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Abstract

Understanding the evolution and function of the earliest immune responses following HIV 

infection could inform future vaccines and treatments, and provide insights for combating 

other viral infections. Recent prospective human studies in at-risk populations have afforded 

critical vantages into the earliest moments after HIV detection, revealing the onset of immune 

dysfunction within days-to-weeks after infection. Transcriptomic and proteomic studies highlight 

interconnected multicellular and multi-cytokine/chemokine responses prior to and following peak 

viremia. Treatment at onset of viremia mitigates peripheral T and B cell dysfunction, limits 

seroconversion, and enhances cellular antiviral immunity despite persistence of infection in 

lymphoid tissues. Further application of high-throughput genomic technologies to these samples, 

alongside targeted non-human primate studies, will elucidate immune response features to target in 

novel preventions and cures.

Introduction

More than four decades after the first cases of acquired immunodeficiency syndrome 

(AIDS), we still lack effective human immunodeficiency virus (HIV) vaccines and curative 
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treatments. The vast majority of those infected require daily anti-HIV therapy to stave off 

disease, with long-term adherence and uninterrupted access to treatment remaining ongoing 

global challenges.

Much of what is known about HIV infection comes from studying human samples from 

chronic infection or utilizing non-human primate (NHP) models with natural or human 

engineered AIDS virus variants – simian immunodeficiency virus (SIV) and simian-human 

(SHIV), respectively (Estes et al., 2018; Garcia-Tellez et al., 2016). NHP models have 

demonstrated that features of initial pathology in the days immediately following infection 

can predict overall disease outcome and that tissue damage begins prior to the onset of 

plasma viremia (Evans and Silvestri, 2013; Policicchio et al., 2016). A more detailed 

understanding of host-pathogen interactions in humans during the entirety of the acute 

infection window, however, had been limited by the difficulty in screening and sampling 

at-risk populations during the earliest days following exposure, before peak viremia is 

achieved (McMichael et al., 2010). Characterizing acute HIV infection (AHI) in humans, 

especially relative to pre-infection, to identify responses linked to disease course is critical 

to inform future vaccines and therapeutics. More broadly, HIV could serve as a model for 

acute human viral infections in general (Hargreaves et al., 2020; Robb and Ananworanich, 

2016), given its historied role in establishing many modern concepts in immunology (Abbott 

et al., 2018; Colomer-Lluch et al., 2018; Hughes and Andersson, 2015; Youngblood et al., 

2012) and the native heterogeneity in disease course, ranging from progression to natural 

viral control (Walker and Yu, 2013).

In recent years, a combination of new technologies and the ability to perform longitudinal 

studies of uninfected persons in areas of high incidence have provided new insights 

regarding immune and viral dynamics from the onset of plasma viremia. One example is 

the Females Rising through Education, Support, and Health (FRESH) study in South Africa, 

in which uninfected 18-23 year old women at high risk of infection are monitored twice 

weekly as part of an HIV prevention and poverty alleviation project (Dong et al., 2018). 

Others include the RV217 and RV254 studies in Thailand (Ananworanich et al., 2017; 

Robb et al., 2016), which rely on screening of blood donations for persons who are HIV 

RNA and/or antigen positive and antibody negative. These peripheral blood mononuclear 

cell (PBMC) and plasma samples have provided some of the first insights into human 

immune responses immediately following detectible infection. Moreover, application of 

novel transcriptomic and proteomic technologies, including single-cell RNA sequencing 

(scRNA-seq) and single-cell mass cytometry (CyTOF) (Coindre et al., 2018; Kazer et al., 

2020; Sannier et al., 2020), to these and other rare samples has begun to generate more 

comprehensive, longitudinal data from the AHI timeframe than ever before. Early treatment 

arms in these studies, where participants initiate antiretroviral therapy (ART) immediately 

following their first positive plasma viremia test, have also begun to contextualize the 

effects of limiting acute antigen exposure on cellular and molecular responses, pinpointing 

dysfunctional immune activity and highlighting the impact of modulating host-pathogen 

interactions during peak plasma viremia.

