TABLE 2.
Applications of the microextraction techniques discussed in this review for determination of pharmaceuticals in different matrices.
| Application | Analyte | Extraction method | Matrix | LOD/LOQ (ng/ml) | Recovery | Analysis method | References |
|---|---|---|---|---|---|---|---|
| Environmental | Antioxidants, UV filters, and fragrances | SPME(PDMS) | Tap water | 5–8,500 | nr | GC-MS | Basaglia et al. (2011) |
| Estriol, estradiol, ethynylestradiol, estrone, progesterone, medroxyprogesterone, levonorgestrel, and norethindrone | SBSE | Water (tap water and raw | 0.5 × 10–3–1.0 | 556–96% | MS | Vo Duy et al. (2012) | |
| Wastewater | |||||||
| Triclosan, triclocarban, and their four related transformation products | SPME | Water | 0.06–0.21 | 81.54–102.32% | HPLC-DAD | Shen et al. (2012) | |
| 0.12–0.73 | |||||||
| Triclosan and bisphenol-A | SPME (CW/TPR) | Tap, river and | 1 | 71–111 | HPLC-DAD | Kim et al. (2013) | |
| Chlorophenols and mefenamic acid | Wastewater | 2–9 | |||||
| Gemfibrozil | 3 | ||||||
| Steroids | SPME (PDMS/DVB) | Local source water | 30–2,000 | 84.9–103% | GC-MS/MS | Chopra et al. (2014) | |
| Mesterolone | |||||||
| Methandriol | |||||||
| Estrone | |||||||
| Estradiol | |||||||
| Androstenedione | |||||||
| Eticholan-3–17-one | |||||||
| DES | |||||||
| Prasterone | |||||||
| Sulfonamides, sulfacetamide, sulfadiazine, sulfathiazole, sulfamethazine, sulfamethoxypyridazine, and sulfamethoxazole | MEPS(C8) | Wastewater | 5–200 | 88–109% | HPLC-DAD | Salami and Queiroz, (2014) | |
| Flufenamic acid and mefenamic acid | SPME | Water | 6 × 10−5–1.24 × 10−3 | 85.1–110.8% | GC-MS | Huang et al. (2015) | |
| Flurbiprofen | 2.2 × 10−4–4.13 × 10−3 | ||||||
| Clofibrate | |||||||
| Ketoprofen | |||||||
| Naproxen | |||||||
| Tolfenamic acid | |||||||
| Gemfibrozil | |||||||
| Estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone, and mestranol | SPME-fiber | Water | nr | 75.6–116% | HPLC | Liao et al. (2016) | |
| Androgens and progestogens | FSPE (sol-gel PTHF) | Water, urine | 1.7 × 10−3–0.264 (water samples) | 83.8–103.9% water | UHPLC–MS/MS | Guedes-Alonso et al. (2016) | |
| Norethisterone | 8.9 × 10−3–0.132 (urine samples) | 81.9–120% urine | |||||
| Norgestrel | |||||||
| Megestrol acetate | |||||||
| Progesterone | |||||||
| Boldenone | |||||||
| Nandrolone | |||||||
| Testosterone | |||||||
| DHEA | |||||||
| Androsterone | |||||||
| Androstenedione | |||||||
| Penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, and nafcillin) | SPME (Al-MOF) | River water | 0.06–0.26 | 80.8–90.9% in water | LC–MS or LC–UV | Lirio et al. (2016) | |
| 81.1–100.7% in milk | |||||||
| Abacavir | SPME-fiber | Surface waters and wastewater | 0.010–0.013 | 88–99% | LC-MS | Terzopoulou et al. (2016) | |
| 0.033 | |||||||
| Chlorophenols and eleven estrogenic compounds | SPME | Surface water | 8.8 × 10−3–42.9 × 10−3 | 69–108% | GC-MS | Yuan et al. (2017) | |
| β-Estradiol | SBSE | Water | nr | 71.4–83.2% | Suazo et al. (2017) | ||
