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Abstract

The Dystrophin Glycoprotein Complex (DGC) is a large multi-protein complex that links 

cytoskeleton actin to the extracellular matrix. This complex is critical in maintaining the structural 

integrity of muscle fibers and the stability of the neuromuscular synapse. The DGC consists 

of dystrophin and its utrophin homolog, as well as dystroglycans, sarcoglycans, sarcospan, 

syntrophins, and dystrobrevins. Deficiencies in DGC proteins result in several forms of muscular 

dystrophy with varying symptoms and degrees of severity in addition to structurally abnormal 

neuromuscular junctions (NMJs). This mini-review highlights current knowledge regarding the 

role of the DGC on the molecular dynamics of acetylcholine receptors (AChRs) as it relates to the 

formation and maintenance of the mammalian NMJ.

INTRODUCTION

High density clustering of AChRs at the postsynaptic membrane is a major hallmark of 

the neuromuscular junction [1–3]. During embryonic development, acetylcholine receptors 

(AChRs) are diffusely and evenly distributed (pre-patterned) on the cell surface in the 

absence of primary myotube innervation and subsequently form clusters where growing 

nerves form contacts [1, 4–6]. This initial clustering of AChRs is a multi-step process 

that involves a variety of molecules and signaling pathways [1, 4, 6]. One of these is the 

agrin-LRP4-MuSK pathway, of which several core molecules have been identified including 

agrin, LRP4, Musk, Dock7, and rapsyn; mice deficient in any of these fail to form synapses 

[7–14]. Numerous key alterations occur over the course of synaptic development, including 

a transformation from plaque-like AChR clusters to complex pretzel-shaped aggregates, a 

molecular transition from embryonic AChR gamma subunits to adult epsilon subunits, and 

an increase in the concentration, size, and metabolic stability of AChR clusters [15–18]. In 

mature NMJs, AChRs accumulate at a density estimated to be >10,000/μm2 at the crests of 
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postsynaptic folds and drops to <10/μm2 within a few microns of the NMJ boundary in the 

extrasynaptic zone [2, 3, 19, 20]. This high density of AChRs at the postsynaptic membrane 

is required for efficient impulse transmission between the nerve and the muscle.

Several auxiliary proteins, including the DGC, play important roles in the maturation and 

maintenance of high density of AChR clusters at the NMJ. Over the past decades, the 

role of DGC intracellular proteins (dystrophin/utrophin, syntrophins, and dystrobrevins) and 

transmembrane and extracellular proteins (dystroglycan α and β subunits, sarcoglycans 

α, β, γ, and δ subunits) on the maintenance of muscle cell function have been 

extensively studied [1, 14, 21–25]. Genetically engineered animal models for these 

proteins have substantially contributed to current understanding of the mechanisms 

underlying the molecular pathogenesis of muscular dystrophy. However, not all mutations 

that disrupt DGC proteins lead to muscular dystrophy. For instance, while muscles 

deficient in dystrophin, dystroglycans, sarcoglycans, or α-dystrobrevin all exhibit muscular 

dystrophies, those deficient in α1-syntrophin or utrophin display no muscular dystrophy 

or alterations in muscle contractile properties [23, 26–32]. However, the neuromuscular 

systems in all of these mutants were affected to varying degrees. Moreover, biochemical, 

immunocytochemical, and bimolecular fluorescence complementation (BiFC) approaches 

have provided useful information about DGC protein distribution at the synapse. DGC 

proteins have been found to be present at both synaptic and non-synaptic areas throughout 

the muscle cell. At the NMJ, α-syntrophin and α-dystrobrevin1 form complexes with 

utrophin, rapsyn and AChRs at the crests of the post-junctional folds [24, 33–36], while 

dystrophin and dystroglycans are concentrated in the depths of post-junctional folds and 

throughout the muscle fiber surface [20, 37, 38].

DYSTROPHIN AND THE NEUROMUSCULAR JUNCTION

Dystrophin is a large 427 kDa molecule that is distributed uniformly throughout the inner 

side of the skeletal muscle sarcolemma and is enriched in the depths of post-synaptic folds 

[20, 38]. In primary muscle cultures, dystrophin is highly expressed at AChR clusters where 

it co-localizes with rapsyn and other cytoskeletal components [39, 40]. During development, 

dystrophin is found to localize at the postsynaptic apparatus after postnatal day 7 [37]. 

