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Abstract 
A dysregulated host immune response significantly contributes to 
morbidity and mortality in tuberculous meningitis (TBM). Effective 
host directed therapies (HDTs) are critical to improve survival and 
clinical outcomes. Currently only one HDT, dexamethasone, is proven 
to improve mortality. However, there is no evidence dexamethasone 
reduces morbidity, how it reduces mortality is uncertain, and it has no 
proven benefit in HIV co-infected individuals. Further research on 
these aspects of its use, as well as alternative HDTs such as aspirin, 
thalidomide and other immunomodulatory drugs is needed. Based on 
new knowledge from pathogenesis studies, repurposed therapeutics 
which act upon small molecule drug targets may also have a role in 
TBM. Here we review existing literature investigating HDTs in TBM, 
and propose new rationale for the use of novel and repurposed drugs. 
We also discuss host variable responses and evidence to support a 
personalised approach to HDTs in TBM.
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Introduction
Clinical outcomes in tuberculous meningitis (TBM) depend 
upon both killing Mycobacterium tuberculosis (M.tb) and man-
aging host inflammatory response. Antimicrobial drug therapy 
for TBM has been adapted from that used for pulmonary tuber-
culosis (TB); four drugs are given initially, with subsequent 
tapering to two or three drugs (in drug-susceptible TBM,  
dependent on local guidelines) for continuation of therapy up 
to one year. Yet the host immune response may be dysregu-
lated, and contributes to the poor outcomes associated with 
TBM. Host directed therapies (HDTs) seek to control this  
host response and reduce death and neurological injury.

The discovery and assessment of new therapeutics in TBM 
has been a neglected area; this includes the development of  
bespoke antitubercular drug regimens that account for differing 
ability of drugs to penetrate the central nervous system (CNS), 
and the design of HDTs that counter dysregulated immune 
responses to M.tb within the CNS. In fact, corticosteroids are 
the only widely used host directed therapy in TBM with any  
proven benefit in both adults1 and children2. In adults, in  
particular, questions around their clinical use remain, includ-
ing whether they have a role in improving outcomes in  
HIV-associated TBM and the mechanisms by which they 
improve survival. Clinical trials to assess the efficacy of other 
HDTs including aspirin and thalidomide have been conducted;  
however, there is not yet conclusive evidence to suggest when, 
with whom and at what dose they may be effective. New  
knowledge from studies uncovering mechanisms of inflamma-
tion and brain injury may also allow for a directed approach 
to modulating the host response. Similarly, studies aiming to 
contribute knowledge of factors at play that influence vari-
ability in the host may lead us away from a ‘one size fits all’  
therapeutic approach.

We review the evidence on currently used HDTs in TBM and 
suggest potential therapeutics based on pathogenesis stud-
ies and drawing from knowledge and experience in other forms 
of tuberculosis and neuroinflammatory conditions. We will 
review work that has contributed to our understanding of vari-
ation in host response and discuss how this knowledge might be  
harnessed to design a personalised approach to the use of  
HDT in TBM.

Existing host directed therapies for tuberculous 
meningitis
Dexamethasone
Adjunctive corticosteroids reduce mortality from TBM, at least 
in the short term1,3,4. The mechanism through which corticos-
teroids confer clinical benefit is unclear, although reduction in 
intracerebral inflammation seems most likely. Glucocorticoids 
bind to and activate the glucocorticoid receptor of macro-
phages and other cells, interfering with inflammatory mediator  
transcription and expression5. Additional indirect genomic 
effects of inhibition of pro-inflammatory transcription fac-
tors such as activator protein-1, and non-genomic mechanisms  
further mediate glucocorticoid anti-inflammatory effects6–9.

Murine studies suggest M.tb induces activation of the micro-
glial NLRP3 inflammasome, a multimolecular immune com-
plex of receptors and sensors that mediates innate immune 
responses and induces inflammation via pro-inflammatory cas-
pases and cytokines; a process inhibited by dexamethasone10,11. 
In TBM, pro-inflammatory cerebrospinal fluid (CSF) cytokine 
concentrations are acutely elevated, although therapeutically  
reducing these concentrations may not be clinically benefi-
cial. In a study of 16 individuals with TBM in India, concentra-
tions of tumor necrosis factor (TNF)-α, interleukin (IL)-1β,  
IL-6, IL-8, IL-10 were elevated in TBM vs. controls, and 
declined during TB treatment, yet cytokine concentrations  
were not related to disease severity, brain magnetic reso-
nance imaging (MRI) abnormalities or clinical outcome12. In 
a paediatric study (n=30), CSF TNF-α, IL-1β, and interferon  
(IFN)-gamma concentrations were elevated in acute TBM, but 
again did not correlate with disease severity, nor were they  
influenced by corticosteroid administration13. However, in a 
large study of clinical and intracerebral inflammatory phe-
notype and nine-month survival in adults with TBM from  
Vietnam, multiple pro-inflammatory and anti-inflammatory CSF 
cytokines were significantly reduced in HIV uninfected indi-
viduals who died vs. in HIV uninfected who survived14. This 
effect (lower pro-inflammatory cytokines in individuals who  
died) was not seen in HIV co-infection. 

In 545 Vietnamese individuals >14 years recruited to a rand-
omized placebo-controlled trial of dexamethasone for TBM, 
dexamethasone was associated with a reduced risk of death 
(relative risk 0.69, p=0.01)1. In a representative subset of this 
study, dexamethasone did not significantly alter tested CSF 
cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-12) over time 
vs. placebo15. CSF concentrations of IL-6, IL-8, and IL-10 fell  
slowly after commencement of anti-TB chemotherapy, and 
TNF-α fell rapidly, all irrespective of dexamethasone treatment. 
In a subgroup of HIV uninfected adults (n=37), dexamethasone 
significantly reduced CSF matrix metalloproteinase-9 (MMP-9) 
in follow up samples taken after a median five days of  
treatment16. Further work is required to determine whether the  
protective effect of dexamethasone with a measurable reduction  
in intracerebral inflammation.

International guidelines recommend adjunctive corticosteroids 
for TBM management17. Corticosteroid use in TBM is common-
place, dexamethasone is commonly used as it is affordable and 
widely available although the optimal corticosteroid prepara-
tion, dose, and route of administration are unknown18. Whether 
beneficial therapeutic effects extend to HIV co-infected indi-
viduals is uncertain. In a HIV-positive subgroup (n=98) from  
a randomized trial of adjunctive corticosteroids for TBM in 
Vietnamese adults, dexamethasone was associated with a non- 
significant trend towards improved survival1. Subsequently, 
a study of adults with HIV-associated TBM showed global 
increase in pro-inflammatory cytokine concentrations, running 
counter to theory that immunosuppressed HIV co-infected indi-
viduals have lower intracerebral inflammation14. A multicentre  
randomized controlled trial of adjunctive corticosteroids for 
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HIV co-infected adults with TBM is currently underway in  
Vietnam and Indonesia (NCT03092817)19.

Corticosteroids are frequently used to treat common neuro-
complications of TBM; paradoxical reactions, and the immune 
reconstitution inflammatory syndrome (IRIS). Paradoxical 
neuro-inflammatory reactions, which occur despite appropriate 
anti-TB chemotherapy, may reflect host response to dead and 
dying bacteria20. TBM-IRIS is a common and often severe c 
omplication of starting antiretroviral therapy (ART) in TBM, 
and is associated with high CSF neutrophil counts and a  
positive M.tb culture at presentation21. Interestingly, a CSF 
inflammatory process, specifically high neutrophils and high 
TNF-α in combination with low IFN-gamma, predicted later 
TBM-IRIS in a study of 34 individual with TBM in South  
Africa21. Inflammasome activation appears to be involved 
in the development of TBM-IRIS, with MMP-9 a possible  
mediator of brain tissue damage11. Whilst corticosteroids dur-
ing the first four weeks after initiation of ART reduced TB- 
associated IRIS in HIV co-infected individuals in a trial in 
South Africa, individuals with TBM were excluded22. There are 
no randomized trials of corticosteroid therapy for TBM-IRIS,  

nor for paradoxical neurological reactions in HIV uninfected 
individuals. Table 1 summarises the current evidence for  
dexamethasone use in TBM, as well as for other host-directed  
therapies.

In childhood TBM, benefit from corticosteroids has been dem-
onstrated in a number of studies2,23–25. Unlike in adults, improve-
ment in disability, albeit moderate, is described3. Dosage and 
duration, however, is debated and in randomized trials dosage 
has varied between 1mg/kg and 4mg/kg daily, for 3–4 weeks. 
One trial compared three dosage regimens; 2 mg/kg/day over 
four weeks vs 4 mg/k/day over one week and 2 mg/k/day for 
the next three weeks vs 4 mg/kg/day over four weeks26. In  
each group the initial four weeks was followed by four weeks of 
tapering. There was no difference in mortality between groups; 
however, prolonged periods of higher dose prednisolone were 
associated with new onset optic neuropathy and hydrocephalus26. 
These findings highlight the delicate balance between moder-
ating host immunity and avoiding the occurrence of adverse  
events. Further studies are needed to identify ideal dos-
age regimen, as well as explore host variability in response to  
corticosteroids in childhood TBM.

Table 1. Summary of clinical studies investigating the efficacy of dexamethasone, aspirin and thalidomide in TBM.

Reference Intervention (drug, 
dose, duration) Study design Population Primary 

outcome Key findings

Mai27
Aspirin 81 mg vs. 
1000 mg vs. placebo 
for 60 days

RCT: double-blind, 
placebo 

controlled

Adults, 
non-HIV, 
Vietnam 
n = 120

Mortality or 
stroke

No difference in two-month mortality. 
Subgroup analysis showed reduction in 
infarcts and death with aspirin 81 mg (15%) 
and 1000 mg (11%) compared to placebo 
(34%); p = 0.06

Misra28 Aspirin 150mg vs. 
placebo

RCT: placebo 
controlled

Adults  
n=118

Mortality or 
stroke

Decreased three-month mortality (21.7%) 
vs placebo (43.4%); odds ratio = 3.17, 95%CI 
1.21 - 8.31. Aspirin resulted in absolute risk 
reduction of stroke in 19.1% and significant 
reduction in mortality compared to placebo 
(21.7% vs 43.4%, p=0.02).

Misra29 Aspirin 150mg Retrospective 
cohort n=135 Mortality

Non-statistical reduction in deaths (25%) 
at three months compared to standard TB 
treatment (17%).

Schoeman30 Aspirin 75mg or 
100mg/kg RCT Children  

n=146
No improved neurological or cognitive 
outcomes or survival with aspirin.

Schoeman31 Thalidomide 6mg/kg,  
12mg/kg, or 24mg/kg

Dose escalating 
pilot study

Children 
n=15

Safety and 
tolerability

Reduced CSF TNF-α in children with stage 2 
TBM.

Schoeman32 Thalidomide 24mg/
kg for one month RCT: double-blind Children  

n=47
Discontinued prematurely due to side effects 
and deaths in thalidomide arm.

Thwaites1 Dexamethasone
RCT: double-

blind, placebo 
controlled

Adults, 
HIV and 
non-HIV 
n=545

Mortality
Reduced risk of death through nine 
months (relative risk 0.69, p=0.01) with 
dexamethasone.

Simmons15 Dexamethasone
RCT: double-

blind, placebo 
controlled

Adults 
n=87

Dexamethasone did not significantly alter 
tested CSF cytokines (TNF-α, IL-1β, IL-6, IL-8, 
IL-10, IL-12) over time vs. placebo.

RCT, randomised clinical trial; IL, interleukin; TNF, tumor necrosis factor; TBM, tuberculous meningitis; TB, tuberculosis; CSF, cerebrospinal fluid.
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Aspirin
Cerebral infarction occurs in 25–71% of TBM cases27,33, and 
stroke was associated with a two-fold increase in mortality 
in a recent meta-analysis34. The inflammatory state occurring 
in TBM contributes to the pathogenesis of stroke. A prospec-
tive study of 146 TBM patients demonstrated an acute phase  
inflammatory response with significantly elevated cytokines  
(e.g. IL-2, IL-4, IL-6, IL-1β, IFN-γ, TNF- α) in blood and CSF35. 
A hypercoagulable state was reflected by elevated protein C,  
factor VII, plasminogen activator inhibitor-1 and anticardioli-
pin antibodies, as well as decreased protein S in a case series of 
16 children. Bleeding times were also markedly shorter and 
platelet counts remained markedly raised in this subgroup36. 
Hypercoagulability has been shown to occur in adults with  
pulmonary tuberculosis, and may also contribute to pathogenesis  
of stroke in TBM. Local intra- and extra-vascular factors  
contributes to TBM pathogenesis, most significantly in the form 
of cerebral vasculitis secondary to inflammatory infiltrates;  
initially believed to be directly due to tubercle bacilli implanta-
tion, now known to correlate with the inflammatory exudate in 
the basal cisterns and subarachnoid space37,38. The significance 
of intravascular thrombosis is still unclear. While thrombosis 
might be common in the context of vasculitis, autopsies on TBM 
patients failed to demonstrate frequent arterial thrombosis37.  
Significant platelet dysfunction has also been demonstrated in 
TBM, manifesting as increased mean platelet volumes, platelet 
distribution width and platelet-large cell ratio39. These param-
eters are significantly associated with infarcts and suggests 
the use of antiplatelet agents in TBM39. Local intra- and extra- 
vascular factors contribute to TBM pathogenesis in the form of 
vasculitis due to bacilli infiltration. In an effort to reduce mor-
tality and long-term neurological disability in TBM, aspirin 
is increasingly being studied due to its anti-inflammatory and  
inhibitory effects on platelet and thrombus production. In 
murine models, low dose aspirin (3 mg/kg) showed a systemic 
decrease in serum cytokines (e.g. TNF-α, IL-6, IL-1β) and late 
stage T cell responses in M.tb infection. Aspirin also enhances  
T helper cell 1 responses for eliminating bacilli from lungs40.