| 3-(4-metylbenzylidene)camphor | |||||||
| Carbamazepine | |||||||
| Ibuprofen | |||||||
| 2,4-dihidroxybenzophenone | |||||||
| Triclosan | SPME-Fiber (PDMS) | Seawater | 0.111, 0.177, 0.088 | nr | LC-MS/MS | Santos et al. (2018) | |
| Bisphenol A | |||||||
| 17α-Ethynylestradiol | |||||||
| 4-Chloro-1-naphthol | SBSE | Wastewater, pool water | 0.034 | 87.4–141.3% | HPLC | Jillani et al. (2020) | |
| 0.400 | |||||||
| Biological (fluids and tissues) | NSAIDs | MEPS (C18) | Plasma, urine | 30–100 | nr | HPLC-PDA | Locatelli et al. (2014) |
| Furprofen, indoprofen, ketoprofen, fenbufen, flurbiprofen, indomethacin, and ibuprofen | |||||||
| Selected estrogens | FSPE (sol-gel PTHF) | Urine | 0.036 | 88.7–98.0% | HPLC-FLD | Kumar et al. (2014) | |
| α-17-ethynylestradiol | 0.020 | ||||||
| β-Estradiol | 0.042 | ||||||
| α-Bisphenol A | |||||||
| Ciprofloxacin and levofloxacin, two fluoroquinolones | MEPS (C18) | Sputum | 17–50 | >80% | HPLC-PDA | Locatelli et al. (2015) | |
| Cocaine, amphetamines, natural and synthetic opioids, and hallucinogens (AMP, MAMP, MDA, MDMA, and MDEA) | MEPS | Oral fluid | 1, 1, 1, 0.5 & 0.5 | >60% | LC-MS/MS | Montesano et al. (2015) | |
| Estriol, 17β-estradiol, testosterone, ethinylestradiol, estrone, progesterone, and mestranol | SPME-fiber | Urine | nr | 75.6–116% | HPLC | Liao et al. (2016) | |
| Benzodiazepines | FSPE (sol-gel PEG) | Blood serum | 30 | nr | HPLC | Samanidou et al. (2016) | |
| 10 | |||||||
| Abacavir | SPME-fiber | Urine | 43.9 × 10−3 | 88–99% | LC-MS | Terzopoulou et al. (2016) | |
| 12 azole drugs (bifonazole, butoconazole, clotrimazole, econazole, itraconazole, ketoconazole, miconazole, posaconazole, ravuconazole, terconazole, tioconazole, and voriconazole) | MEPS (C18) | Plasma, urine | 0.23 and 0.37 | 88.5–99.2% | HPLC-DAD | Campestre et al. (2017) | |
| Trans,trans-muconic acid | MIP-MEPS | Urine | 50 | 89.8–91.6% | HPLC-UV | Soleimani et al. (2017) | |
| 15 | |||||||
| Statins | MEPS (C18) | Plasma | 10–20 | nr | UHPLC-MS/MS | Ortega et al. (2017) | |
| Drugs of abuse | MEPS C8/SCX | Plasma | 5–10 | 80–104% | UPLC | Fernández et al. (2017) | |
| Morphine | |||||||
| Methylone | |||||||
| 6-AM | |||||||
| Mephedrone | |||||||
| BEG | |||||||
| Cocaine | |||||||
| MDPV | |||||||
| Cocaethylene | |||||||
| EDDP | |||||||
| Methadone | |||||||
| Voriconazole | SPME-MS | Human plasma | 3–6 | nr | Coated blade spray-MS | Tascon et al. (2017) | |
| Ciprofloxacin | FSPE (sol-gel Carbowax® 20 M) | Whole blood Plasma | 250 (10) | nr | HPLC-PDA | Kabir, et al. (2018) | |
| Sulfasalazine | Urine | 110 (30) | |||||
| Cortisone | 100 (30) | ||||||
| Cyclosporine | SPME-MS | Whole blood | 3.0 | nr | Coated blade spray-MS/MS | Gomez-Ríos et al. (2018) | |
| Tacrolimus | Whole blood | 0.3 | |||||
| Sirolimus | Whole blood | 1.0 | |||||
| Everolimus | Whole blood | 0.3 | |||||
| losartan and valsartan | SBSE | Human plasma | 7.0 | 98–117% | LC-MS | Babarahimi et al. (2018) | |