Much of what we know about the structural and functional consequences of the absence 

of dystrophin on the maturation and stability of NMJs comes from studies on the mdx (X-

chromosome-linked muscular dystrophy) mouse, a model for muscular dystrophy in which 

myopathy varies with age [23, 41–43]. Affected muscles manifest abnormal morphology 

in the form NMJ fragmentation and decreased sarcolemma and cytoskeleton stability 

[15]. In adult mdx mice, AChR fragmentation was observed exclusively in regenerating 

muscle fibers, indicating that dystrophin is necessary for the maintenance of NMJs in 

regenerating muscle fibers but does not seem to affect general postnatal NMJ maturation 

in non-regenerating fibers [44–46]. Furthermore, mdx mice also manifest a reduction in the 

density and depth of post-junctional folds accompanied by altered AChR distribution, but no 

apparent decreases in total number of AChRs at NMJ [45, 47]. Studies by Xu et al. have 

shown that the degradation rate of AChRs in innervated adult mdx muscle is significantly 

increased, suggesting that neuronal stabilization of adult AChRs may require the presence 

of dystrophin or its associated glycoprotein complex [48]. However, by following the same 
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fluorescently labeled AChRs at NMJs overtime, it was determined that the loss of AChRs 

in mice deficient in dystrophin was not different from normal [49]. Other studies have 

further have shown significant reductions in the quantity of large AChR clusters in cultured 

myotubes lacking dystrophin, suggesting that dystrophin may also play a role in organizing 

small clusters into larger ones [45]. While some early studies attributed abnormalities in 

AChR clustering to be a likely secondary effect of high rates of muscle degeneration 

and necrosis [45, 47], more recent research has demonstrated that changes in AChR 

clustering are indeed a consequence of dystrophin deficiency [15]. Moreover, abnormalities 

in neuromuscular transmission have been observed in dystrophic mdx mice, including 

decreases in amplitude of miniature end-plate potentials (mEPP) with age accompanied 

by increases in the quantal content [50]. Such quantal content increases likely occur to 

counteract the mEEP decreases which result from the morphological changes observed at the 

NMJ [50].

UTROPHIN AND THE NEUROMUSCULAR JUNCTION

Initially called dystrophin-related protein, utrophin is a dystrophin homologue selectively 

concentrated at the crests of post-junctional folds in NMJs [24, 36, 51]. Studies have 

reported that utrophin is associated with large AChR clusters on cultured muscle cells, and 

that it is already found concentrated at synaptic sites at birth along with AChRs [7, 52]. 

Studies in utrophin-deficient mice in which the utrophin gene is targeted at the C-terminal or 

at the N-terminal showed that loss of utrophin had subtle effects on NMJ morphology, but 

no effects on function [28, 51, 53, 54]. The distribution, size, and shape of synaptic AChR 

clusters appear normal and are indistinguishable from NMJs in wild-type mice; muscle 

fibers also show no sign of dystrophy [28, 51, 53, 54]. However, fluorescence analysis 

revealed a ~30% decrease in the density/number of AChRs in deficient targeted C-terminal 

utrophin [28] and a ~40% decrease in deficient targeted N-terminal utrophin accompanied 

by a reduction in junctional folds [53]. Overall, however, synapses in utrn −/− mice form and 

mature normally and essential synaptic components remain concentrated at both developing 

and mature synapses [28, 53]. It was also reported that the number of junctional folds was 

apparent in the second week after birth and continued into adulthood [28]. It is also worth 

mentioning that in utrn −/− mice, the localization of most synaptic specific proteins (rapsyn, 

β2-syntrophin, laminin β2, agrin, and MuSK) remain intact and associated DGC proteins 

(β-dystroglycan, dystrobrevin, α-sarcoglycan, and dystrophin) are unaffected [28, 51]. In 

addition, the turnover rate of AChRs was not affected by the loss of utrophin [49]. These 

observations indicate that utrophin is not necessary for either the development of functional 

NMJs nor the localization, clustering, and the metabolic stability of AChRs and associated 

proteins. However, studies in mice lacking both dystrophin and utrophin (mdx/utrn −/−) 

indicate that utrophin may play a compensatory role for dystrophin in mdx mice [54]. Unlike 

in human DMD patients, utrophin is greatly upregulated in mdx mice which leads to far 

less severe pathology than human DMD [54–56]. The mdx/utrn−/− mice, on the other hand, 

demonstrate phenotypes more similar to human DMD, including significantly shortened 

lifespan and movement difficulties [54, 56].
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DYSTROGLYCANS AND THE NEUROMUSCULAR JUNCTION

The dystroglycan (DG) complex plays a central role within the DGC by linking the 

extracellular matrix to the cytoskeleton in skeletal muscle [22]. It includes both the 

transmembrane β and extracellular α isoforms, derived from a single gene [57, 58]. The β 
component primarily binds to utrophin/dystrophin and rapsyn [25, 59–61], while the highly 

glycosylated α-dystroglycan binds directly to agrin and laminins in the basal lamina, both 

of which play important roles in the clustering of AChRs in cultured myotubes and the 

formation and maturation of NMJs in vivo [7–11, 62–66]. The α-dystroglycan isoform has 

also been reported to mediate the assembly of basement membranes [67, 68]. Due to the 

unviability of complete dystroglycan knockout, in-vivo research has largely been performed 

on chimeric mice lacking DG in muscle cells. Studies from the Carbonetto lab have shown 

that DG deficient muscle cells in these mice display aberrant NMJ morphological phenotype 