Here, we review emerging data on the evolution of AHI in humans from the time of onset 

of plasma viremia, with inclusion of relevant data from NHP models. Using studies spanning 
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both hyperacute (prior to peak viremia; i.e., approximately less than one month following 

transmission) and late-acute infection (approximately one to six months post-transmission; 

see Figure 1a), we review the timing, identity, and function of the diverse immune responses 

induced. We also discuss the effects of early anti-retroviral therapy (ART) administration 

on these responses and highlight pertinent areas for future investigation, including cure 

research, as well as novel technological approaches that can be used to maximize the amount 

of information extracted from these precious primary human samples.

Rapid systemic dissemination of infection and induction of pro-

inflammatory responses upon infection

The very earliest mucosal events in HIV infection have largely been inferred from 

tissue studies of SIV infection in NHP. Studies of viral dynamics in models of mucosal 

challenge have demonstrated that intravaginal and intrarectal SIV infection lead to local viral 

replication within hours (Haase, 2011; Santos et al., 2011) and systemic spreading by 1-3 

days in the majority of animals (Barouch et al., 2016; Deleage et al., 2019; Rabezanahary 

et al., 2020). This is accompanied by a robust systemic pro-inflammatory response with 

induction of innate immune activity including components of the inflammasome, which 

is thought to contribute to suppression of host cell antiviral restriction factors favoring 

viral replication (Barouch et al., 2016; Lu et al., 2014). The molecular and cellular events 

that enable and facilitate viral transmission through mucosal barriers have been reviewed 

recently elsewhere (Gonzalez et al., 2019).

Following initial infection and local tissue inflammation, both pro-inflammatory and 

antiviral cytokines and chemokines are robustly upregulated systemically before onset of 

plasma viremia and during viral expansion (Figure 1b) (Katsikis et al., 2011; Keating et al., 

2016; McMichael et al., 2010; Muema et al., 2020; Stacey et al., 2009). Onset of plasma 

viremia in humans is characterized by increased levels of IFN-α, CXCL10 (formerly termed 

IP-10), IL-8, IL-10, IL-12 and CCL2 in the periphery (Muema et al., 2020; Stacey et al., 

2009). Interspecies studies of pathogenic SIV infection (Rhesus Macaque; leads to AIDS) 

compared to non-pathogenic SIV infection (African Green Monkey; persistent viremia 

without immunodeficiency) highlight that the timing of the pro-inflammatory and antiviral 

responses in tissues and the periphery associate with disease progression (Bosinger and 

Utay, 2015; Bosinger et al., 2012). In non-pathogenic SIV infection, inflammatory responses 

quell within days post-infection and upregulated interferon stimulated genes (ISGs) return 

to baseline within 30 days post infection, in stark contrast to pathogenic infection, where 

these responses are prolonged for weeks and years, respectively (Bosinger and Utay, 2015), 

highlighting the need to better understand early events in AHI and how they correspond 

to long-term outcome. Relatedly, longitudinal multicellular single-cell RNA-sequencing 

(scRNA-seq) of FRESH study participants confirmed a ubiquitous ISG response to HIV in 

the hyperacute window (Kazer et al., 2020). In NHP, higher levels of cytokines like IFN-α, 

IFN-γ, IL-18, IL-1β, and others associated with pathogenic infection suggest that the extent 

of inflammatory and interferon (IFN)-related cytokine production during acute infection 

may contribute to long-term immunodeficiency (Keating et al., 2016) (see Box 1 for further 

discussion of pro-inflammatory and antiviral responses and insights from NHP models). A 
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similar study in humans demonstrated significant correlations between peak levels of IFN-a 

and soluble IL-2R during hyperacute infection and peak viral load (Muema et al., 2020). 

Higher levels of peripheral CXCL10, which modulates immune responses by activation 

and recruitment of leukocytes, have also been shown to correlate with disease progression 

in humans (Jiao et al., 2012; Liovat et al., 2012). Thus, the timing and magnitude of pro-

inflammatory and antiviral responses within tissues and the periphery may tip the balance of 

future disease progression or control (Figure 1c); similarly, in certain respects, NHP models 

can recapitulate critical features of human infection.