To date, three randomized controlled trials have investigated the 
role of aspirin in adult and paediatric TBM. In 118 adult TBM 
patients in India, aspirin resulted in absolute risk reduction of 
stroke in 19.1% and significant reduction in mortality com-
pared to placebo (10 of 118 (21.7%) versus 23 of 118 (43.4%), 
p=0.02)28. A randomised controlled trial of TBM involving 
children in South Africa (n=146) could not establish improved  
neurological/cognitive outcomes or survival with aspirin at 
doses of 75 mg (low dose) or 100 mg/kg/day (high dose)30. 
However, the developmental outcome of children on high dose  
aspirin was similar to the placebo and low dose aspirin groups, 
despite being younger of age and having higher baseline sever-
ity. This finding warrants further investigation of high-dose 
aspirin in childhood TBM. A study of 120 Vietnamese adults 
with TBM demonstrated a reduction in death and new infarcts 
with the addition of 81 mg/day aspirin (8 of 36 or 22.2%) and  
1000 mg/day aspirin (6 of 38 or 15.8%), versus placebo 
(11 of 38 or 28.9%)27. Aspirin was associated with dose- 
dependent inhibition of thromboxane A2 and upregulation of  

pro-resolving protectins in the CSF. Another retrospective study 
by Misra et al. in India failed to validate clinical benefit, show-
ing an insignificant reduction in deaths with the addition of  
150 mg aspirin as compared to standard anti-TB therapy29.  
However, 25% (11 of 135) of patients randomized to the aspirin 
arm had a complete recovery at three months versus 17.1% (7 
of 135) in the standard treatment arm. In the three adult trials, 
corticosteroids were administered alone or in conjunction with 
aspirin with no adverse event signal found. None of these trials 
observed an increase in adverse events, but safety concerns  
with increasing doses of aspirin persist. Whilst these studies 
of adjunctive aspirin described varying results regarding  
morbidity and mortality, they paved the way for further large 
randomised controlled trials. Phase 2 (NCT03927313) and  
3 (NCT04145258) trials are currently underway to validate  
aspirin as a host-directed therapy. Given the insufficient  
evidence base, aspirin is not routinely used in most individuals  
with TBM.

Thalidomide
Thalidomide has a wide range of biological effects, due to its 
ability to interfere with the immune system, and depending on 
the cell type or pathway of activation. The inhibition of TNF-α, 
which is produced primarily by macrophages and monocytes, 
accounts for most of the immunological effects of the drug. 
TNF-α performs a delicate balancing act during host response 
to M.tb infection, whereby on the one hand it is mandatory  
for keeping infection under control, but on the other hand, 
if produced at too high levels it induces a hyperinflamma-
tory state resulting in severe tissue damage. The potential of 
thalidomide to activate T-cells, resulting in elevated produc-
tion of IL2, IFN and TNF-α, may potentially interfere with 
its anti-inflammatory properties41. In addition, thalidomide  
does not inhibit TNF-α produced by stimulated T-cells. The 
therapeutic effect of thalidomide therefore appears to be dose 
dependant since differing TNF-α concentrations will result  
in opposing physiological consequences. 

Thalidomide has been shown to reduce CSF TNF-α experi-
mentally in rabbits42 as well as in children with UK Medical  
Research Council (MRC) grade 2 TBM in a dose-escalating  
pilot study31. However, a double-blind, randomized trial of high 
dose thalidomide treatment (24mg/kg/day for one month) in 
children with grade 2 and 3 TBM was discontinued due to side 
effects (skin rash, hepatitis, neutropenia or thrombocytopenia) and  
deaths in the thalidomide arm32.

The anti-inflammatory benefits of thalidomide (e.g. improved 
resolution of basal enhancement and tuberculomas) noted in 
both the pilot and randomized trials have led to more targeted  
studies, albeit at a much reduced dosage (≤5 mg/kg/day). Addi-
tionally, adjunctive thalidomide has been shown to be particu-
larly effective in observational studies involving tuberculous 
brain abscesses43,44 and blindness-related to optochiasmatic 
arachnoiditis45,46. Adverse drug effects have been less of an  
issue in these situations. The life-threatening nature of these 
TBM sequelae as well as the anatomical location of the lesions, 
which precluded surgery, disqualified them from being included 
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in trials. Nonetheless, the clinical improvements noted have  
been substantial (Figure 1).

When used, the duration of adjunctive thalidomide therapy 
should be guided by subsequent clinical and radiological 
responses. In TB, clinical improvement of mass lesions gener-
ally precedes radiological improvement due to a reduction in 
peri-lesional inflammation. Serial MRI T2-weighted studies 
have shown that evolution of the lesions from early stage “T2  
bright” abscesses with oedema to “T2 black” represents a marker 
of cure44. Regression is associated with fibrosis, mineralization  
(calcification) and eventually disappearance, usually with no 
residual structural abnormalities. T2-black granulomas may, 
however, persist for years in asymptomatic children. In most 
cases, cure is achieved after less than three months of adjunctive  
thalidomide therapy.

It is the authors experience that adjunctive thalidomide war-
rants consideration in the following TBM-related conditions: 
corticosteroid-unresponsive optochiasmatic arachnoiditis result-
ing in visual impairment and/or optic disc pallor; enlarging TB  
abscess despite corticosteroid therapy (TB-IRIS); large TB 
abscess/tuberculomas in critical brain regions (i.e. brainstem) 
that is not amenable to surgical drainage and not responding to  
corticosteroids; large dural-based TB abscess resulting in  
epilepsia partialis.

TNF-α has been shown to exert deleterious effects on capil-
laries already sensitized by exposure to mycobacterial prod-
ucts. The endarteritis, coupled with raised intracranial pressure 
because of edema and obstructive hydrocephalus, often leads to 
cerebral ischaemia/infarction. The value of low-dose adjunctive 

thalidomide in modifying the progressive endarteritis is yet to  
be explored.

Immunomodulatory therapies
Modulation of cytokines known to contribute to pathology is a 
potential strategy to support host defenses or control deleterious 
inflammation in TBM. In TBM, a number of pro-inflammatory 
cytokines are thought to play a role in pathogenesis, includ-
ing IL-2, IL-6, IL-1β, IFN-γ and TNF-α38. However, like in 
other neuroinflammatory conditions where cytokines such 
as IFN-γ have opposing roles47, inhibition of these cytokines  
may not necessarily lead to improved outcomes and there-
fore caution must be exercised in exploring the potential drugs 
that inhibit these pro-inflammatory cytokines as candidate  
HDTs.

There are accumulating data on the role of the anti-TNF-α  
monoclonal antibodies infliximab and adalimumab and the solu-
ble TNF-α receptor etanercept in TBM treatment. Although  
these agents are described as options for treating refractory 
paradoxical reactions involving the CNS48–51, they may also 
be responsible for latent TB reactivation and dissemination to 
the CNS in those where the drug is used to treat autoimmune  
conditions52. Anakinra is a human interleukin-1 receptor antago-
nist that blocks the biological activity of natural IL-1 and may  
also have a role in TBM. Anakinra demonstrated efficacy in 
one case of life-threatening protracted paradoxical inflam-
mation in CNS TB where high dose corticosteroids failed53. 
Other immunomodulatory agents of interest include canakinu-
mab and tocilizumab, human monoclonal antibodies inhibiting  
IL-1 and IL-6, respectively. In TBM, vasculitis occurs due to 
the proximity of the progressive exudative meningitis to the  

Figure 1. CT axial, MRI T2 axial, CT sagittal and MRI T1 post-gadolinium sagittal images at 3–4 month intervals of a 16-month-old 
HIV-infected female with stage III tuberculous meningitis. The initial computed tomography (CT) axial and sagittal scans (A, F) showed 
a large right sided middle cerebral artery infarction, hydrocephalus as well as multiple small rim-enhancing foci in the prepontine cisterns. 
After three months of anti-TB and two months of anti-retroviral therapy, they presented with a depressed level of consciousness. Magnetic 
resonance imaging (MRI) T2 axial (B) and MRI T1 post-gadolinium sagittal (G) demonstrated multiple TB abscesses in the interpeduncular, 
prepontine and chiasmic cisterns (paradoxical HIV related TB IRIS) as well as right cerebral hemisphere spongiotic changes (old infarction). 
Thalidomide was initiated following a poor response to one week of high dose corticosteroids. This resulted in rapid improvement in the 
level of consciousness, gradual decrease in the size of the TB abscesses and loss of T2 signal (i.e. inflammation), which is a marker of cure 
as it represents gradual calcification (C–E & H–J). We confirm that we have obtained consent to use images from the parent/guardian of the 
patient included in this presentation. Permission was obtained in the form of informed written consent. 
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basal subarachnoid cistern and the circle of Willis. Cyclophos-
phamide, an alkylating cytotoxic drug is an effective drug in 
the treatment of primary cerebral vasculitis. Two case reports 
have described clinical improvement with the use of cyclo-
phosphamide in TBM associated cerebral vasculitis54,55; how-
ever, its role as an effective treatment in this context needs  
further investigation, particularly due to concerns over its 
potential adverse activity as a potent immunosuppressive 
drug. Table 2 summarises cases within the published literature  
where these agents have been used in the context of TBM;  
however, pre-clinical and clinical studies to systematically  
investigate the therapeutic effectiveness are required before  
they can be used more widely as adjunctive therapies in TBM.

Antiretroviral therapy
The decision as to when antiretroviral therapy is started must 
consider the potential immunopathogenic complications as 
well as the benefit in preventing further opportunistic infec-
tion. Guidelines vary slightly regarding the timing of initia-
tion of ART relative to initiation of anti-TB chemotherapy in 
those co-infected with TB and HIV. The 2010 World Health 

Organisation (WHO) ART guidelines recommend initiating ART  
within eight weeks of anti-TB chemotherapy in all HIV-TB co-
infected patients regardless of CD4 count56. The U.S. National 
Institutes of Health HIV guidelines recommend starting ART 
within two weeks of anti-TB chemotherapy for HIV-TB co-
infected patients with CD4 cell counts <50 cells/ µL and within 
eight weeks for CD4 counts >50 cells/µL57. In TBM there 
are unique considerations given the infection surrounds cru-
cial structures (the brain and spinal cord) with a very limited  
ability to expand within the skull and spinal canal should 
excess inflammation occur. Inflammation occurring follow-
ing the initiation of HIV therapy is known as immune recon-
stitution inflammatory syndrome (IRIS), which in the context 
of TBM is associated is frequent (up to 40%) and associated  
with high mortality (30%)58,59.

In a randomised trial of testing immediate HIV therapy ini-
tiation (at time of initiating TB treatment) vs delayed (after two 
months) in TBM, immediate therapy was associated with sig-
nificantly more grade 4 adverse events (n=102) than delayed 
HIV therapy (n=87; p=.04). This trial informed current 

Table 2. Biologics and other immunomodulatory therapies in TBM; summary of published case reports.

Reference Drug Dose Mechanism Clinical outcome

Blackmore48 Infliximab 10mg/kg, three 
doses at monthly 
intervals

Anti-TNF Given after four months due to ongoing clinical 
deterioration, despite treatment with dexamethasone 
and cyclophosphamide; resulted in clinical 
improvement. 

Jorge49 Infliximab 10mg/kg, three 
doses at monthly 
intervals

Anti-TNF Young adult with juvenile idiopathic arthritis, treated 
with infliximab developed disseminated TB. With 
stopping of infliximab, neurological deterioration 
occurred with isolation of M.tb in CSF, with no 
improvement with corticosteroids. Infliximab re-
initiation led to neurological improvement. 

Molten50 Infliximab Case 1: 10mg/kg, 
three doses at 
monthly intervals 
Case 2: 5mg/kg, 
three doses at six-
week intervals

Anti-TNF Two cases describing paradoxical worsening 
after initiation of TBM treatment, unresponsive to 
dexamethasone. In both cases, clinical improvement 
occurred following administration of infliximab. 

Abo51 Infliximab 5mg/kg, three doses 
at weeks 1, 3 and 7

Anti-TNF Paradoxical worsening (optochiasmatic arachnoiditis, 
leading to loss of vision) on starting TB treatment in 
a seven-year-old with TBM, despite dexamethasone. 
Clinical improvement occurred following infliximab 
administration. 

Keeley53 Anakinra 100 mg 
subcutaneously daily

Interleukin-1 
receptor 
antagonist

Two cases of steroid dependant neurotuberculosis 
(paradoxical worsening when steroids stopped). In both 
cases, patients responded to anakinra therapy. 

A. Gonzalez-
Duarte55

Cyclophosphamide 750mg/m3 every 
three weeks

Alkylating agent 
of nitrogen 
mustard type.2

Clinical improvement

Celloti54 Cyclophosphamide 750mg/m3 every 
three weeks

Alkylating agent 
of nitrogen 
mustard type.2

Clinical improvement

TNF, tumor necrosis factor; TB, tuberculosis; M.tb, Mycobacterium tuberculosis; CSF, cerebrospinal fluid; TBM, tuberculous meningitis.
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consensus that ART initiation should be delayed by between  
4–8 weeks after starting TBM therapy60. This approach hopes 
to strike a balance between the beneficial effects of ART 
(immune reconstitution, control of HIV, prevention of other  
opportunistic infections) and the potential harms of TB-IRIS.