[29]. DG-null cultured myotubes also display disorganized, unstable, and highly dispersed 

AChR clusters [69]. These aberrant AChR clusters were similar in appearance to clusters 

on myotubes treated with a monoclonal antibody to inhibit α-DG function [7]. Interestingly, 

in α-DG-deficient muscle cell lines, both spontaneous and agrin-induced AChR aggregates 

were reduced in an independent agrin-MuSK signaling mechanism, with laminins no longer 

accumulating at AChR clusters [70]. This suggests that dystroglycan plays a critical role in 

organizing and stabilizing AChR clusters with the mediation of laminin rather that agrin [29, 

67, 68]. Indeed, several groups have reported that the formation of large AChR clusters can 

be directly stimulated by laminin [10, 71–74] via dystroglycans aggregation [72], indicating 

that the binding of laminin to dystroglycan is an essential aspect of synapse formation.

SARCOGLYCANS AND THE NEUROMUSCULAR JUNCTION

The sarcoglycan complex is composed of various isoforms of sarcoglycan, all of which 

are transmembrane glycoproteins [22]. Mutations in the sarcoglycan genes (α, β, γ, and 

δ) result in several versions of autosomal recessive Limb-girdle Muscular Dystrophy along 

with reduced expression and stability of associated DGC proteins, notably α-dystroglycan 

and other sarcoglycans isoforms, [30, 75, 76]. For instance, hamsters deficient in δ-

sarcoglycan exhibit a reduction in α-dystroglycan expression and a complete loss of 

other sarcoglycan isoforms [76–78]. In contrast to the aberrant NMJs observed in muscle 

lacking other DGC proteins, deficiencies in γ-sarcoglycan muscles show no detectable 

defects in NMJ structure, including the density of AChR [21, 30, 79]. However, a recent 

study by Mei’s group suggests that a reduction in α-sarcoglycan expression levels is 

associated with age-related structural alterations in the NMJ. Specifically, they found that 

the interaction of α-sarcoglycan with agrin receptor LRP4 is critical for LRP4 stability, and 

thus, overexpressing α-sarcoglycan in muscle cells mitigates age-related NMJ abnormalities 

by preventing the degradation of LRP4 which normally occurs in aging mice [13, 80]. The 

mechanism by which α-sarcoglycan acts to promote the stability of LRP4 is still unclear.

SYNTROPHINS AND THE NEUROMUSCULAR JUNCTION

Syntrophins are a family of five adapter protein isoforms encoded by separate genes (α, 

β1, β2, γ1, γ2) that are associated with utrophin and dystrobrevin [81]. The muscles of 
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mice lacking syntrophins do not display any significant histological changes or muscular 

dystrophy [31, 82]. Interestingly, syntrophins differ in their localization and expression 

profiles during the various stages of muscle development, indicating that each isoform plays 

a distinct role in NMJ development and maintenance [34, 83]. For instance, β2-syntrophin 

is found primarily in adult post-synaptic junctional fold troughs, β1-syntrophin is found 

mostly in the sarcolemma until 6 weeks of age [34], and α-syntrophin accumulates at the 

postsynaptic membrane at birth after which it clusters at junctional fold troughs alongside 

dystrophin and at crests with utrophin and AChRs during synaptic development [34, 81]. 

The observation that α-syntrophin is the only isoform that is enriched at the postsynaptic 

membrane at birth suggests that it may be of particular significance in the maturation and 

maintenance of the NMJ [34, 81].

Much research has characterized NMJs phenotype in mice deficient in single syntrophin 

isoforms (αKO or β2KO) and double mutants (α/β2KO). Such studies have shown that 

α-syn−/− adult mice exhibit morphologically aberrant NMJs with significant reductions in 

AChR density (~30% of wild type), abnormal patterning of AChR, and increased AChR 

turnover rate [61, 84]. Intriguingly, the absence of α-syntrophin also causes the loss 

of utrophin from NMJs and a significant reduction in α-dystrobrevin, particularly in its 

phosphorylated form [82]. Other studies have also shown that α-syntrophin is necessary for 

proper development of the postsynaptic apparatus [85]. Analysis of α-syntrophin deficient 