| 27.0 | |||||||
| Methylphenidate | SPME | Human heparin plasma | nr | nr | TD-ESI/MS | Wang et al. (2018) | |
| Doxorubicin | SPME | Lung tissue | 103.2% | LC-MS/MS | Roszkowska et al. (2018) | ||
| Antibiotics and their metabolites (amoxicillin, cefotaxime, ciprofloxacin, clindamycin, metronidazole, amoxycilloic acid, 4-hydroxyphenyl glycyl amoxicillin, desacetyl cefotaxime, 3-desacetyl cefotaxime lactone, ciprofloxacin N-oxide, N-demethyl clindamycin, clindamycin sulfoxide, and hydroxy metronidazole | SPME-C18 fiber | Human whole blood and tissue samples | 28–45 | 89.29–98.39% | HPLC-QqQ-MS | Szultka-Mlynska et al. (2018) | |
| 85–135 | |||||||
| NSAIDs (ibuprofen, diclofenac, naproxen, and nalidixic acid) | SPME- Fe3O4/Cu3(BTC)2 MOF | Human urine, serum, plasma, and tablets | 0.03–0.05 | 94.0–102.0%. | HPLC | Mirzajani et al. (2019) | |
| 0.12–0.18 | |||||||
| Methamphetamine | SPME | Hair | 0.067 | 90.2–95.8% | LC-MS | Meng et al. (2020) | |
| Amphetamine | 0.067 | ||||||
| Ketamine | 0.067 | ||||||
| Norketamine | 0.067 | ||||||
| Perphenazine, chlorpromazine, chlorprothixene, promethazine, and trifluoperazine | Hollow fiber SPME | Human whole blood and urine | 0.025, 0.0125, 0.025, 0.025 and 0.0125 | 46.4–96.6% (blood) | UPLC-MS/MS | Li et al. (2020) | |
| 65.2–101.9% (urine) | |||||||
| Alprazolam and amitriptyline | DI-SPME | Human blood and bone marrow | 1.87–10.45 | nr | LC-TOFMS | Majda et al. (2020) | |
| Bromazepam and carbamazepine, citalopram | 5.60–31.35 | ||||||
| Clonazepam,clorazepate, desipramine, and diazepam | |||||||
| Estazolam, flunitrazepam, and fluoxetine | |||||||
| Imipramine, lorazepam, lormetazepam, midazolam, nitrazepam, nordazepam, and nortriptyline | |||||||
| Paroxetine, prazepam, and temazepam | |||||||
| Tetrazepam, venlafaxine, and zolpidem | |||||||
| 4-chloro-1-naphthol | SBSE | Human urine | 0.034 | 87.4–141.3% | HPLC | Jillani et al. (2020) | |
| 0.400 | |||||||
| Tranexamic acid | SPME-Thin film | Human plasma and urine | 10000–25000 | nr | LC-MS/MS | Looby et al. (2021) | |
| Others (food, animal tissue, in vivo, dosage forms) | Melatonin and other antioxidants | MEPS (C18) | Foodstuff | 0.02 | nr | HPLC-FLD | Mercolini et al. (2012) |
| Carvedilol enantiomers | SBSE | Pharmaceutical dosage forms | 8 (R) and 11 (S) | 98–103% | HPLC | Taraji et al. (2015) | |
| 25 (R) and 50 (S) | |||||||
| Clenbuterol | SPME | Pork | 3.6 × 10−6 | 97.4–105.7%. | GC/MS | Ye et al. (2016) | |
| Salicylic, 3-methyl salicylic, 4-methyl salicylic, acetylsalicylic, and benzoic acids | SPME | Fruits and vegetables | 2–28 | 78.0 ± 1.3% | HPLC | Aresta and Zambonin, (2016) | |
| 7–95 | |||||||
| Neurotransmitters | SPME | Macaque brain | 25–20,000 | 80–100% | LC-MS/MS | Lendor et al. (2019) | |
| 98 pharmaceutical analytes | SPME | Bovine tissue | (0.25–3X, where X corresponds to the MRL for each target analyte) | nr | SPME-DART-MS/MS | Khaled et al. (2020) |
nr: not reported.