To reduce the training time and the

computer memory, the batch size in each round is set to one, which

enables training with proteins of varied lengths.

Note that there may be information loss by using Eq. (2). Thus,

we also tried several other ways to reduce the number of channels

and/or symmetrize the channel matrix. Tests on the validation set

show that using Eq. (2) leads to very similar results as using all the

441 channels, but at significantly reduced computational cost

(Supplementary Table S2).

2.6 The DeepMeta method
The network for DeepMeta is similar to the one used by DeepMSA.

It consists of an input layer of 11 2D channels, one 2D convolution-

al layer with 32 7�7 filters, three residual blocks, two dilated re-

sidual blocks with a dilation ratio of 2, two 2D convolutional layers

with 32 5�5 filters and one 2D convolutional layer with one 5�5

filter as the output layer. Because the number of channels is much

smaller than that in DeepMSA, it is possible to train the network

with a mini-batch weight updating mode, which is routinely used in

the deep learning community.

However, the proteins have varied lengths and cannot be fed

into the network directly. In our training dataset, the lengths are be-

tween 50 and 1000. We cut each input matrix into submatrices of

fixed size, so that they could be simultaneously fitted into the net-

work for contact map prediction; and then recover the full-size con-

tact map by summing and averaging over the outputs from these

submatrices.

The idea was illustrated in Supplementary Figure S1. A feature

matrix F of size 5�5, is cut it into four 3�3 submatrices. A 3�3

window is moved on the matrix F with a step size of 3 by following

a left-to-right and top-to-bottom order. When the window goes out-

side the boundary of F, it is returned back step by step until it fully

fits into the matrix. The contact map for each submatrix is predicted

independently, which is then merged together to generate the con-

tact map for the original matrix. The appearing frequency for each

element in the submatrices is counted, which forms a count matrix.

The summations from the outputs of the submatrices are divided by

the corresponding values in the count matrix to generate the final

contact map. In this work, the size of the submatrix is 224, which

equals to the medium value of the protein lengths in the training set.

For small proteins with less than 224 residues, zeros were padded to

the right-and-bottom edges to extend the matrix size to 224.

2.7 Performance evaluation
First, we define the gold standard for a residue-residue contact. Two

residues are considered to be in contact if the Euclidean distance be-

tween their Cb atoms (Ca atoms for glycine) is less than a specified

threshold (8.0 Å). Depending on the separation (denoted by s) of

two residues along the sequence, the contacts can be classified into

three classes: short range (6� s<12), medium range (12� s<24)

and long range (s�24). Short-range contacts are usually skipped as

they are less useful for protein structure modeling.

The precision, i.e. the number of true positives divided by the

number of predicted contacts, is used to measure the performance of

a method. A predicted contacting pair is regarded as a true positive

(TP) if the two residues are in contact in the native 3D structure.

The top L/n ranked predictions are usually assessed, where the value

of n can be 1, 2, 5 and 10. For the sake of simplicity, we mainly

focus on the assessment for the top L/5 long-range predicted con-

tacts. Switching to other L/n top-ranked predictions and/or the

medium-range contacts does not change the major conclusions of

this work. In the remaining of this paper, the precision is given for

the top L/5 long-range predicted contacts by default, unless other-

wise noted.

3 Results and discussion

3.1 Parameter optimization
The Keras (http://keras.io) and the Tensorflow libraries were used to

implement our models. We initialized the weights as in He et al.

(2015) and trained the networks from scratch. To train both

DeepMSA and DeepMeta, the ReLU function (Nair and Hinton,

2010) is used for the intermediate layers and a sigmoid activation

function is used at the very end to convert the predictions into prob-

ability values. The binary cross-entropy is used as the loss function.

Because the contact map is usually sparse, we added the l1/l2 sparse

function (Obozinski et al., 2008) to the loss function with a penalty

coefficient of 2E-05. Test shows this sparse function improves the

precision by about 2%.

DeepMSA was trained on a subset of the training set, consisting

of 6289 sequences with length at most 500. After optimization, the

hyper-parameters are as follows. Mini-batch size: 1; optimizer:

SGD; learning rate: 0.1; weight decay: 1.5E-4; momentum: 0.95;

and L2-norm regularization coefficient: 8E-5. Training of one model

takes 15–20 epochs (around 12 h) to converge to a stable solution.