Potential future host directed therapies for 
tuberculous meningitis
Although host directed therapies are in use, they are lim-
ited in either efficacy or availability. Therefore, the quest for 
more effective therapeutics remains ongoing. Here we discuss 
potential therapies that target pathways highlighted in recent  
pathogenesis studies, or draw on insights from other forms of 
TB or inflammatory conditions with shared mechanisms of  
pathogenesis (Figure 2).

Statin therapy
HMG-CoA reductase inhibitors (‘statins’) are ubiquitously 
used in prevention and treatment of cardiovascular disease, but 
are also known to have immunomodulatory, anti-inflammatory 
and anti-oxidative properties. Several in vitro studies have dem-
onstrated that statins enhance anti-inflammatory and inhibit  
pro-inflammatory functions in microglial cells and inhibit mech-
anisms involved in neurodegeneration61–64. Anti-inflammatory 
properties may be due to modulation of isoprenylation65 with 
downstream effects on inhibitory and stimulatory transcrip-
tion pathways, or via allosteric inhibition of leucocyte func-
tion antigen (LFA)-1 integrin66, which is involved in the  
transmigration of activated T cells through the blood brain bar-
rier. Neuroprotective effects may be due to modulation of  
excitotoxicity, vascular function, angiogenesis, and/or reduced 

Figure 2. Schematic of relevant biochemical pathways implicated in development of emerging host directed therapies. A: Drugs 
that reduce glutamate ‘glutamate grabbers’ by increasing breakdown of glutamate (either recombinant glutamic-oxaloacetic transaminase 
(GOT1), or others that mimic its action) may decrease neuro-excitotoxicity associated with brain injury in TBM. B: Phosphodiesterase 
inhibitors reduce breakdown of cAMP to 5’AMP, leading to increased neuronal survival, immune modulation, and increase in axon plasticity 
and myelination. C: Interruption of the tryptophan pathway via modulation of indoleamine 2,3-dioxygenase (IDO) activity may have 
neuroprotective effect, although more data to understand the role of downstream metabolites, particularly the contribution of kyruneic 
acid in antagonism of glutamate receptors, is needed.
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oxidative damage through nitric oxide stimulas67,68. Importantly,  
some studies have shown increased neuronal death with higher  
concentrations of statins69–71.

The potential of statins to effect CNS inflammation and neuro-
degeneration in other conditions are of interest given the shared 
mechanistic pathways in TBM. For example, animal mod-
els of multiple sclerosis (MS) show that statins skew immune 
responses towards an anti-inflammatory T-helper cell 2 response, 
inhibiting pro-inflammatory cytokines IL-2, IL-12 and IFN-γ72. 
Patients with secondary progressive MS benefited from sta-
tin therapy73 and a phase 3 trial is currently underway to  
examine this further (NCT03387670). In a mouse model of 
traumatic brain injury, atorvastatin led to profound attenua-
tion of T cell, neutrophil and natural killer cell invasion into 
the CNS, and reduction in production of pro-inflammatory 
cytokines (IFN-y and IL-6) and chemokines (CCL5 and 
CXCL10)74. In a retrospective observational study, pre-injury  
statin therapy was associated with improved neurological out-
comes in mild traumatic brain injury75; however, in moder-
ate to severe injury no benefit was noted76. In a double-blind  
randomised trial involving 36 patients with traumatic brain 
injury, rosuvastatin given for 10 days in the acute phase of injury 
significantly reduced TNF-α, which correlated with a reduc-
tion in disability scores77. Other conditions where the role of 
statins has been explored include Alzheimer’s disease78, and  
Parkinson’s disease79. Further, statins may be associated with 
reduced risk of tuberculosis80. In a TB murine model, adjunc-
tive simvastatin shortened time to culture clearance by 1 month, 
enhanced bacterial killing, and decreased culture-positive  
relapse and enhance bacterial killing81–83. Clinical trials 
(NCT03456102, NCT04147286) will investigate the efficacy 
of statins in pulmonary tuberculosis. Given their potential use 
as an adjunctive TB therapy, their lipophilic properties allow-
ing good penetration to the CNS, as well as their potential as 
an anti-inflammatory and neuroprotective agent, statins may 
have a role as a HDT in TBM; trials to explore this hypothesis  
are needed.

Glutamate ‘grabbing’ drugs
Excessive glutamate and neuro-excitotoxicity are thought to 
contribute to brain injury and cell death in TBM. In one study, 
RNA sequencing of whole blood and CSF from children with 
TBM demonstrated significant enrichment of transcripts asso-
ciated with neural excitotoxicity predominantly driven by 
glutamate release, NMDA receptor binding and uptake84. This 
mechanism is thought to contribute to brain injury and cell  
death in other neurological conditions such as stroke, epi-
lepsy, traumatic brain injury, Alzheimer’s and Hunting-
ton’s disease85,86. Therapeutics that aim to reduce glutamate  
excitotoxicity either by i) modulating the downstream effects 
of glutamate via NMDA receptor binding or ii) reducing extra-
cellular glutamate (e.g. glutamate ‘grabbing’) may have a role 
in the treatment of TBM. In acute stroke, a similar approach  
was taken; however, although animal studies were promis-
ing, randomised trials in humans assessing efficacy of NMDA 
antagonists largely failed87–89. Therapeutics have been designed 
to reduce glutamate induced excitotoxicity by lowering blood 

glutamate concentration, thus leading to a larger natural gluta-
mate gradient between the brain and blood, thereby facilitating 
the efflux of extracellular brain glutamate into the blood90.  
In an animal study, riboflavin (vitamin B

2
), selected for its 

ability to interact with glutamate-oxaloacetate transaminase 
(GOT), significantly reduced blood glutamate levels com-
pared to placebo (Figure 2A)91. In a randomised trial, riboflavin 
was correlated with improvement of disability when given 
intravenously in adults with acute stroke91. A number of stud-
ies have explored the neuroprotective properties of riboflavin  
including in conditions such as migraine and Parkinson’s 
disease92. It is unclear whether drugs such as riboflavin, or  
others that reduce glutamate neuro-excitotoxicity, have a role as  
an adjunctive therapy to promote neuroprotection in TBM; 
however, given the emerging body of evidence that suggests  
involvement of the glutamate-glutamine pathway, this is a  
potential area of interest for future studies.

Tryptophan pathway drug targets
Tryptophan is an essential amino acid that can either be con-
verted to serotonin or oxidized kynurenines via indoleamine 
2,3-dioxygenase (IDO1) (Figure 2C). Further oxidization occurs 
to convert kynurenine to kynurenic acid, which has neuropro-
tective properties. Prior studies have shown that M.tb induces 
marked upregulation of IDO-1 expression in both human 
and murine macrophages in vitro93, and that blockade of IDO  
activity reduces both clinical manifestations of TB as well as  
microbial and pathological correlates of the human TB syndrome 
in macaques94. In an observational cohort study of TBM, low 
CSF tryptophan levels were found in those who survived,  
compared to non-survivors or controls95. It is therefore unclear 
in TBM whether drugs that block IDO-1 such as indoximod, 
an immunometabolic adjuvant that is current under investi-
gation in cancer therapy96, would cause benefit or harm. It is 
plausible that improved survival seen in those with low CSF 
tryptophan is due to increased availability of kynurenic acid,  
which has neuroprotective action via glutamate receptors and 
reactive oxygen species. Further investigation into the influ-
ence of tryptophan and its downstream metabolites on patho-
genesis in TBM is required in order to establish suitable  
targets along this pathway for HDTs.

Eicosanoid modulating drugs
Eicosanoids are arachidonic acid derived lipid mediators that 
trigger pro-and anti-inflammatory responses and include pros-
taglandins, resolvins, lipoxins, and leukotrienes, which serve as 
signalling molecules, modulating inflammation and cell death 
in TB97. A delicate balance in eicosanoid levels is crucial for 
M.tb control and regulating the production of pro-inflammatory  
cytokines98.

Non-steroidal inflammatory drugs (NSAIDs), which exert their 
effects by inhibiting cyclooxygenase (COX) activity may lead 
to reduction of excessive inflammation in TBM. As discussed, 
aspirin, a non-selective COX inhibitor, has been investigated 
in three trials in TBM with variable outcomes27,28,30. New gen-
eration NSAIDs with more selective inhibition of COX2 may 
have more favourable safety profiles. Phase 1 trials to assess 
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the safety and bactericidal activity of celecoxib and etoricoxib  
in healthy volunteers with a view to developing these agents 
as HDTs for drug sensitive TB are currently underway 
(NCT02602509, NCT02503839). Although trials to further 
investigate the role of aspirin in TBM are underway, future 
research should consider the potential contribution of newer  
more selective COX2 inhibitors in TBM.

Phosphodiesterase inhibitors
Phosphodiesterase inhibitors (PDE-i) are small-molecule inhibi-
tors that reduce inflammation by increasing intracellular cyclic 
adenosine monophosphate and cyclic guanine monophosphate99 
(Figure 2B). Phosphodiesterase 4 (PDE-4) inhibitors such as  
roflumilast have shown to be effective in the treatment of  
numerous inflammatory conditions including chronic obstructive 
inflammatory disease100. PDE-4 is expressed within the cortex  
and hippocampus and animal models suggest that inhibi-
tion of PDE-4 may have a beneficial role in CNS conditions 
where inflammation plays a role in pathogenesis101–105. In ani-
mal models of pulmonary TB, inhibition of PDE-3 (cilostazol), 
PDE-4 (roflumilast) and PDE-5 (sildenafil) have all increased 
bacterial clearance and reduced pro-inflammatory cytokines, 
which contributed to a reduction in neutrophil infiltration and  
lung pathology106–109. The role of phosphodiesterase inhibi-
tors has not been studied in TBM but the properties above  
make them intriguing candidates for adjunctive therapy in TBM. 

Variable host responses and a personalized 
approach
Host immune response to M.tb in TBM is vital, although  
excessive inflammation leads to neurological damage. Poly-
morphisms in genes involved in immune response or signal-
ling pathways can influence host inflammatory response, or  
susceptibility to TBM110.

Previous study in the zebrafish model showed that the leuko-
triene A4 hydrolase (LTA4H) gene influenced the balance of 
pro and anti-inflammatory eicosanoids in response to M.tb  
infection111. LTA4H catalyses the final step in pro-inflammatory 
leukotriene B4 (LTB4) synthesis111, with LTB4 effects usu-
ally balanced by anti-inflammatory lipoxin A4 (LXA4), the two  
together ensuring an appropriate response to M.tb without 
excessive tissue damage112. A single nucleotide polymorphism 
(SNP) (rs17525495) in the promoter region of the LAT4H gene 
alters gene expression, and LTB4 LXA4 balance; low (CC) 
and high (TT) inflammatory states result from LTA4H allele 
homozygosity whereas an intermediate (CT) inflammatory state  
results from allele heterozygosity111. Both TT and CC inflam-
matory states were associated with increased death in a retro-
spective study of adults with TBM113. In this retrospective study 
adjunctive dexamethasone was associated with improved sur-
vival in the high inflammatory TT group, with the effect of  
dexamethasone unclear in the CC and CT groups113. In a subse-
quent study of 764 Vietnamese adults, 10 CSF cytokines were  
measured of: TNF-α, IFN-γ, IL-1β, IL-2, IL4, IL-5, IL-6, IL-10, 
IL-12, IL-1314. In HIV-uninfected adults with TBM, pro-inflam-
matory IL-1β, IL-2, and IL-6 (but not TNF-α) were significantly 
associated with LTA4H genotype; low concentrations in CC 

genotype, intermediate concentrations in CT genotype, and high 
concentrations in TT genotype14. In HIV co-infected individuals 
with TBM, LTA4H genotype did not appear to influence sur-
vival, response to dexamethasone, or CSF cytokine profile14.  
Additionally, LTA4H genotype did not influence survival in a 
study of HIV-uninfected Indonesian adults with TBM, all of 
whom received corticosteroids114. A LTA4H genotype stratified 
approach to adjunctive corticosteroid therapy in TBM is now 
being assessed in an ongoing randomized placebo-controlled  
LTA4H genotype stratified non-inferiority trial of HIV unin-
fected adults with TBM in Vietnam (NCT03100786)115. If benefit 
of adjunctive corticosteroids as a host directed therapy are 
shown to be limited to one or more LTA4H genotypes, this  
paves the way for personalized corticosteroid therapy in TBM.

Where variable host responses to M.tb increase intracerebral 
inflammation, or genetic polymorphisms lead to overexpression 
of a specific molecule or target, targeted personalized therapies 
may be beneficial. In a study of tryptophan genome wide 
SNP data we identified 11 quantitative trait loci associated with 
CSF tryptophan concentrations, and found that these quan-
titative trait loci were predictive of patient survival19. A SNP  
(rs17842268) in CD43, a surface glycoprotein, has been asso-
ciated with more severe presentation, and decreased survival, 
in TBM116. Why SNPs in CD43 affect M.tb susceptibility is 
uncertain, but CD43 has a role in regulating proinflammatory 
cytokines116, and theoretically anti-inflammatory therapies may  
be beneficial in such patients. Evidence that patients with a  
dysregulated host immune response benefit from more, or  
different, host directed therapies is lacking.