Alongside rapid viral spreading and inflammation following transmission, HIV integrates 

into the genome of CD4+ T cells that then transition into resting memory cells, creating 

a persistent viral reservoir (Davey et al., 1999). If ART is interrupted in HIV infected 

individuals, infection can resume from latent viruses hidden in these resting memory cells 

(Chun et al., 1997; Finzi et al., 1997; Wong et al., 1997). The viral reservoir is established 

within days after infection, as ART initiated at Fiebig Stage I still permits viral rebound after 

treatment interruption (Colby et al., 2018). Indeed, in a pathogenic SIV infection model, 

the viral reservoir is seeded before detectible plasma viremia; the reservoir is established 

in the GI tract no later than 3 days post infection (Cantero-Pérez et al., 2019; Whitney 

et al., 2014, 2018), and in splenic and mesenteric LNs as early as 4 days post infection, 

and is preferentially harbored in T follicular helper (Tfh) and T effector memory cells 

(Rabezanahary et al., 2020). Sequencing of viral RNA/DNA from the central nervous system 

of acutely infected individuals demonstrated distinct mutations from transmitter/founder 

viruses, providing further evidence for early establishment of viral sanctuaries, tissue sites 

that facilitate persistent viral replication despite successful ART treatment (Tovanabutra et 

al., 2019). NHP studies showing exclusion of CD8+ T cells from germinal centers (GCs) in 

lymph nodes (LNs) and secondary lymphoid organs implicate these structures as important 

viral reservoirs and potential viral sanctuaries that likely contributes to ongoing chronic 

inflammation (Fukazawa et al., 2015).

Innate immune cells respond during hyperacute infection and orchestrate 

the initial antiviral response

Innate immune cells are the first-line defense against previously unencountered foreign 

pathogens and subsequently instruct adaptive immunity (Altfeld and Gale Jr, 2015; Iwasaki 

and Medzhitov, 2015). Nevertheless, the roles of these cells throughout AHI are not 

completely understood. Here, we describe what is known about various innate immune cell 

subsets in hyperacute infection and highlight what remains to be elucidated.

Early work in NHP models pinpointed plasmacytoid dendritic cells (pDCs) as instigators of 

systemic antiviral Type-I IFN production following infection. After sensing viral RNA/DNA 

by TLR7 and TLR8, pDCs produce IFN-α and IFN-β in LNs and the GI tract (O’Brien et 

al., 2013). A treatment interruption study in ART-adherent individuals with undetectable 

viremia who began ART therapy at onset of plasma viremia demonstrated that pDCs 

upregulate migration and activation markers before detectible viremia but exhibit a transient 

decline (compared to prior to treatment) in their ability to produce IFN-α in vitro (Mitchell 
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et al., 2020). Multicellular analysis in the FRESH study also showed that pDCs do not 

express Type-I IFN genes or Interferon Regulatory Factor 7 (IRF7) prior to peak viremia 

but upregulate ISGs and signaling factor genes, supporting a hypothesis that pDC function 

in the periphery may be to recruit other immune cells rather than to produce IFN-α/β 
(Kazer et al., 2020). Nevertheless, multiple other peripheral immune subsets upregulate 

IRF7 during hyperacute infection, suggesting that while pDCs likely play an important role 

in directing IFN signaling in LNs, both direct viral sensing and IFN-feedback from other cell 

types contribute to the overall peripheral response. Novel, low-input genomic technologies 

(Corces et al., 2017; Skene and Henikoff, 2017; Stubbington et al., 2017) will provide new 

opportunities to study pDCs from tissue biopsies, fine need aspirates, and small amounts of 

blood to better understand their compartment specific roles (see Box 2 for a brief description 

of these technologies and their utility in studying HIV).