DeepMeta was trained on the entire training set of 6688 sequen-

ces. The hyper-parameters for DeepMeta are as follows. Mini-batch

size: 8; Optimizer: SGD; learning rate: 0.02; weight decay: 1E-4;

momentum: 0.95; and L2-norm regularization coefficient: 0.0004.

Training of one model takes 25–35 epochs (around 5 h) to converge

to a stable solution.

Due to the random effects in training, multiple models were

trained for both DeepMSA and DeepMeta. The average of the pre-

dictions by the models is used as the final result. In our test, the

usage of multiple models improves the precision by 3–5%. By de-

fault, multiple models were used unless noted.

To estimate the running time of the contact predictions, we ran-

domly selected proteins with lengths between 50 and 1400. The

MSAs of these sequences were submitted to MapPred. This was

repeated by 20 times to collect the average running time. Here the I/

O running time is not counted. Supplementary Figure S2 shows that

running time on both GPU and CPU is quadratic to the sequence

length.

3.2 Importance of the component features
There are three groups of features in MapPred: (1) CCMpred-based

feature; (2) Sequence profile features, including SS, RSA and the

Frobenius norm; and (3) DeepMSA-based feature. We use the valid-

ation set to analyze the importance of these feature groups.

Supplementary Figure S3 summarizes the precisions for the models

built with each feature group and their combinations. We can see

that the precision for CCMpred is 54.83%, which is much lower

than the precision (81.05%) for the deep learning model built with
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the feature group (3), and is higher than the precision (50.03%) for

the deep learning model built with the feature group (2).

Improvements were consistently observed when combining these

features together. The most significant improvement was from the

combination of the CCMpred and the second group of sequence

profile features, with the respective precisions increased from

54.83% and 50.03% to 81.28%. This suggests that these two

feature groups are largely complementary to each other. The best-

performing method DeepMSA was also improved by 5% after com-

bining with other features. The highest precision was observed when

all three feature groups were combined together, which motivates us

to use these combined features for building the MapPred model.

3.3 Comparison between DeepMSA and DeepCov
DeepMSA uses only about half number of the features from the

method DeepCov, making it possible to train the models more effi-

ciently. The performance of both methods on the benchmark data-

sets are summarized in Figure 2. DeepMSA consistently outperforms

DeepCov by 10–13% for the three benchmark datasets. Head-to-

head comparisons were presented in Figure 3, which indicates that

DeepMSA outperforms DeepCov for most targets in each dataset.

Statistical tests were performed to estimate the significance level

of the improvements as follows. For each benchmark dataset, we

randomly split the set into two halves and then computed the aver-

age precision for each method. This experiment was repeated 100

times to generate 100 paired results. The Anderson-Darling test was

first used to test whether the data follow a normal distribution at

0.05 significance level. The paired t-test was applied for a normal

distribution. Otherwise, the nonparametric Wilcoxon signed-rank

test was utilized. The P-value returned from the test indicates the sig-

nificance level of the difference between two compared methods. In

our experiments, the P-values are 7.24E-60, 1.07E-22 and 1.56E-

20, for the SPOT-228, CAMEO-41 and CASP-38, respectively.

Because the inputs are identical for both methods, the enhanced per-

formance can be attributed to the improved feature design and the

efficient training in DeepMSA.

3.4 Quality analysis of the metagenome sequence data
To investigate how the potential noise in metagenomic sequences

could affect the performance of contact predictions, we enriched the

HHblits alignments obtained on Uniclust30 with metagenomic

sequences using varying bit score thresholds (from 0.2 to 1.2 times

the length of the query protein). The lower the bit score is, the more

metagenomic sequences are included in the alignment, on top of the

Uniclust30 hits, gradually increasing the fraction of potentially noisy

sequences in the resulting MSA. For the MSAs at each bit score

threshold, we ran DeepMSA and assessed the precision of the pre-

dicted contacts on the three benchmark datasets. The results sum-

marized in Figure 4 show that greater precision is achieved at

smaller bit score thresholds. This suggests that it is valuable to uses

metagenome sequences to generate MSAs, despite the potential

noise in the dataset.