Conclusions and key areas for future research
Host directed therapies are an evolving area of TBM research. 
We know that the inflammatory response in TBM contributes to 
poor outcomes. Further, we know that dexamethasone reduces 
death from TBM. What is unknown is how the drug works, 
who might benefit most from dexamethasone or whether other  
therapies should be given in addition to dexamethasone or in 
place of it in some scenarios. There may also be scenarios where  
dexamethasone is harmful. Important questions regarding the 
exact role of thalidomide and aspirin also remain. While in the 
case of the former, a narrow context in which the drug might 
be useful is becoming clearer, in the latter, the optimal and safe 
dose of aspirin, considering its antiplatelet and anti-inflammatory 
properties, is uncertain. Although the use of immunomodulatory  
therapies has been reported sporadically, often where corticoster-
oid treatments have failed, no clinical trials have been conducted  
to systematically assess their safety profile and efficacy.

Drug discovery depends on accurately identifying molecular 
targets that play crucial roles in disease biology, and which 
are amenable to modulation via biologics or small molecule 
drug therapeutics. In diseases with high global incidences 
such diabetes or hypertension, large scale data repositories are  
beginning to provide genetic insights to inform drug discovery 
and therefore change the direction of and speed at which novel 
and repurposed therapeutics become available117. In TBM we 
must work towards establishing similar repositories through 
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international collaboration. However, the relatively low global 
incidence of the disease, and the challenging environments in 
which TBM most commonly occurs will make this a lengthy  
endeavour.

In the near future, we can focus on better understanding of 
key pathogenic processes underpinning inflammation and 
brain injury. For example, further understanding of the role 
and interaction of glutamate and tryptophan in brain injury 
may uncover targets for which existing drugs can be repur-
posed and novel therapeutics developed. The rational design 
of animal models to help inform which of these might deserve  
clinical trials in TBM is also key; although the rabbit model of 
TBM has been in use since the early 1900s118, further research 
is required to establish whether a more refined or alternative  
model could better recapitulate human disease. Genomic research  

to identify variation in host response will allow further  
refinement of therapeutic approaches based on factors at the 
individual patient and population level. While studies of LTA4H  
genotype have led the way in this area of TBM research, focus 
must now widen to include other pathways that are likely to 
vary between hosts. As we move forward with host-directed 
therapies for TBM, we must remain cognisant of the charac-
teristics of the hosts whose responses we are attempting to  
change. Whether these changes are obvious (e.g. HIV infection) 
or more opaque (e.g. unknown genetic polymorphisms), they  
must be considered with trial design so that we can understand 
as fully as possible, the role of these therapies in improving  
outcomes in TBM.

Data availability
No data are associated with this article.

References

1. 	 Thwaites GE, Nguyen DB, Nguyen HD, et al.: Dexamethasone for the 
treatment of tuberculous meningitis in adolescents and adults. N Engl J 
Med. 2004; 351(17): 1741–1751.  
Publisher Full Text 

2. 	 Schoeman JF, Van Zyl LE, Laubscher JA, et al.: Effect of corticosteroids on 
intracranial pressure, computed tomographic findings, and clinical 
outcome in young children with tuberculous meningitis. Pediatrics. 1997; 
99(2): 226–231.  
PubMed Abstract | Publisher Full Text 

3. 	 Prasad K, Singh MB, Ryan H: Corticosteroids for managing tuberculous 
meningitis. Cochrane Database Syst Rev. 2016; 4(4): CD002244.  
PubMed Abstract | Publisher Full Text | Free Full Text 

4. 	 Torok ME, Nguyen DB, Tran TH, et al.: Dexamethasone and long-term 
outcome of tuberculous meningitis in Vietnamese adults and adolescents. 
PLoS One. 2011; 6(12): e27821.  
PubMed Abstract | Publisher Full Text | Free Full Text 

5. 	 Abraham SM, Lawrence T, Kleiman A, et al.: Antiinflammatory effects of 
dexamethasone are partly dependent on induction of dual specificity 
phosphatase 1. J Exp Med. 2006; 203(8): 1883–1889.  
PubMed Abstract | Publisher Full Text | Free Full Text 

6. 	 Meintjes G, Scriven J, Marais S: Management of the immune reconstitution 
inflammatory syndrome. Curr HIV/AIDS Rep. 2012; 9(3): 238–250.  
PubMed Abstract | Publisher Full Text 

7. 	 Newton R: Molecular mechanisms of glucocorticoid action: what is 
important? Thorax. 2000; 55(7): 603–613.  
PubMed Abstract | Publisher Full Text | Free Full Text 

8. 	 Rhen T, Cidlowski JA: Antiinflammatory action of glucocorticoids--new 
mechanisms for old drugs. N Eng J Med. 2005; 353(16): 1711–1723.  
PubMed Abstract | Publisher Full Text 

9. 	 Adcock IM: Glucocorticoid-regulated transcription factors. Pulm Pharmacol 
Ther. 2001; 14(3): 211–219.  
PubMed Abstract | Publisher Full Text 

10. 	 Lee HM, Kang J, Lee SJ, et al.: Microglial activation of the NLRP3 
inflammasome by the priming signals derived from macrophages infected 
with mycobacteria. Glia. 2013; 61(3): 441–452.  
PubMed Abstract | Publisher Full Text 

11. 	 Marais S, Lai RPJ, Wilkinson KA, et al.: Inflammasome Activation Underlying 
Central Nervous System Deterioration in HIV-Associated Tuberculosis.  
J Infect Dis. 2017; 215(5): 677–686.  
PubMed Abstract | Publisher Full Text | Free Full Text 

12. 	 Misra UK, Kalita J, Srivastava R, et al.: A study of cytokines in tuberculous 
meningitis: clinical and MRI correlation. Neurosci Lett. 2010; 483(1): 6–10. 
PubMed Abstract | Publisher Full Text 

13. 	 Donald PR, Van Toorn R: Use of corticosteroids in tuberculous meningitis. 
Lancet. 2016; 387(10038): 2585–2587.  
PubMed Abstract | Publisher Full Text 

14. 	 Thuong NTT, Heemskerk D, Tram TTB, et al.: Leukotriene A4 Hydrolase 
Genotype and HIV Infection Influence Intracerebral Inflammation and 
Survival From Tuberculous Meningitis. J Infect Dis. 2017; 215(7): 1020–1028. 
PubMed Abstract | Publisher Full Text | Free Full Text 

15. 	 Simmons CP, Thwaites GE, Quyen NT, et al.: The clinical benefit of adjunctive 
dexamethasone in tuberculous meningitis is not associated with 
measurable attenuation of peripheral or local immune responses.  
J Immunol. 2005; 175(1): 579–590.  
PubMed Abstract | Publisher Full Text 

16. 	 Green JA, Tran CT, Farrar JJ, et al.: Dexamethasone, cerebrospinal fluid matrix 
metalloproteinase concentrations and clinical outcomes in tuberculous 
meningitis. PLoS One. 2009; 4(9): e7277.  
PubMed Abstract | Publisher Full Text | Free Full Text 

17. 	 Thwaites G, Fisher M, Hemingway C, et al.: British Infection Society guidelines 
for the diagnosis and treatment of tuberculosis of the central nervous 
system in adults and children. J Infect. 2009; 59(3): 167–187.  
PubMed Abstract | Publisher Full Text 

18. 	 Donovan J, Figaji A, Imran D, et al.: The neurocritical care of tuberculous 
meningitis. Lancet Neurol. 2019; 18(8): 771–783.  
PubMed Abstract | Publisher Full Text 

19. 	 Donovan J, Phu NH, Mai NTH, et al.: Adjunctive dexamethasone for the 
treatment of HIV-infected adults with tuberculous meningitis (ACT HIV): 
Study protocol for a randomised controlled trial [version 2; peer review: 1 
approved, 2 approved with reservations]. Wellcome Open Res. 2018; 3: 31.  
PubMed Abstract | Publisher Full Text | Free Full Text 

20. 	 Thuong NTT, Thwaites GE: Treatment-Associated Inflammatory 
Deterioration in Tuberculous Meningitis: Unpicking the Paradox. J Infect Dis. 
2017; 215(5): 665–667.  
PubMed Abstract | Publisher Full Text | Free Full Text 

21. 	 Marais S, Meintjes G, Pepper DJ, et al.: Frequency, severity, and prediction of 
tuberculous meningitis immune reconstitution inflammatory syndrome. 
Clin Infect Dis. 2013; 56(3): 450–460.  
PubMed Abstract | Publisher Full Text | Free Full Text 

22. 	 Meintjes G, Stek C, Blumenthal L, et al.: Prednisone for the Prevention of 
Paradoxical Tuberculosis-Associated IRIS. N Eng J Med. 2018; 379(20):  
1915–1925.  
PubMed Abstract | Publisher Full Text 

23. 	 Girgis NI, Farid Z, Kilpatrick ME, et al.: Dexamethasone adjunctive treatment 
for tuberculous meningitis. Pediatr Infect Dis J. 1991; 10(3): 179–183.  
PubMed Abstract | Publisher Full Text 

24. 	 O'Toole RD, Thornton GF, Mukherjee MK, et al.: Dexamethasone in 
tuberculous meningitis. Relationship of cerebrospinal fluid effects to 
therapeutic efficacy. Ann Intern Med. 1969; 70(1): 39–48.  
PubMed Abstract | Publisher Full Text 

25. 	 Kumarvelu S, Prasad K, Khosla A, et al.: Randomized controlled trial of 
dexamethasone in tuberculous meningitis. Tuber Lung Dis. 1994; 75(3): 

Page 11 of 21

Wellcome Open Research 2020, 5:292 Last updated: 15 NOV 2021

http://dx.doi.org/10.1056/NEJMoa040573
http://www.ncbi.nlm.nih.gov/pubmed/9024451
http://dx.doi.org/10.1542/peds.99.2.226
http://www.ncbi.nlm.nih.gov/pubmed/27121755
http://dx.doi.org/10.1002/14651858.CD002244.pub4
http://www.ncbi.nlm.nih.gov/pmc/articles/4916936
http://www.ncbi.nlm.nih.gov/pubmed/22174748
http://dx.doi.org/10.1371/journal.pone.0027821
http://www.ncbi.nlm.nih.gov/pmc/articles/3234244
http://www.ncbi.nlm.nih.gov/pubmed/16880258
http://dx.doi.org/10.1084/jem.20060336
http://www.ncbi.nlm.nih.gov/pmc/articles/2118371
http://www.ncbi.nlm.nih.gov/pubmed/22752438
http://dx.doi.org/10.1007/s11904-012-0129-5
http://www.ncbi.nlm.nih.gov/pubmed/10856322
http://dx.doi.org/10.1136/thorax.55.7.603
http://www.ncbi.nlm.nih.gov/pmc/articles/1745805
http://www.ncbi.nlm.nih.gov/pubmed/16236742
http://dx.doi.org/10.1056/NEJMra050541
http://www.ncbi.nlm.nih.gov/pubmed/11448148
http://dx.doi.org/10.1006/pupt.2001.0283
http://www.ncbi.nlm.nih.gov/pubmed/23280493
http://dx.doi.org/10.1002/glia.22448
http://www.ncbi.nlm.nih.gov/pubmed/27932622
http://dx.doi.org/10.1093/infdis/jiw561
http://www.ncbi.nlm.nih.gov/pmc/articles/5388298
http://www.ncbi.nlm.nih.gov/pubmed/20691761
http://dx.doi.org/10.1016/j.neulet.2010.07.029
http://www.ncbi.nlm.nih.gov/pubmed/27353808
http://dx.doi.org/10.1016/S0140-6736(16)30770-X
http://www.ncbi.nlm.nih.gov/pubmed/28419368
http://dx.doi.org/10.1093/infdis/jix050
http://www.ncbi.nlm.nih.gov/pmc/articles/5426373
http://www.ncbi.nlm.nih.gov/pubmed/15972695
http://dx.doi.org/10.4049/jimmunol.175.1.579
http://www.ncbi.nlm.nih.gov/pubmed/19789647
http://dx.doi.org/10.1371/journal.pone.0007277
http://www.ncbi.nlm.nih.gov/pmc/articles/2748711
http://www.ncbi.nlm.nih.gov/pubmed/19643501
http://dx.doi.org/10.1016/j.jinf.2009.06.011
http://www.ncbi.nlm.nih.gov/pubmed/31109897
http://dx.doi.org/10.1016/S1474-4422(19)30154-1
http://www.ncbi.nlm.nih.gov/pubmed/30320225
http://dx.doi.org/10.12688/wellcomeopenres.14006.2
http://www.ncbi.nlm.nih.gov/pmc/articles/6143919
http://www.ncbi.nlm.nih.gov/pubmed/27932621
http://dx.doi.org/10.1093/infdis/jiw565
http://www.ncbi.nlm.nih.gov/pmc/articles/5853525
http://www.ncbi.nlm.nih.gov/pubmed/23097584
http://dx.doi.org/10.1093/cid/cis899
http://www.ncbi.nlm.nih.gov/pmc/articles/3540040
http://www.ncbi.nlm.nih.gov/pubmed/30428290
http://dx.doi.org/10.1056/NEJMoa1800762
http://www.ncbi.nlm.nih.gov/pubmed/2041662
http://dx.doi.org/10.1097/00006454-199103000-00002
http://www.ncbi.nlm.nih.gov/pubmed/5304225
http://dx.doi.org/10.7326/0003-4819-70-1-39