Studies of peripheral cytokines upregulated in AHI [e.g. CXCL9, CXCL10, IL-10, etc.; 

(Jiao et al., 2012; Katsikis et al., 2011; Stacey et al., 2009)] implicate monocytes 

and macrophages as key players in orchestrating cellular trafficking and antiviral factor 

production. Comparison of complete blood counts pre-infection and at peak viremia in 

the FRESH study revealed expansion of monocytes following onset of plasma viremia 

(Muema et al., 2020). Transcriptional analysis showed that monocytes upregulate genes 

encoding many known pathogen recognition receptors (PRRs) and HIV-restriction factors 

during hyperacute infection (e.g. RIG-I, APOBEC3 family, LGALS3BP, etc.) (Kazer et 

al., 2020). Monocytes were also shown to upregulate CCL2 and CXCL10 within the first 

4-6 days of Zika virus infection, implicating their importance in sensing and responding 

to viral pathogens more broadly (Michlmayr et al., 2020). Moreover, monocytes also 

persistently upregulate HLA-DR throughout hyperacute and late-acute infection (Chen et 

al., 2017; Liu et al., 2019), potentially contributing to prolonged antigenic stimulation of 

T cells and subsequent T cell exhaustion. Human beta defensin 1 was also demonstrated 

to be upregulated in circulating monocytes 3 months post infection (Corleis et al., 2017), 

suggesting that monocytes may encounter and recognize components of HIV directly in 

addition to responding to Type-I IFN and/or durable changes to myeloid progenitors may 

occur. Whether tissue resident macrophages play similar roles to peripheral monocytes as 

signal transducers in hyperacute infection, or potentially adopt more niche-specific roles 

(Guilliams et al., 2020; Lavin et al., 2015), needs to be further explored using NHP models 

and what limited tissue samples from humans are available.

Innate-like cytotoxic lymphocytes also expand and activate during hyperacute infection. 

Peripheral CD56dimCD16+ Natural Killer (NK) cells expand (Alter et al., 2005), activate 

(Naranbhai et al., 2013), and express cytolytic gene modules starting within 1-week post 

onset of plasma viremia (Kazer et al., 2020). Early proliferation of NK cells was also 

associated with subsequent viremia control in two FRESH study participants. Their role 

in tissues during AHI, however, is unclear. In a pathogenic vaginal SIV challenge model, 

NK cells were recruited to the female genital tract (FGT), albeit in small numbers, during 

the first week of infection, but lacked CD107a and Ki67 expression (Shang et al., 2014), 

indicating that they did not adhere to their traditional cytotoxic roles. Nevertheless, data in 

HIV models suggest that NK cells may be protective against infection. Treatment of healthy 

human NK cells with IL-15 superagonist in vitro before injection into humanized mice 
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challenged with HIV inhibited infection and could directly suppress viremia in the spleen 

(Seay et al., 2015). Moreover, the demonstration of adaptive-like NK cells in SIV or SHIV 

infection restricted to Gag- and Env- cross-presenting DCs hints that these cells may play 

a more important role in acute infection than currently known, and could conceivably be 

primed to respond during acute HIV infection (Reeves et al., 2015). Indeed, Wang et al. 

confirmed this finding in humans, showing the expansion of CD94+ memory NK cells by 

TCF7 in HIV infection (Wang et al., 2020). With improved NK cell manipulation in NHP 

models, it will be essential to further test the potential for NK cell mediated protection 

during acute infection, especially before cytotoxic T lymphocyte (CTL) responses fully 

mature. Moreover, the realization of both adaptive and innate training in NK cells (Adams et 

al., 2016) makes them a potential vaccine target alongside T cells.

Both mucosal-associated invariant T (MAIT) and γδT cells change in frequency during 

hyperacute infection and potentially play cytolytic and regulatory roles following onset of 

plasma viremia. While initially shown to be depleted in late-acute infection (Cosgrove et 

al., 2013), a recent study demonstrated that MAIT cells actually expand and upregulate 

genes associated with IFN-γ production and innate mediated cytotoxic immunity during 

hyperacute viremia (Lal et al., 2020). Conversely, γδT cells, which are known to target 

conserved regions of bacteria present at mucosal surfaces, skew in proportion away from 

the traditionally cytotoxic subset (Vδ2) towards the tissue resident effector memory subset 

(Vδ1 in the periphery during AHI (Bhatnagar et al., 2017; Juno and Eriksson, 2019). 