NMJs during muscle development revealed that synapses formed normally but matured 

abnormally, having a low AChR density, high turnover rate, and a reduced number of 

recycled AChRs, while AChRs transcript levels remained unchanged [85]. However, mice 

deficient in either β1 or β2 syntrophin isoforms showed normal NMJs, indicating that 

these isoforms play a less important role than α-syntrophin [86]. Moreover, NMJs of 

mice deficient in both α- and β2-syntrophin showed more structural alterations with fewer 

junctional folds and a significant reduction in AChR density compared with mice lacking 

α-syntrophin alone [83]. While abnormalities of NMJs in triple mutant mice deficient in 

α-, β1- and β2-syntrophins were not investigated, the levels of dystrophin and utrophin 

were significantly reduced suggesting that all three syntrophins are required for the insertion 

and stability of these proteins at the sarcolemma [86]. Furthermore, experiments involving 

genetic mutation of various syntrophin domains have indicated that the PH1 and PDZ 

domains are necessary for its proper functioning, as mutations in these domains prevent 

proper AChR distribution [81, 87].

DYSTROBREVINS AND THE NEUROMUSCULAR JUNCTION

Dystrobrevin is a DGC component that binds to dystrophin/utrophin and α-syntrophin [88] 

[89]. In muscle fibers, there are at least three forms of α-dystrobrevin (α-dbn1, α-dbn2 and 

α-dbn3) produced by the alternative splicing of a single gene [90]. The α-dbn3 isoform 

is the least studied and its function remains unclear. The α-dbn1 isoform, which is highly 

concentrated at the post-synaptic membrane, has a 188 amino acid C-terminus which is a 

substrate for tyrosine kinases, while α-dbn2 lacks these 188 residues and is instead present 

at high levels in extrasynaptic regions [89, 91].
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The absence of α-dystrobrevin causes partial muscle dystrophy (~50%) [32] and has a 

dramatic effect on AChR mobility and turnover (half-life of 3 days at NMJs compared to 

9–14 days in wild type) [49]. This indicates that α-dystrobrevin plays an integral role in 

tethering AChRs to the postsynaptic membrane. Similar to α-syntrophin, NMJs deficient 

in α-dystrobrevin display abnormal distributions of AChRs with frequent extensions of 

receptors beyond synaptic gutters, decreased density of AChRs (~30% of wild type), and 

small irregular receptor clusters dispersed over synaptic branches without being specifically 

concentrated at post-junctional crests [32, 92]. Dystrobrevin has also been demonstrated 

to be necessary for the stabilization of agrin-induced AChR clusters in cultured myotubes 

[32]. In α-dbn−/− mouse models, the postsynaptic membrane forms properly but matures 

aberrantly with postsynaptic abnormalities appearing in the first week after birth, thus 

suggesting that α-dystrobrevin is not essential for the initial steps of synapse formation, but 

rather for proper maturation later on [32]. Although both α-dbn1 and α-dbn2 accumulate 

at NMJs, it appears that the tyrosine phosphorylated α-dbn1 is the version involved in 

the maturation process of the NMJ. Expression of α-dbn1 that lacks proper tyrosine 

phosphorylation sites is unable to restore impaired postsynaptic structure in dystrobrevin 

deficient mouse muscles, while expression of the phosphorylated isoform has been shown to 

completely rescue abnormal synaptic phenotype [92, 93]. The phosphorylation of α-dbn1 is 

important for the stabilization of the postsynaptic apparatus, and anchoring of the AChRs in 

the synaptic membrane [94].

CONCLUDING REMARKS

Although a large body of work exists on the role of the dystrophin glycoprotein complex 

on the organization and stabilization of muscle integrity, several outstanding questions 

remain to be resolved concerning the molecular dynamics of DGC components and their 

association with the metabolic stability of AChRs. For instance, what is the turnover rate of 

synaptic DGC components? Do synaptic and non-synaptic DGC components have similar 

turnover rate? Does synaptic activity effect the metabolic stability of DGC components? 

Understanding the functional and turnover of the DGC proteins at synaptic and non-synaptic 

areas along with the molecular dynamics of AChRs may provide critical insights into 

potential treatments and pathways in the mitigation of muscle and neuromuscular related 

diseases.
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Highlights

• The Dystrophin glycoprotein complex and the formation and maintenance of 

the NMJ

• Molecular dynamics of the acetylcholine receptors (AChRs)

• The effect of the dystrophin glycoprotein complex on the maintenance of the 

metabolic stability of AChRs
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Figure: 
A schematic representation of the relevant components of the dystrophin glycoprotein 

complex and pathways regulating the density of the nicotinic AChR at the cholinergic 

neuromuscular junction. The dynamics of AChR (removal, recycling, and insertion of new 

receptors) at synaptic sites are controlled by different events, including synaptic activity and 

components of the dystrophin glycoproteins complex.
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