203–207.  
PubMed Abstract | Publisher Full Text 

26. 	 Shah I, Meshram L: High dose versus low dose steroids in children with 
tuberculous meningitis. J Clin Neurosci. 2014; 21(5): 761–764.  
PubMed Abstract | Publisher Full Text 

27. 	 Mai NT, Dobbs N, Phu NH, et al.: A randomised double blind placebo 
controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in 
HIV-uninfected adults. eLife. 2018; 7: e33478.  
PubMed Abstract | Publisher Full Text | Free Full Text 

28. 	 Misra UK, Kalita J, Nair PP: Role of aspirin in tuberculous meningitis: a 
randomized open label placebo controlled trial. J Neurol Sci. 2010; 293(1–2): 
12–17.  
PubMed Abstract | Publisher Full Text 

29. 	 Misra UK, Kalita J, Sagar B, et al.: Does adjunctive corticosteroid and aspirin 
therapy improve the outcome of tuberculous meningitis? Neurol India. 
2018; 66(6): 1672–1677.  
PubMed Abstract | Publisher Full Text 

30. 	 Schoeman JF, Janse van Rensburg A, Laubscher JA, et al.: The role of aspirin 
in childhood tuberculous meningitis. J Child Neurol. 2011; 26(8): 956–962. 
PubMed Abstract | Publisher Full Text 

31. 	 Schoeman JF, Springer P, Ravenscroft A, et al.: Adjunctive thalidomide therapy 
of childhood tuberculous meningitis: possible anti-inflammatory role.  
J Child Neurol. 2000; 15(8): 497–503.  
PubMed Abstract | Publisher Full Text 

32. 	 Schoeman JF, Springer P, van Rensburg AJ, et al.: Adjunctive thalidomide 
therapy for childhood tuberculous meningitis: results of a randomized 
study. J Child Neurol. 2004; 19(4): 250–257.  
PubMed Abstract | Publisher Full Text 

33. 	 Wasay M, Khan M, Farooq S, et al.: Frequency and Impact of Cerebral 
Infarctions in Patients With Tuberculous Meningitis. Stroke. 2018; 49(10): 
2288–2293.  
PubMed Abstract | Publisher Full Text 

34. 	 Wen L, Li M, Xu T, et al.: Clinical features, outcomes and prognostic factors 
of tuberculous meningitis in adults worldwide: systematic review and 
meta-analysis. J Neurol. 2019; 266(12): 3009–3021.  
PubMed Abstract | Publisher Full Text 

35. 	 Sharma S, Goyal MK, Sharma K, et al.: Cytokines do play a role in 
pathogenesis of tuberculous meningitis: A prospective study from a 
tertiary care center in India. J Neurol Sci. 2017; 379: 131–136.  
PubMed Abstract | Publisher Full Text 

36. 	 Schoeman J, Mansvelt E, Springer P, et al.: Coagulant and fibrinolytic status in 
tuberculous meningitis. Pediatr Infect Dis J. 2007; 26(5): 428–431.  
PubMed Abstract | Publisher Full Text 

37. 	 Lammie GA, Hewlett RH, Schoeman JF, et al.: Tuberculous cerebrovascular 
disease: a review. J Infect. 2009; 59(3): 156–166.  
PubMed Abstract | Publisher Full Text 

38. 	 Davis AG, Rohlwink UK, Proust A, et al.: The pathogenesis of tuberculous 
meningitis. J Leukoc Biol. 2019; 105(2): 267–280.  
PubMed Abstract | Publisher Full Text | Free Full Text 

39. 	 Verma R, Mahapatro S, Kumar A, et al.: Platelet dysfunction and coagulation 
assessment in patients of tuberculous meningitis. Neurol Sci. 2020; 41(8): 
2103–2110.  
PubMed Abstract | Publisher Full Text 

40. 	 Kroesen VM, Rodriguez-Martinez P, Garcia E, et al.: A Beneficial Effect of Low-
Dose Aspirin in a Murine Model of Active Tuberculosis. Front Immunol. 2018; 
9: 798.  
PubMed Abstract | Publisher Full Text | Free Full Text 

41. 	 Haslett PA, Corral LG, Albert M, et al.: Thalidomide costimulates primary 
human T lymphocytes, preferentially inducing proliferation, cytokine 
production, and cytotoxic responses in the CD8+ subset. J Exp Med. 1998; 
187(11): 1885–92.  
PubMed Abstract | Publisher Full Text | Free Full Text 

42. 	 Tsenova L, Sokol K, Freedman VH, et al.: A combination of thalidomide plus 
antibiotics protects rabbits from mycobacterial meningitis-associated 
death. J Infect Dis. 1998; 177(6): 1563–1572.  
PubMed Abstract | Publisher Full Text 

43. 	 Schoeman JF, Fieggen G, Seller N, et al.: Intractable intracranial tuberculous 
infection responsive to thalidomide: report of four cases. J Child Neurol. 
2006; 21(4): 301–308.  
PubMed Abstract | Publisher Full Text 

44. 	 van Toorn R, du Plessis AM, Schaaf HS, et al.: Clinicoradiologic response of 
neurologic tuberculous mass lesions in children treated with thalidomide. 
Pediatr Infect Dis J. 2015; 34(2): 214–218.  
PubMed Abstract | Publisher Full Text 

45. 	 Roberts MT, Mendelson M, Meyer P, et al.: The use of thalidomide in the 
treatment of intracranial tuberculomas in adults: two case reports. J Infect. 
2003; 47(3): 251–255.  
PubMed Abstract | Publisher Full Text 

46. 	 Schoeman JF, Andronikou S, Stefan DC, et al.: Tuberculous meningitis-related 
optic neuritis: recovery of vision with thalidomide in 4 consecutive cases.  
J Child Neurol. 2010; 25(7): 822–828.  
PubMed Abstract | Publisher Full Text 

47. 	 Ottum PA, Arellano G, Reyes LI, et al.: Opposing Roles of Interferon-
Gamma on Cells of the Central Nervous System in Autoimmune 
Neuroinflammation. Front Immunol. 2015; 6: 539.  
PubMed Abstract | Publisher Full Text | Free Full Text 

48. 	 Blackmore TK, Manning L, Taylor WJ, et al.: Therapeutic use of infliximab in 
tuberculosis to control severe paradoxical reaction of the brain and lymph 
nodes. Clin Infect Dis. 2008; 47(10): e83–85.  
PubMed Abstract | Publisher Full Text 

49. 	 Jorge JH, Graciela C, Pablo AP, et al.: A life-threatening central nervous 
system-tuberculosis inflammatory reaction nonresponsive to 
corticosteroids and successfully controlled by infliximab in a young 
patient with a variant of juvenile idiopathic arthritis. J Clin Rheumatol. 2012; 
18(4): 189–191.  
PubMed Abstract | Publisher Full Text 

50. 	 Molton JS, Huggan PJ, Archuleta S: Infliximab therapy in two cases of severe 
neurotuberculosis paradoxical reaction. Med J Aust. 2015; 202(3): 156–157. 
PubMed Abstract | Publisher Full Text 

51. 	 Abo YN, Curtis N, Butters C, et al.: Successful Treatment of a Severe Vision-
Threatening Paradoxical Tuberculous Reaction with Infliximab: First 
Pediatric Use. Pediatr Infect Dis J. 2020; 39(4): e42–e45.  
PubMed Abstract | Publisher Full Text 

52. 	 Harris J, Keane J: How tumour necrosis factor blockers interfere with 
tuberculosis immunity. Clin Exp Immunol. 2010; 161(1): 1–9.  
PubMed Abstract | Publisher Full Text | Free Full Text 

53. 	 Keeley AJ, Parkash V, Tunbridge A, et al.: Anakinra in the treatment of 
protracted paradoxical inflammatory reactions in HIV-associated 
tuberculosis in the United Kingdom: a report of two cases. Int J STD AIDS. 
2020; 31(8): 808–812.  
PubMed Abstract | Publisher Full Text | Free Full Text 

54. 	 Celotti A, Vianello F, Sattin A, et al.: Cyclophosphamide immunomodulation 
of TB-associated cerebral vasculitis. Infect Dis (Lond). 2018; 50(10): 779–782. 
PubMed Abstract | Publisher Full Text 

55. 	 Gonzalez-Duarte A, Higuera-Calleja J, Flores F, et al.: Cyclophosphamide 
treatment for unrelenting CNS vasculitis secondary to tuberculous 
meningitis. Neurology. 2012; 78(16): 1277–1278.  
PubMed Abstract | Publisher Full Text 

56. 	 World Health Organisation: Antiretroviral therapy for HIV infection in adults 
and adolescents. Recommendations for a public health approach: 2010 
revision.  
Reference Source

57. 	 Department of Health and Human Services: Guidelines for the Use of 
Antiretroviral Agents in Adults and Adolescents with HIV. 2019 revision. 

58. 	 Marais S, Pepper DJ, Schutz C, et al.: Presentation and outcome of 
tuberculous meningitis in a high HIV prevalence setting. PLoS One. 2011; 
6(5): e20077.  
PubMed Abstract | Publisher Full Text | Free Full Text 

59. 	 Pepper DJ, Marais S, Maartens G, et al.: Neurologic manifestations of 
paradoxical tuberculosis-associated immune reconstitution inflammatory 
syndrome: a case series. Clin Infect Dis. 2009; 48(11): e96–107.  
PubMed Abstract | Publisher Full Text 

60. 	 South African Department of Health: ART Clinical Guidelines for the 
Management of HIV in Adults, Pregnancy, Adolescents, Children, Infants 
and Neonates. Updated. 2019.  
Reference Source

61. 	 Kata D, Foldesi I, Feher LZ, et al.: Rosuvastatin enhances anti-inflammatory 
and inhibits pro-inflammatory functions in cultured microglial cells. 
Neuroscience. 2016; 314: 47–63.  
PubMed Abstract | Publisher Full Text 

62. 	 Churchward MA, Todd KG: Statin treatment affects cytokine release and 
phagocytic activity in primary cultured microglia through two separable 
mechanisms. Mol Brain. 2014; 7: 85.  
PubMed Abstract | Publisher Full Text | Free Full Text 

63. 	 Cordle A, Landreth G: 3-Hydroxy-3-methylglutaryl-coenzyme A reductase 
inhibitors attenuate beta-amyloid-induced microglial inflammatory 
responses. J Neurosci. 2005; 25(2): 299–307.  
PubMed Abstract | Publisher Full Text | Free Full Text 

64. 	 McFarland AJ, Davey AK, McDermott CM, et al.: Differences in statin 
associated neuroprotection corresponds with either decreased production 
of IL-1beta or TNF-alpha in an in vitro model of neuroinflammation-
induced neurodegeneration. Toxicol Appl Pharmacol. 2018; 344: 56–73. 
PubMed Abstract | Publisher Full Text 

65. 	 Waiczies S, Bendix I, Zipp F: Geranylgeranylation but not GTP-loading of Rho 
GTPases determines T cell function. Sci Signal. 2008; 1(12): pt3.  
PubMed Abstract | Publisher Full Text 

66. 	 Weitz-Schmidt G, Welzenbach K, Brinkmann V, et al.: Statins selectively inhibit 
leukocyte function antigen-1 by binding to a novel regulatory integrin site. 
Nat Med. 2001; 7(6): 687–692.  
PubMed Abstract | Publisher Full Text 

67. 	 Bosel J, Gandor F, Harms C, et al.: Neuroprotective effects of atorvastatin 
against glutamate-induced excitotoxicity in primary cortical neurones.  
J Neurochem. 2005; 92(6): 1386–1398.  
PubMed Abstract | Publisher Full Text 