3.5 Contribution of the metagenome sequence data
In this study, the metagenome sequence database (MetaDB) was

used together with Uniclust30 to improve the MSA generation. In

this section, we investigate the contribution of the MetaDB to the

contact map prediction as follows. For each target, we generated

two sets of alignments to compare the contribution from the metage-

nome sequence data: one is purely from the Uniclust30 and the other

is from MetaDB. To reduce the influence from other factors (e.g. ac-

curacy in secondary structure prediction), two representative and

clean methods are selected for this discussion: CCMpred and

DeepMSA. The input to both methods is the MSA only, making

them idea candidates for these experiments.

The results are summarized in Figure 5, which shows that on

each benchmark dataset, greater precisions were achieved for both

methods by using the MSAs from MetaDB. For CCMpred and

DeepMSA, the respective improvements are in the 16–57% and 11–

27% ranges. These data suggest that direct coupling-based methods

depends more on the MSA quality than deep learning-based

Fig. 4. The precisions of DeepMSA on the benchmark datasets with MSAs

enriched with metagenomic sequences at varying bit score thresholds

Fig. 2. The comparison of DeepMSA with DeepCov on the three benchmark

datasets

Fig. 3. Head-to-head comparisons between the precisions (%) of DeepMSA

and DeepCov on three benchmark datasets
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methods, consistent with the observation in the work on DeepCov.

The P-values from statistical tests are listed in Supplementary Table S3

showing that the improvements by using the metagenome sequence

data are significant (P-value < 1E-16).

3.6 Comparison between MapPred and other methods
We compared MapPred with other methods on the benchmark data-

sets. The results are summarized in Table 1. The results for

other methods on the SPOT-228 are cited from the work of

SPOT-Contact. To compare with the latest versions of the two

top-performing methods, SPOT-Contact and RaptoxX-Contact, we

submitted the sequences of the CAMEO-41 and CASP12-38 data-

sets to the respective servers and assessed the precisions.

On the SPOT-228 dataset, MapPred achieves 78.94% precision,

comparable to those of SPOT-Contact and RaptorX-Contact (i.e.

81.66 and 78.3%, respectively). Except these two methods,

MapPred outperforms other methods by a large margin. For ex-

ample, MapPred’s precision is 14.3, 28.9 and 57.7% higher than

DeepCov, DNCON2 and MetaPSICOV, respectively. On the

CAMEO-41 dataset, MapPred’s precision (77.06%) is lower than

those of RaptorX-Contact (81.57%) and SPOT-Contact (79.65%).

On the CASP12-38 dataset, MapPred achieves the precision of

77.05%, which is slightly higher than RaptorX-Contact’s precision

(75.8%) and significantly higher than SPOT-Contact’s precision

(68.55%).

The lower precisions of MapPred compared with RaptorX-

Contact and SPOT-Contact on the CAMEO-41 and the SPOT-228

datasets may be partly explained by the more stringent criteria used

in the construction of our training set. In these two methods, the se-

quence identity cutoff between the training and test proteins was

25% and the profile-sequence alignment tool PSI-BLAST was used

to exclude similar proteins in the training set. In comparison, the

sequence identity cutoff here is 20% and the more sensitive profile-

profile alignment algorithm HHsearch was used to filter out

proteins from the training set. When the same standards were used,

we observed an increased size of the training set. The precision gap

between our method and these two methods becomes smaller after

re-trained on the new training set.

Supplementary Figure S4 shows head-to-head comparisons be-

tween MapPred and RaptorX-Contact on the CAMEO-41 and

CASP12-38 datasets. On these two datasets, there are about 1/3 tar-

gets that MapPred outperforms RaptorX-Contact and 1/3 targets

that both methods have similar precisions. This suggests that

MapPred is complementary to RaptorX-Contact and a combination

of them should be able to improve the predictions further.

To demonstrate that the improvement of MapPred over other

methods is not completely due to the usage of the metagenomic

sequences, we did the following experiment on the CASP12-38 data-

set. The MSA for each target in this dataset was generated by search-

ing against the sequence database uniprot20_2016_02 (before the

date of CASP12) using HHblits at 50% coverage and 0.001 e-value.