In their review on the role of γδT cells throughout acute and chronic HIV infection, 

Juno and Eriksson indicate that the expansion of the Vδ1 subset is likely in response to 

increased exposure to antigens, suggesting that these cells may be responding to microbial 

translocation resulting from breakdown of mucosal barriers like the gut epithelium. Whether 

changes in MAIT and γδT cells directly affect disease trajectory in AHI through antiviral or 

other means is unknown.

Helper innate lymphoid cells (ILCs) are a recently described class of innate immune 

cells in mucosal tissues that play similar roles to T cells but are not engaged through 

an adaptive immune receptor (i.e., T-cell receptor), instead reacting to tissue perturbations 

independent of antigen stimulation (Eberl et al., 2015). Studies in HIV/SIV infection (Shah 

et al., 2017) and other disease settings (Ardain et al., 2019; Ebbo et al., 2017; Stehle 

et al., 2018) have implicated ILC2s, ILC3s, and ILC progenitors (ILCPs) in mounting 

productive [and sometimes deleterious (Pantazi and Powell, 2019)] immune responses upon 

pathogenic or inflammatory assault. Thus far, studies of these cells in AHI has been limited. 

Circulating ILC2s and ILC3s are irreversibly depleted during hyperacute HIV infection; 

transcriptionally, these cells exhibited gene programming associated with apoptosis and cell 

death, suggesting that they undergo cell death rather than migrating into tissues (Kløverpris 

et al., 2016), though the impact of their loss on disease progression is unclear. Confirming 

the depletion of ILCs during AHI, Wang and colleagues also tested their depletion in 
vitro, demonstrating that γ-chain cytokines (e.g. IL-2, IL-4, IL-15), which are known 

to be elevated during HIV-infection, restricted Lin−CD127+ ILC numbers through JAK3 

signaling (Wang et al., 2020). This suggests that these cells are lost as bystanders in the 

pro-inflammatory and antiviral cytokine milieu at the onset of plasma viremia. While not 

yet measured in humans, SIV studies have shown depletion of ILC3s in the infant NHP gut 
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(Hueber et al., 2020) as well as depletion and phenotypic skewing of NKp44+ ILCs during 

acute infection in adult gut (Li et al., 2014), and suggested protective qualities of ILC3s in 

adenovirus-SIV vaccination and mother-to-child transmission (Hueber et al., 2020; Rahman 

et al., 2019). Group 1 and 3 ILCs present in the GI tract during SIV infection potentially 

contribute to pro-inflammatory responses by producing higher levels of IFN-γ, TNF-α, and 

IL-22 during the breakdown of the epithelium (Cogswell et al., 2020); however, when these 

pro-inflammatory ILCs arise is unknown. Further work demonstrating functional roles for 

helper ILC subsets in T-cell rich tissues is necessary to determine their roles in hyperacute 

HIV infection and the potential of targeting these cells in vaccines and treatments.

In summary, both the myeloid and lymphocyte innate immune compartments respond 

robustly following onset of plasma viremia. While monocytes and pDCs clearly contribute 

to cell traffic signaling and amplify the Type-I IFN response (Figure 2), the immediate 

antiviral functions of these cells as well as innate lymphocytes are still unclear. Moreover, 

changes in myeloid subsets during other acute viral infections are increasingly being shown 

to be associated with disease outcomes (Arts et al., 2018; Heung and Hohl, 2019; Kwissa 

et al., 2014; Michlmayr et al., 2020). Vaccine studies demonstrating protection conferred by 

NK cells and ILCs (Gorini et al., 2020; Rahman et al., 2019) suggest that these cells likely 

play more direct antiviral roles in controlling infection spread following onset of plasma 

viremia than is currently understood. Critically, how the timing and the magnitude of the 

initial innate responses to HIV infection impact the development of productive T and B cell 

responses has yet to be adequately explored.

Early adaptive immune responses are dysfunctional

HIV-specific T and B cell responses arise in the days-to-weeks following peak plasma 

viremia and exert pressure on HIV forcing sequential immune escape mutations (Fischer 

et al., 2010). Both HIV-specific responses and non-HIV-specific lymphocyte responses, 

however, have been shown to exhibit early dysfunction, skewing in phenotype, and lack 

of reactivity starting in hyperacute infection (Figure 1b). Here we discuss both the 

productive and dysfunctional adaptive immune responses starting in hyperacute infection 

and throughout late-acute infection, and their potential impact on disease trajectory.