68. 	 Ponce J, de la Ossa NP, Hurtado O, et al.: Simvastatin reduces the association 

Page 12 of 21

Wellcome Open Research 2020, 5:292 Last updated: 15 NOV 2021

http://www.ncbi.nlm.nih.gov/pubmed/7919313
http://dx.doi.org/10.1016/0962-8479(94)90009-4
http://www.ncbi.nlm.nih.gov/pubmed/24231560
http://dx.doi.org/10.1016/j.jocn.2013.07.021
http://www.ncbi.nlm.nih.gov/pubmed/29482717
http://dx.doi.org/10.7554/eLife.33478
http://www.ncbi.nlm.nih.gov/pmc/articles/5862527
http://www.ncbi.nlm.nih.gov/pubmed/20421121
http://dx.doi.org/10.1016/j.jns.2010.03.025
http://www.ncbi.nlm.nih.gov/pubmed/30504561
http://dx.doi.org/10.4103/0028-3886.246278
http://www.ncbi.nlm.nih.gov/pubmed/21628697
http://dx.doi.org/10.1177/0883073811398132
http://www.ncbi.nlm.nih.gov/pubmed/10961786
http://dx.doi.org/10.1177/088307380001500801
http://www.ncbi.nlm.nih.gov/pubmed/15163089
http://dx.doi.org/10.1177/088307380401900402
http://www.ncbi.nlm.nih.gov/pubmed/30355085
http://dx.doi.org/10.1161/STROKEAHA.118.021301
http://www.ncbi.nlm.nih.gov/pubmed/31485723
http://dx.doi.org/10.1007/s00415-019-09523-6
http://www.ncbi.nlm.nih.gov/pubmed/28716226
http://dx.doi.org/10.1016/j.jns.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/17468654
http://dx.doi.org/10.1097/01.inf.0000261126.60283.cf
http://www.ncbi.nlm.nih.gov/pubmed/19635500
http://dx.doi.org/10.1016/j.jinf.2009.07.012
http://www.ncbi.nlm.nih.gov/pubmed/30645042
http://dx.doi.org/10.1002/JLB.MR0318-102R
http://www.ncbi.nlm.nih.gov/pmc/articles/6355360
http://www.ncbi.nlm.nih.gov/pubmed/32114668
http://dx.doi.org/10.1007/s10072-020-04299-4
http://www.ncbi.nlm.nih.gov/pubmed/29740435
http://dx.doi.org/10.3389/fimmu.2018.00798
http://www.ncbi.nlm.nih.gov/pmc/articles/5924809
http://www.ncbi.nlm.nih.gov/pubmed/9607928
http://dx.doi.org/10.1084/jem.187.11.1885
http://www.ncbi.nlm.nih.gov/pmc/articles/2212313
http://www.ncbi.nlm.nih.gov/pubmed/9607834
http://dx.doi.org/10.1086/515327
http://www.ncbi.nlm.nih.gov/pubmed/16900926
http://dx.doi.org/10.1177/08830738060210040801
http://www.ncbi.nlm.nih.gov/pubmed/25741973
http://dx.doi.org/10.1097/INF.0000000000000539
http://www.ncbi.nlm.nih.gov/pubmed/12963389
http://dx.doi.org/10.1016/s0163-4453(03)00077-x
http://www.ncbi.nlm.nih.gov/pubmed/20519667
http://dx.doi.org/10.1177/0883073809350507
http://www.ncbi.nlm.nih.gov/pubmed/26579119
http://dx.doi.org/10.3389/fimmu.2015.00539
http://www.ncbi.nlm.nih.gov/pmc/articles/4626643
http://www.ncbi.nlm.nih.gov/pubmed/18840076
http://dx.doi.org/10.1086/592695
http://www.ncbi.nlm.nih.gov/pubmed/22647865
http://dx.doi.org/10.1097/RHU.0b013e318258b725
http://www.ncbi.nlm.nih.gov/pubmed/25669480
http://dx.doi.org/10.5694/mja14.00716
http://www.ncbi.nlm.nih.gov/pubmed/31939874
http://dx.doi.org/10.1097/INF.0000000000002578
http://www.ncbi.nlm.nih.gov/pubmed/20491796
http://dx.doi.org/10.1111/j.1365-2249.2010.04146.x
http://www.ncbi.nlm.nih.gov/pmc/articles/2940142
http://www.ncbi.nlm.nih.gov/pubmed/32631210
http://dx.doi.org/10.1177/0956462420915394
http://www.ncbi.nlm.nih.gov/pmc/articles/7590809
http://www.ncbi.nlm.nih.gov/pubmed/29708006
http://dx.doi.org/10.1080/23744235.2018.1467038
http://www.ncbi.nlm.nih.gov/pubmed/22491870
http://dx.doi.org/10.1212/WNL.0b013e318250d84a
https://apps.who.int/iris/bitstream/handle/10665/44379/9789241599764_eng.pdf;jsessionid=CE96AB610BC40FE3F43B23C6BC25CB2C?sequence=1
http://www.ncbi.nlm.nih.gov/pubmed/21625509
http://dx.doi.org/10.1371/journal.pone.0020077
http://www.ncbi.nlm.nih.gov/pmc/articles/3098272
http://www.ncbi.nlm.nih.gov/pubmed/19405867
http://dx.doi.org/10.1086/598988
https://www.knowledgehub.org.za/elibrary/2019-art-clinical-guidelines-management-hiv-adults-pregnancy-adolescents-children-infants
http://www.ncbi.nlm.nih.gov/pubmed/26633263
http://dx.doi.org/10.1016/j.neuroscience.2015.11.053
http://www.ncbi.nlm.nih.gov/pubmed/25424483
http://dx.doi.org/10.1186/s13041-014-0085-7
http://www.ncbi.nlm.nih.gov/pmc/articles/4247600
http://www.ncbi.nlm.nih.gov/pubmed/15647473
http://dx.doi.org/10.1523/JNEUROSCI.2544-04.2005
http://www.ncbi.nlm.nih.gov/pmc/articles/6725473
http://www.ncbi.nlm.nih.gov/pubmed/29522792
http://dx.doi.org/10.1016/j.taap.2018.03.005
http://www.ncbi.nlm.nih.gov/pubmed/18364514
http://dx.doi.org/10.1126/stke.112pt3
http://www.ncbi.nlm.nih.gov/pubmed/11385505
http://dx.doi.org/10.1038/89058
http://www.ncbi.nlm.nih.gov/pubmed/15748157
http://dx.doi.org/10.1111/j.1471-4159.2004.02980.x


of NMDA receptors to lipid rafts: a cholesterol-mediated effect in 
neuroprotection. Stroke. 2008; 39(4): 1269–1275.  
PubMed Abstract | Publisher Full Text 

69. 	 Michikawa M, Yanagisawa K: Inhibition of cholesterol production but not of 
nonsterol isoprenoid products induces neuronal cell death. J Neurochem. 
1999; 72(6): 2278–2285.  
PubMed Abstract | Publisher Full Text 

70. 	 Tanaka T, Tatsuno I, Uchida D, et al.: Geranylgeranyl-pyrophosphate, an 
isoprenoid of mevalonate cascade, is a critical compound for rat primary 
cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-
methylglutaryl-CoA reductase inhibition. J Neurosci. 2000; 20(8):  
2852–2859.  
PubMed Abstract | Publisher Full Text | Free Full Text 

71. 	 Schulz JG, Bosel J, Stoeckel M, et al.: HMG-CoA reductase inhibition causes 
neurite loss by interfering with geranylgeranylpyrophosphate synthesis.  
J Neurochem. 2004; 89(1): 24–32.  
PubMed Abstract | Publisher Full Text 

72. 	 Youssef S, Stuve O, Patarroyo JC, et al.: The HMG-CoA reductase inhibitor, 
atorvastatin, promotes a Th2 bias and reverses paralysis in central 
nervous system autoimmune disease. Nature. 2002; 420(6911): 78–84. 
PubMed Abstract | Publisher Full Text 

73. 	 Chataway J, Schuerer N, Alsanousi A, et al.: Effect of high-dose simvastatin on 
brain atrophy and disability in secondary progressive multiple sclerosis 
(MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014; 
383(9936): 2213–2221.  
PubMed Abstract | Publisher Full Text 

74. 	 Xu X, Gao W, Cheng S, et al.: Anti-inflammatory and immunomodulatory 
mechanisms of atorvastatin in a murine model of traumatic brain injury.  
J Neuroinflammation. 2017; 14(1): 167.  
PubMed Abstract | Publisher Full Text | Free Full Text 

75. 	 Lokhandwala A, Hanna K, Gries L, et al.: Preinjury Statins Are Associated With 
Improved Survival in Patients With Traumatic Brain Injury. J Surg Res. 2020; 
245: 367–372.  
PubMed Abstract | Publisher Full Text 

76. 	 Whyte J, Ketchum JM, Bogner J, et al.: Effects of Statin Treatment on 
Outcomes after Traumatic Brain Injury. J Neurotrauma. 2018.  
PubMed Abstract | Publisher Full Text 

77. 	 Sanchez-Aguilar M, Tapia-Perez JH, Sanchez-Rodriguez JJ, et al.: Effect of 
rosuvastatin on cytokines after traumatic head injury. J Neurosurg. 2013; 
118(3): 669–675.  
PubMed Abstract | Publisher Full Text 

78. 	 Jick H, Zornberg GL, Jick SS, et al.: Statins and the risk of dementia. Lancet. 
2000; 356(9242): 1627–1631.  
PubMed Abstract | Publisher Full Text 

79. 	 Yan J, Qiao L, Tian J, et al.: Effect of statins on Parkinson’s disease: A 
systematic review and meta-analysis. Medicine (Baltimore). 2019; 98(12): 
e14852.  
PubMed Abstract | Publisher Full Text | Free Full Text 

80. 	 Lai CC, Lee MTG, Lee SH, et al.: Statin treatment is associated with 
a decreased risk of active tuberculosis: an analysis of a nationally 
representative cohort. Thorax. 2016; 71(7): 646–651.  
PubMed Abstract | Publisher Full Text 

81. 	 Dutta NK, Bruiners N, Pinn ML, et al.: Statin adjunctive therapy shortens 
the duration of TB treatment in mice. J Antimicrob Chemother. 2016; 71(6): 
1570–1577.  
PubMed Abstract | Publisher Full Text | Free Full Text 

82. 	 Skerry C, Pinn ML, Bruiners N, et al.: Simvastatin increases the in vivo activity 
of the first-line tuberculosis regimen. J Antimicrob Chemother. 2014; 69(9): 
2453–2457.  
PubMed Abstract | Publisher Full Text | Free Full Text 

83. 	 Parihar SP, Guler R, Khutlang R, et al.: Statin therapy reduces the 
mycobacterium tuberculosis burden in human macrophages and in mice by 
enhancing autophagy and phagosome maturation. J Infect Dis. 2014; 209(5): 
754–763.  
PubMed Abstract | Publisher Full Text 

84. 	 Rohlwink UK, Figaji A, Wilkinson KA, et al.: Tuberculous meningitis in children 
is characterized by compartmentalized immune responses and neural 
excitotoxicity. Nat Commun. 2019; 10(1): 3767.  
PubMed Abstract | Publisher Full Text | Free Full Text 

85. 	 Meldrum BS: Glutamate as a neurotransmitter in the brain: review of 
physiology and pathology. J Nutr. 2000; 130(4S Suppl): 1007S–1015S.  
PubMed Abstract | Publisher Full Text 

86. 	 Wang R, Reddy PH: Role of Glutamate and NMDA Receptors in Alzheimer’s 
Disease. J Alzheimers Dis. 2017; 57(4): 1041–1048.  
PubMed Abstract | Publisher Full Text | Free Full Text 

87. 	 Jia M, Njapo SAN, Rastogi V, et al.: Taming glutamate excitotoxicity: strategic 
pathway modulation for neuroprotection. CNS Drugs. 2015; 29(2): 153–162. 
PubMed Abstract | Publisher Full Text 

88. 	 Kalia LV, Kalia SK, Salter MW: NMDA receptors in clinical neurology: 
excitatory times ahead. Lancet Neurol. 2008; 7(8): 742–755.  
PubMed Abstract | Publisher Full Text | Free Full Text 

89. 	 Grupke S, Hall J, Dobbs M, et al.: Understanding history, and not repeating 
it. Neuroprotection for acute ischemic stroke: from review to preview. Clin 

Neurol Neurosurg. 2015; 129: 1–9.  
PubMed Abstract | Publisher Full Text 

90. 	 Castillo J, Loza MI, Mirelman D, et al.: A novel mechanism of neuroprotection: 
Blood glutamate grabber. J Cereb Blood Flow Metab. 2016; 36(2): 292–301. 
PubMed Abstract | Publisher Full Text | Free Full Text 

91. 	 da Silva-Candal A, Perez-Diaz A, Santamaria M, et al.: Clinical validation of 
blood/brain glutamate grabbing in acute ischemic stroke. Ann Neurol. 2018; 
84(2): 260–273.  
PubMed Abstract | Publisher Full Text 

92. 	 Marashly ET, Bohlega SA: Riboflavin Has Neuroprotective Potential: Focus 
on Parkinson’s Disease and Migraine. Front Neurol. 2017; 8: 333.  
PubMed Abstract | Publisher Full Text | Free Full Text 

93. 	 Blumenthal A, Nagalingam G, Huch JH, et al.: M. tuberculosis induces potent 
activation of IDO-1, but this is not essential for the immunological control 
of infection. PLoS One. 2012; 7(5): e37314.  
PubMed Abstract | Publisher Full Text | Free Full Text 

94. 	 Gautam US, Foreman TW, Bucsan AN, et al.: In vivo inhibition of tryptophan 
catabolism reorganizes the tuberculoma and augments immune-mediated 
control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2018; 115(1): 
E62–E71.  
PubMed Abstract | Publisher Full Text | Free Full Text 

95. 	 van Laarhoven A, Dian S, Aguirre-Gamboa R, et al.: Cerebral tryptophan 
metabolism and outcome of tuberculous meningitis: an observational 
cohort study. Lancet Infect Dis. 2018; 18(5): 526–535.  
PubMed Abstract | Publisher Full Text 

96. 	 Fox E, Oliver T, Rowe M, et al.: Indoximod: An Immunometabolic Adjuvant 
That Empowers T Cell Activity in Cancer. Front Oncol. 2018; 8: 370.  
PubMed Abstract | Publisher Full Text | Free Full Text 

97. 	 Ricciotti E, FitzGerald GA: Prostaglandins and inflammation. Arterioscler 
Thromb Vasc Biol. 2011; 31(5): 986–1000.  
PubMed Abstract | Publisher Full Text | Free Full Text 

98. 	 Young C, Walzl G, Du Plessis N: Therapeutic host-directed strategies to 
improve outcome in tuberculosis. Mucosal Immunol. 2020; 13(2): 190–204. 
PubMed Abstract | Publisher Full Text | Free Full Text 

99. 	 Page CP, Spina D: Phosphodiesterase inhibitors in the treatment of 
inflammatory diseases. Handb Exp Pharmacol. 2011; (204): 391–414.  
PubMed Abstract | Publisher Full Text 