With this new alignment, the precision of MapPred drops to

60.31%; but is significantly higher than the top value (47.09% by

RaptorX-Contact) listed on the CASP12 website. This suggests that

besides the metagenomic sequences, other factors such as the

improved feature design and the training by ResNet also contribute

to the success of MapPred.

3.7 Performance of MapPred in the blind tests of

CASP13
With MapPred, we participated in the contact prediction category

of the CASP13 experiment with the group name Yang-Server (group

code RR164). The Z-scores over 31 free-modeling domains shows

that our method is ranked at the 9th out of 46 participating groups.

When ranking by the average precision of the top L/5 long-range

predictions, our method is at the 7th. When more predictions are

assessed, the ranking of our method is improved and the gap with

the top-ranked method becomes smaller. For example, when the top

L longþmedium-range predictions are assessed, our method is

ranked at the 5th (Supplementary Fig. S5). After CASP13, a few crit-

ical bugs were found in the version used during the CASP13 experi-

ments. We re-trained MapPred after fixing these bugs. Test on these

31 targets (with the same MSAs used by Yang-Server) suggests that

the top L/5 long-range precision was improved from 60.156% (for

Yang-Server) to 69.79%, very close to that of RaptorX-Contact

(70.054%). Supplementary Figure S6 shows that the improved

MapPred is complementary to RaptorX-Contact. In comparison,

the precision for the method SPOT-Contact (the top method on the

dataset SPOT-228) is 58.09% (collected from the CASP13 website),

which is lower than both the old and the new versions of MapPred.

4 Conclusions

The precision of protein contact map prediction is constantly

improving in recent years, due to the continuous accumulation of se-

quence data and the development of deep learning algorithms. In

this work, we presented MapPred, a new method for protein contact

map prediction that consists of two component methods, i.e.

DeepMSA and DeepMeta. Using the improved metagenome data-

derived MSAs, we first developed a deep learning-based method

DeepMSA, which only relies on the MSA as the input. Then a deep-

learning based meta predictor DeepMeta was developed by combing

Fig. 5. The precisions of CCMpred and DeepMSA on the benchmark datasets

with MSAs generated from the Uniclust30 and the MetaDB databases

Table 1. The comparison between the precisions (%) of MapPred

and other methods

Method SPOT-228 CAMEO-41 CASP12-38

R2C 37.66 NA NA

DeepConPreda 38.9 NA NA

CCMpred 46.9 45.85 38.22

NeBcon 48.88 NA NA

MetaPSICOV 50.07 NA NA

DNCON2 61.26 NA NA

DeepCov 69.04 67.21 63.54

MapPred 78.94 77.06 77.05

RaptorX-Contact 78.3 81.57 75.8

SPOT-Contact 81.66 79.65 68.55

Note: The highest values are highlighted in bold.
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DeepMSA with a direct-coupling method CCMpred. We demonstrated

that the vast sequence data from the metagenome sequencing projects

result in improved protein contact map predictions with the residual

neural networks. Experiments on three benchmark datasets show that

our method is complementary and comparable to the state-of-the-art

methods. We attribute the success of MapPred to the usage of the

metagenome sequence data, the improved feature design in DeepMSA

and the optimized training with the residual neural networks. In the

near future, the predicted contacts will be used to guide the Rosetta de

novo structure modeling, to investigate how much deep learning-based

predictions could add on top of the coevolution-based predictions.

Funding

The work was supported in part by National Natural Science Foundation of

China (NSFC 11871290 and 61873185), the Fundamental Research Funds

for the Central Universities, Fok Ying-Tong Education Foundation (161003),

China Scholarship Council, KLMDASR and the Thousand Youth Talents

Plan of China.

Conflict of Interest: none declared.

References

Adhikari,B. et al. (2018) DNCON2: improved protein contact prediction

using two-level deep convolutional neural networks. Bioinformatics, 34,

1466–1472.

Berman,H.M. et al. (2000) The Protein Data Bank. Nucleic Acids Res., 28,

235–242.

Cheng,J. and Baldi,P. (2007) Improved residue contact prediction using sup-

port vector machines and a large feature set. BMC Bioinformatics, 8, 113.

Ekeberg,M. et al. (2013) Improved contact prediction in proteins: using pseu-

dolikelihoods to infer Potts models. Phys. Rev. E Stat. Nonlinear Soft

Matter Phys., 87, 012707.
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