Table 3.
Performance (mean ± SD) of different models in ASD vs. NC classification based on rs-fMRI data in UM site of the ABIDE dataset.
| Model | Accuracy | Recall | Precision | F1-score | AUC |
|---|---|---|---|---|---|
| DCF | 0.645 ± 0.089 | 0.733 ± 0.187 | 0.691 ± 0.046 | 0.702 ± 0.103 | 0.633 ± 0.039 |
| LCCF | 0.620 ± 0.077 | 0.720 ± 0.200 | 0.670 ± 0.059 | 0.681 ± 0.116 | 0.573 ± 0.045 |
| CCF | 0.634 ± 0.105 | 0.761 ± 0.190 | 0.662 ± 0.076 | 0.702 ± 0.131 | 0.542 ± 0.049 |
| GCNA | 0.739 ± 0.098 | 0.710 ± 0.159 | 0.927 ± 0.067 | 0.790 ± 0.102 | 0.875 ± 0.065 |
| GCNC | 0.725 ± 0.082 | 0.651 ± 0.186 | 0.751 ± 0.108 | 0.677 ± 0.121 | 0.824 ± 0.057 |
| MGRL (Ours) | 0.762 ± 0.078 | 0.843 ± 0.070 | 0.794 ± 0.100 | 0.812 ± 0.054 | 0.867 ± 0.049 |
The bold values mean to highlight the experiment results.