100. 	 Calverley PM, Rabe KF, Goehring UM, et al.: Roflumilast in symptomatic 
chronic obstructive pulmonary disease: two randomised clinical trials. 
Lancet. 2009; 374(9691): 685–694.  
PubMed Abstract | Publisher Full Text 

101. 	 Schaal SM, Garg MS, Ghosh M, et al.: The therapeutic profile of rolipram, PDE 
target and mechanism of action as a neuroprotectant following spinal 
cord injury. PLoS One. 2012; 7(9): e43634.  
PubMed Abstract | Publisher Full Text | Free Full Text 

102. 	 Atkins CM, Oliva AA Jr, Alonso OF, et al.: Modulation of the cAMP signaling 
pathway after traumatic brain injury. Exp Neurol. 2007; 208(1): 145–158. 
PubMed Abstract | Publisher Full Text | Free Full Text 

103. 	 Gong B, Vitolo OV, Trinchese F, et al.: Persistent improvement in synaptic 
and cognitive functions in an Alzheimer mouse model after rolipram 
treatment. J Clin Invest. 2004; 114(11): 1624–1634.  
PubMed Abstract | Publisher Full Text | Free Full Text 

104. 	 Gonzalez-Garcia C, Bravo B, Ballester A, et al.: Comparative assessment of 
PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune 
encephalomyelitis. Br J Pharmacol. 2013; 170(3): 602–613.  
PubMed Abstract | Publisher Full Text | Free Full Text 

105. 	 Wu Q, Qi L, Li H, et al.: Roflumilast Reduces Cerebral Inflammation in a Rat 
Model of Experimental Subarachnoid Hemorrhage. Inflammation. 2017; 
40(4): 1245–1253.  
PubMed Abstract | Publisher Full Text | Free Full Text 

106. 	 Subbian S, Tsenova L, O'Brien P, et al.: Phosphodiesterase-4 inhibition 
combined with isoniazid treatment of rabbits with pulmonary tuberculosis 
reduces macrophage activation and lung pathology. Am J Pathol. 2011; 
179(1): 289–301.  
PubMed Abstract | Publisher Full Text | Free Full Text 

107. 	 Maiga MC, Ahidjo BA, Maiga M, et al.: Roflumilast, a Type 4 
Phosphodiesterase Inhibitor, Shows Promising Adjunctive, Host-Directed 
Therapeutic Activity in a Mouse Model of Tuberculosis. Antimicrob Agents 
Chemother. 2015; 59(12): 7888–7890.  
PubMed Abstract | Publisher Full Text | Free Full Text 

108. 	 Maiga M, Agarwal N, Ammerman NC, et al.: Successful shortening of 
tuberculosis treatment using adjuvant host-directed therapy with FDA-
approved phosphodiesterase inhibitors in the mouse model. PLoS One. 
2012; 7(2): e30749.  
PubMed Abstract | Publisher Full Text | Free Full Text 

109. 	 Konrad FM, Bury A, Schick MA, et al.: The unrecognized effects of 
phosphodiesterase 4 on epithelial cells in pulmonary inflammation. PLoS 
One. 2015; 10(4): e0121725.  
PubMed Abstract | Publisher Full Text | Free Full Text 

110. 	 Wilkinson RJ, Rohlwink U, Misra UK, et al.: Tuberculous meningitis. Nat Rev 
Neurol. 2017; 13(10): 581–598.  
PubMed Abstract | Publisher Full Text 

111. 	 Tobin DM, Vary JC Jr, Ray JP, et al.: The lta4h locus modulates susceptibility 

Page 13 of 21

Wellcome Open Research 2020, 5:292 Last updated: 15 NOV 2021

http://www.ncbi.nlm.nih.gov/pubmed/18323503
http://dx.doi.org/10.1161/STROKEAHA.107.498923
http://www.ncbi.nlm.nih.gov/pubmed/10349836
http://dx.doi.org/10.1046/j.1471-4159.1999.0722278.x
http://www.ncbi.nlm.nih.gov/pubmed/10751437
http://dx.doi.org/10.1523/JNEUROSCI.20-08-02852.2000
http://www.ncbi.nlm.nih.gov/pmc/articles/6772198
http://www.ncbi.nlm.nih.gov/pubmed/15030386
http://dx.doi.org/10.1046/j.1471-4159.2003.02305.x
http://www.ncbi.nlm.nih.gov/pubmed/12422218
http://dx.doi.org/10.1038/nature01158
http://www.ncbi.nlm.nih.gov/pubmed/24655729
http://dx.doi.org/10.1016/S0140-6736(13)62242-4
http://www.ncbi.nlm.nih.gov/pubmed/28835272
http://dx.doi.org/10.1186/s12974-017-0934-2
http://www.ncbi.nlm.nih.gov/pmc/articles/5569493
http://www.ncbi.nlm.nih.gov/pubmed/31425877
http://dx.doi.org/10.1016/j.jss.2019.07.081
http://www.ncbi.nlm.nih.gov/pubmed/29954258
http://dx.doi.org/10.1089/neu.2017.5545
http://www.ncbi.nlm.nih.gov/pubmed/23289819
http://dx.doi.org/10.3171/2012.12.JNS121084
http://www.ncbi.nlm.nih.gov/pubmed/11089820
http://dx.doi.org/10.1016/s0140-6736(00)03155-x
http://www.ncbi.nlm.nih.gov/pubmed/30896628
http://dx.doi.org/10.1097/MD.0000000000014852
http://www.ncbi.nlm.nih.gov/pmc/articles/6709163
http://www.ncbi.nlm.nih.gov/pubmed/26941271
http://dx.doi.org/10.1136/thoraxjnl-2015-207052
http://www.ncbi.nlm.nih.gov/pubmed/26903278
http://dx.doi.org/10.1093/jac/dkw014
http://www.ncbi.nlm.nih.gov/pmc/articles/5007636
http://www.ncbi.nlm.nih.gov/pubmed/24855121
http://dx.doi.org/10.1093/jac/dku166
http://www.ncbi.nlm.nih.gov/pmc/articles/4184365
http://www.ncbi.nlm.nih.gov/pubmed/24133190
http://dx.doi.org/10.1093/infdis/jit550
http://www.ncbi.nlm.nih.gov/pubmed/31434901
http://dx.doi.org/10.1038/s41467-019-11783-9
http://www.ncbi.nlm.nih.gov/pmc/articles/6704154
http://www.ncbi.nlm.nih.gov/pubmed/10736372
http://dx.doi.org/10.1093/jn/130.4.1007S
http://www.ncbi.nlm.nih.gov/pubmed/27662322
http://dx.doi.org/10.3233/JAD-160763
http://www.ncbi.nlm.nih.gov/pmc/articles/5791143
http://www.ncbi.nlm.nih.gov/pubmed/25633850
http://dx.doi.org/10.1007/s40263-015-0225-3
http://www.ncbi.nlm.nih.gov/pubmed/18635022
http://dx.doi.org/10.1016/S1474-4422(08)70165-0
http://www.ncbi.nlm.nih.gov/pmc/articles/3589564
http://www.ncbi.nlm.nih.gov/pubmed/25497127
http://dx.doi.org/10.1016/j.clineuro.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/26661174
http://dx.doi.org/10.1177/0271678X15606721
http://www.ncbi.nlm.nih.gov/pmc/articles/4759671
http://www.ncbi.nlm.nih.gov/pubmed/30014516
http://dx.doi.org/10.1002/ana.25286
http://www.ncbi.nlm.nih.gov/pubmed/28775706
http://dx.doi.org/10.3389/fneur.2017.00333
http://www.ncbi.nlm.nih.gov/pmc/articles/5517396
http://www.ncbi.nlm.nih.gov/pubmed/22649518
http://dx.doi.org/10.1371/journal.pone.0037314
http://www.ncbi.nlm.nih.gov/pmc/articles/3359358
http://www.ncbi.nlm.nih.gov/pubmed/29255022
http://dx.doi.org/10.1073/pnas.1711373114
http://www.ncbi.nlm.nih.gov/pmc/articles/5776797
http://www.ncbi.nlm.nih.gov/pubmed/29395996
http://dx.doi.org/10.1016/S1473-3099(18)30053-7
http://www.ncbi.nlm.nih.gov/pubmed/30254983
http://dx.doi.org/10.3389/fonc.2018.00370
http://www.ncbi.nlm.nih.gov/pmc/articles/6141803
http://www.ncbi.nlm.nih.gov/pubmed/21508345
http://dx.doi.org/10.1161/ATVBAHA.110.207449
http://www.ncbi.nlm.nih.gov/pmc/articles/3081099
http://www.ncbi.nlm.nih.gov/pubmed/31772320
http://dx.doi.org/10.1038/s41385-019-0226-5
http://www.ncbi.nlm.nih.gov/pmc/articles/7039813
http://www.ncbi.nlm.nih.gov/pubmed/21695650
http://dx.doi.org/10.1007/978-3-642-17969-3_17
http://www.ncbi.nlm.nih.gov/pubmed/19716960
http://dx.doi.org/10.1016/S0140-6736(09)61255-1
http://www.ncbi.nlm.nih.gov/pubmed/23028463
http://dx.doi.org/10.1371/journal.pone.0043634
http://www.ncbi.nlm.nih.gov/pmc/articles/3446989
http://www.ncbi.nlm.nih.gov/pubmed/17916353
http://dx.doi.org/10.1016/j.expneurol.2007.08.011
http://www.ncbi.nlm.nih.gov/pmc/articles/2141537
http://www.ncbi.nlm.nih.gov/pubmed/15578094
http://dx.doi.org/10.1172/JCI22831
http://www.ncbi.nlm.nih.gov/pmc/articles/529285
http://www.ncbi.nlm.nih.gov/pubmed/23869659
http://dx.doi.org/10.1111/bph.12308
http://www.ncbi.nlm.nih.gov/pmc/articles/3791998
http://www.ncbi.nlm.nih.gov/pubmed/28451841
http://dx.doi.org/10.1007/s10753-017-0567-8
http://www.ncbi.nlm.nih.gov/pmc/articles/6193485
http://www.ncbi.nlm.nih.gov/pubmed/21703411
http://dx.doi.org/10.1016/j.ajpath.2011.03.039
http://www.ncbi.nlm.nih.gov/pmc/articles/3123788
http://www.ncbi.nlm.nih.gov/pubmed/26438491
http://dx.doi.org/10.1128/AAC.02145-15
http://www.ncbi.nlm.nih.gov/pmc/articles/4649180
http://www.ncbi.nlm.nih.gov/pubmed/22319585
http://dx.doi.org/10.1371/journal.pone.0030749
http://www.ncbi.nlm.nih.gov/pmc/articles/3272040
http://www.ncbi.nlm.nih.gov/pubmed/25909327
http://dx.doi.org/10.1371/journal.pone.0121725
http://www.ncbi.nlm.nih.gov/pmc/articles/4409344
http://www.ncbi.nlm.nih.gov/pubmed/28884751
http://dx.doi.org/10.1038/nrneurol.2017.120


to mycobacterial infection in zebrafish and humans. Cell. 2010; 140(5): 
717–730.  
PubMed Abstract | Publisher Full Text | Free Full Text 

112. 	 Hawn TR, Shah JA, Kalman D: New tricks for old dogs: countering antibiotic 
resistance in tuberculosis with host-directed therapeutics. Immunol Rev. 
2015; 264(1): 344–362.  
PubMed Abstract | Publisher Full Text | Free Full Text 

113. 	 Tobin DM, Roca FJ, Oh SF, et al.: Host genotype-specific therapies can 
optimize the inflammatory response to mycobacterial infections. Cell. 
2012; 148(3): 434–446.  
PubMed Abstract | Publisher Full Text | Free Full Text 

114. 	 van Laarhoven A, Dian S, Ruesen C, et al.: Clinical Parameters, Routine 
Inflammatory Markers, and LTA4H Genotype as Predictors of Mortality 
Among 608 Patients With Tuberculous Meningitis in Indonesia. J Infect Dis. 
2017; 215(7): 1029–1039.  
PubMed Abstract | Publisher Full Text 

115. 	 Donovan J, Phu NH, Thao LTP, et al.: Adjunctive dexamethasone for the 

treatment of HIV-uninfected adults with tuberculous meningitis stratified 
by Leukotriene A4 hydrolase genotype (LAST ACT): Study protocol for a 
randomised double blind placebo controlled non-inferiority trial [version 1; 
peer review: 2 approved]. Wellcome Open Res. 2018; 3: 32.  
PubMed Abstract | Publisher Full Text | Free Full Text 

116. 	 Campo M, Randhawa AK, Dunstan S, et al.: Common polymorphisms in the 
CD43 gene region are associated with tuberculosis disease and mortality. 
Am J Respir Cell Mol Biol. 2015; 52(3): 342–348.  
PubMed Abstract | Publisher Full Text | Free Full Text 

117. 	 Hingorani AD, Kuan V, Finan C, et al.: Improving the odds of drug 
development success through human genomics: modelling study. Sci Rep. 
2019; 9(1): 18911.  
PubMed Abstract | Publisher Full Text | Free Full Text 

118. 	 Kasahara M: The Production of tuberculous meningitis in the rabbit and 
the changes in its cerebrospinal fluid. Am J Dis Child. 1924; 27:  
428–432.  
Publisher Full Text 

Page 14 of 21

Wellcome Open Research 2020, 5:292 Last updated: 15 NOV 2021

http://www.ncbi.nlm.nih.gov/pubmed/20211140
http://dx.doi.org/10.1016/j.cell.2010.02.013
http://www.ncbi.nlm.nih.gov/pmc/articles/2907082
http://www.ncbi.nlm.nih.gov/pubmed/25703571
http://dx.doi.org/10.1111/imr.12255
http://www.ncbi.nlm.nih.gov/pmc/articles/4571192
http://www.ncbi.nlm.nih.gov/pubmed/22304914
http://dx.doi.org/10.1016/j.cell.2011.12.023
http://www.ncbi.nlm.nih.gov/pmc/articles/3433720
http://www.ncbi.nlm.nih.gov/pubmed/28419315
http://dx.doi.org/10.1093/infdis/jix051
http://www.ncbi.nlm.nih.gov/pubmed/30363837
http://dx.doi.org/10.12688/wellcomeopenres.14007.1
http://www.ncbi.nlm.nih.gov/pmc/articles/6182672
http://www.ncbi.nlm.nih.gov/pubmed/25078322
http://dx.doi.org/10.1165/rcmb.2014-0114OC
http://www.ncbi.nlm.nih.gov/pmc/articles/4370260
http://www.ncbi.nlm.nih.gov/pubmed/31827124
http://dx.doi.org/10.1038/s41598-019-54849-w
http://www.ncbi.nlm.nih.gov/pmc/articles/6906499
http://dx.doi.org/10.1001/archpedi.1924.01920110009002


Open Peer Review
Current Peer Review Status:   

Version 1

Reviewer Report 12 April 2021

https://doi.org/10.21956/wellcomeopenres.18139.r42998

© 2021 Venketaraman V. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Vishwanath Venketaraman   
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 
USA 

This review is well-written with complete focus on the potential host directed therapies for TB 
meningitis. The manuscript contains a detailed literature review (both preclinical and clinical trial 
studies) on the use of corticosteroids, aspirin, thalidomide, statins, and other molecules, against 
TB meningitis.  
 
Recommendations: Introducing a paragraph about tuberculosis incidence and epidemiology at 
the beginning of the manuscript, followed by sections on the prevalence of TB meningitis, and 
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General comments: 
This review regarding the host directed therapy (HDT) for TBM is globally well written and includes 
adequate references on this topic to date. It could be better balanced. 
In the introduction, the authors could include a short chapter about TBM epidemiology. 
  
Systematic review: 
Title 
I do not agree to consider aspirin, thalidomide and immunomodulatory therapies (anti-TNF and 
anti-Il1 antibodies) as “existing “ HDT in TBM. To date, only one HDT has been proven to reduce 
mortality, namely dexamethasone and the other one are promising approaches but have not been 
assessed in clinical trials yet. So I would consider as Existing HDT the only dexamethasone and 
“Promising” HDT the other ones. 
The title “potential future HDT…” should be replaced by Potential “pathways” for HDT since some 
of the activators/inhibitors cited in this chapter are new components never evaluated in RCTs. 
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Chapter Dexamethasone: 
The authors should describe what kind of controls were evaluated in a study of 16 individuals in 
India. 
The authors write about cerebral inflammation but it is a proxy to consider CSF cytokines as a 
maker of cerebral inflammation. The authors should comment on this point. 
The issue of dexamethasone dosage (and of rifampicin induction) and of the use of other 
corticosteroids should be detailed in this chapter described since dexa is the only HDT validated in 
the guidelines. 
 
Chapter Aspirin: 
The chapter is well written. 
In addition to the comprehensive antiagregant effect of aspirin, can the author explain how they 
expect an additional antiinflammatory effect to high dose dexamethasone?  The duration of the 
treatment should be discussed. 
 
Chapter Thalidomide: 
Data on thalidomide are very few and mainly observed in children. 
The authors should be cautious regarding their experience with adjunctive thalidomide in TBM 
regarding the lack of date. Thalidomide is an old anti-inflammatory drug used in inflammatory 
diseases and progressively removed from guidelines because of its toxicity. Again, it seems 
difficult to consider thalidomide as a “promising” drug for TBM since new biological agents are far 
more efficient on proinflammatory cytokines. 
The authors should not suggest using thalidomide at a large scale in TBM/TB brain abscess. 
 
Chapter Immunomodulatory HDT: 
This chapter is quite short regarding the perspective given by anti-TNF in a severe form of 
TBM/CNS TB. The choice of the type of anti-TNF, as well as the duration of treatment and the risk 
associated to this medication, could be discussed. To my mind, anti-TNF therapies may represent 
one of the best approaches to reduce mortality and morbidity of TBM/TB Abssess in HIV and non 
HIV people and in children. The main issues are the toxicity of these drugs in the environment 
where TBM occurs and the availability of these drugs in poor income countries. These points have 
to be discussed in this review. 
In table 2, the authors should add the following references about adalimumab: 
Adalimumab treatment may replace or enhance the activity of steroids in steroid-refractory 
tuberculous meningitis.  Lee HS, Lee Y, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. J Infect 
Chemother. 2012 Aug;18(4):555-7 
Adalimumab for Corticosteroid and Infliximab-Resistant Immune Reconstitution Inflammatory 
Syndrome in the Setting of TB/HIV Coinfection.  Lwin N, Boyle M, Davis JS. Open Forum Infect Dis. 
2018 Jan 30;5(2):ofy027 
  
ART: 
It is not really fair to consider ART as HDT… even if it is obvious that ART has a significant impact 
on immunological status. HIV coinfection raises other issues in the management of TBM and I 
would consider separating this chapter from HDT. 
  
Chapter Future pathways…: 
Chapter Statin therapy 

 
Page 17 of 21

Wellcome Open Research 2020, 5:292 Last updated: 15 NOV 2021

https://pubmed.ncbi.nlm.nih.gov/22045163/
https://pubmed.ncbi.nlm.nih.gov/22045163/
https://pubmed.ncbi.nlm.nih.gov/29507866/
https://pubmed.ncbi.nlm.nih.gov/29507866/


It is not well balanced to have a chapter statin with no data on TBM longer than the chapter on 
biological agents, even if the background is interesting. 
I would summarize the impact of statin on multiple sclerosis,  brain injury, etc since it is quite far 
from TBM to focus on the potential interest of statins on TB and immune response. 
FIGURE 2: Not really helpful in the present form. 
I would perform a central plot with increased neuronal survival, immune modulation, axon 
plasticity myelination that are the goal of treatment; and to describe around the central plot the 
different pathways to reach this target.   
  
Chapter Host response: 
The discussion regarding the LTA4H gene and the response to dexamethasone is an important 
point of pharmacogenetic. The authors should discuss if this strategy is affordable in every 
setting.
 
Is the topic of the review discussed comprehensively in the context of the current 
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 19 May 2021
Angharad Davis, University College London, Gower Street, London, UK 

Dear reviewer 1, 
 
Many thanks for your thorough review of the manuscript and your suggestions. We have 
addressed each in turn in the responses below. 
 
General comments: 
 
This review regarding the host directed therapy (HDT) for TBM is globally well written and 
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includes adequate references on this topic to date. It could be better balanced. 
In the introduction, the authors could include a short chapter about TBM epidemiology. 
 
We agree that this is an important area, however since this manuscript forms a collection of 
published papers in a TBM supplement, many of which covered TBM epidemiology in detail, 
the authors felt that this manuscript should maintain a narrow focus on the subject area, 
and therefore felt a chapter on TBM epidemiology was beyond the scope of the article. 
  
Paragraph sub-headings: 
 
I do not agree to consider aspirin, thalidomide and immunomodulatory therapies (anti-TNF 
and anti-Il1 antibodies) as “existing “ HDT in TBM. To date, only one HDT has been proven to 
reduce mortality, namely dexamethasone and the other one are promising approaches but 
have not been assessed in clinical trials yet. So I would consider as Existing HDT the only 
dexamethasone and “Promising” HDT the other ones. 
The title “potential future HDT…” should be replaced by Potential “pathways” for HDT since 
some of the activators/inhibitors cited in this chapter are new components never evaluated 
in RCTs. 
 
We have changed the sub-headings as suggested. 
  
Chapter Dexamethasone: 
 
The authors should describe what kind of controls were evaluated in a study of 16 
individuals in India. 
 
This has been added to this section. 
 
The authors write about cerebral inflammation but it is a proxy to consider CSF cytokines as 
a maker of cerebral inflammation. The authors should comment on this point. 
 
A comment has been added to this section as per suggestion . 
 
The issue of dexamethasone dosage (and of rifampicin induction) and of the use of other 
corticosteroids should be detailed in this chapter described since dexa is the only HDT 
validated in the guidelines. 
 
We agree this issue is important and have commented on this in the text pointing out to 
readers that although “Corticosteroid use in TBM is commonplace, dexamethasone is 
commonly used as it is affordable and widely available although the optimal corticosteroid 
preparation, dose, and route of administration are unknown.” We have added text to 
further clarify this point in a sentence following this. 
 
Chapter Aspirin: 
 
The chapter is well written. In addition to the comprehensive antiagregant effect of aspirin, 
can the author explain how they expect an additional anti-inflammatory effect to high dose 
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dexamethasone?  The duration of the treatment should be discussed. 
 
Many thanks. These suggestions have been added to this section. 
 
Chapter Thalidomide: 
 
Data on thalidomide are very few and mainly observed in children. 
The authors should be cautious regarding their experience with adjunctive thalidomide in 
TBM regarding the lack of date. Thalidomide is an old anti-inflammatory drug used in 
inflammatory diseases and progressively removed from guidelines because of its toxicity. 
Again, it seems difficult to consider thalidomide as a “promising” drug for TBM since new 
biological agents are far more efficient on proinflammatory cytokines. 
The authors should not suggest using thalidomide at a large scale in TBM/TB brain abscess. 
 
Many thanks for your comments on this. We feel differently that the use of thalidomide is 
supported by now numerous published studies, the most recent being the largest cohort of 
adult or pediatric patients treated with adjunctive thalidomide for CNS TB–related 
complications. In this study (reference below), published this year in Clinical Infectious 
Diseases, thalidomide appeared to be safe, well tolerated and clinically efficacious. Although 
we appreciate that further RCT generated evidence is required to warrant its use widescale, 
it is the opinion of the authors on the manuscript that this is indeed a ‘promising’ HDT that 
warrants discussion and further explanation. 
 
Ronald van Toorn, Regan S Solomons, James A Seddon, Johan F Schoeman. Thalidomide Use 
for Complicated Central Nervous System Tuberculosis in Children: Insights From an 
Observational Cohort. Clinical Infectious Diseases, Volume 72, Issue 5, 1 March 2021, Pages 
e136–e145 
 
Chapter Immunomodulatory HDT: 
This chapter is quite short regarding the perspective given by anti-TNF in a severe form of 
TBM/CNS TB. The choice of the type of anti-TNF, as well as the duration of treatment and 
the risk associated to this medication, could be discussed. To my mind, anti-TNF therapies 
may represent one of the best approaches to reduce mortality and morbidity of TBM/TB 
Abssess in HIV and non HIV people and in children. The main issues are the toxicity of these 
drugs in the environment where TBM occurs and the availability of these drugs in poor 
income countries. These points have to be discussed in this review. 
 
In table 2, the authors should add the following references about adalimumab: 
Adalimumab treatment may replace or enhance the activity of steroids in steroid-refractory 
tuberculous meningitis.  Lee HS, Lee Y, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. J Infect 
Chemother. 2012 Aug;18(4):555-7 
Adalimumab for Corticosteroid and Infliximab-Resistant Immune Reconstitution 
Inflammatory Syndrome in the Setting of TB/HIV Coinfection.  Lwin N, Boyle M, Davis JS. 
Open Forum Infect Dis. 2018 Jan 30;5(2):ofy027 
 
Many thanks for these comments. These references have been added as suggested. 
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ART: 
 
It is not really fair to consider ART as HDT… even if it is obvious that ART has a significant 
impact on immunological status. HIV coinfection raises other issues in the management of 
TBM and I would consider separating this chapter from HDT. 
 
Many thanks for these comments. As per your suggestion we have separated this section as 
a distinct sub-chapter within the manuscript. 
  
Chapter Future Pathways: 
 
Chapter Statin therapy - It is not well balanced to have a chapter statin with no data on TBM 
longer than the chapter on biological agents, even if the background is interesting. I would 
summarize the impact of statin on multiple sclerosis,  brain injury, etc since it is quite far 
from TBM to focus on the potential interest of statins on TB and immune response. 
 
Thank you for these comments, we have shortened this paragraph as suggested. 
 
FIGURE 2: Not really helpful in the present form. 
I would perform a central plot with increased neuronal survival, immune modulation, axon 
plasticity myelination that are the goal of treatment; and to describe around the central plot 
the different pathways to reach this target.  
 
Many thanks for your thoughts on this. We agreed with these and attempted to modify the 
figure as you suggested. However, on review, given that the effect of manipulation of these 
pathways has not yet been explored in this context we did not want to develop a figure 
which may be misleading given the early stages of research in this area. We have rather 
simplified the diagram as a reference figure for readers as they read this section, allowing 
them to visualise the pathways being discussed.   
  
Chapter Host response: 
The discussion regarding the LTA4H gene and the response to dexamethasone is an 
important point of pharmacogenetic. The authors should discuss if this strategy is 
affordable in every setting. 
 
Many thanks, we agree this is an important issue; we have added a comment on this to the 
section.  
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