As the primary targets of HIV, CD4+ T lymphocytes are the first subset to demonstrate 

significant phenotypic changes during hyperacute infection. Gut homing CD4+ T cells 

expressing α4β7 (Arthos et al., 2008) are depleted in the GI mucosa starting at onset of 

plasma viremia, but are not depleted in the periphery until after peak viral load is achieved 

(Sivro et al., 2018). Another AHI cohort corroborated the targeted depletion of these cells, 

specifically T helper (Th) 17 and Th1 subsets (Lu et al., 2016b). Globally, peripheral CD4+ 

T cells were shown to upregulate genes associated with differentiation and downstream 

of pro-inflammatory cytokines IL-1β and TNF-α starting after peak viremia (Kazer et al., 

2020). The phenotypes and roles of HIV-specific CD4+ T cells during AHI, however, are 

more diverse.

Despite the targeted loss of Th17 cells, HIV-specific CD4+ T cells produce IL-17, IFN-γ, 

and IL-2 during AHI (Yue et al., 2008) and in response to Gag p24 antigen ex vivo 
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(Chevalier et al., 2016), indicating that at least a portion of Th cells are functional. However, 

IL-17 is not classically antiviral (Iwasaki and Medzhitov, 2015) and its production by 

HIV-specific CD4+ T cells may indicate skewing away from, or depletion of, the antiviral 

Th1 phenotype. The extent of cytokine production by HIV-specific CD4+ T cells was shown 

to be positively associated with the magnitude of peak viral load (Chevalier et al., 2016), 

though whether these cytokines effectively inhibit viral replication is unclear. In addition 

to higher frequencies of Gag-specific T cell responses in the late-acute widow (Schieffer 

et al., 2014), the frequency of cytolytic HIV-specific CD4+ T cells producing granzyme A 

during the hyperacute window also negatively correlated with viral load set point (Soghoian 

et al., 2012). These findings suggest that those CD4+ T cells that do exhibit Th1 activity 

may respond through diverse antiviral mechanisms variably over time. Notably, the extent 

of activation marker expression by memory CD4+ T cells in the periphery during late-acute 

infection correlated with higher CD4+ T cell counts 2 years post infection (Maenetje et 

al., 2010; Xia et al., 2018), indicating the importance of T cell help during AHI. However, 

others have shown that this association may be subset specific; Pušnik and colleagues 

demonstrated that frequencies of stem cell-like memory (CCR7+CD27+CD95+CD45RA+) 

CD4+ T cells, potentially induced by Fas upregulation, was associated with increased HIV 

replication and rapid disease progression (Pušnik et al., 2019). Re-polarization of Th17-like 

CD4+ T cells or redirection of pro-inflammatory signals during AHI may help prevent 

further T cell loss, misdirected T cell help, and dysfunction and promote proliferation of 

naïve T cells (Figure 1c).

T-B cell interactions are also inhibited during AHI, but not until late-acute infection. 

Investigation of Tfh cells, known to expand in chronic infection (Lindqvist et al., 2012; 

Roider et al., 2018), at 2 months revealed a shift in helper phenotype towards Tfh1 that 

negatively correlated with chronic viral set point and was predictive of p24-specific plasma 

IgG titers at 1 year after infection (Baiyegunhi et al., 2018). In vitro cocultures using 

primary cells from the RV254 study, however, demonstrated that the quality of Tfh-B cell 

reactions begin to deteriorate in late-acute infection, with poorer survival of resting memory 

B cells (CD21+CD27+) isolated from Fiebig Stage III compared to Stages I-II (i.e., earlier 

in infection trajectory, Figure 1a) (Muir et al., 2016). Moreover, these B cells showed 

skewing of cytokine production, with reduced IL-10 production and higher levels of CCL5 

(RANTES) and TNF-α, highlighting B cells as a potential source of pro-inflammatory 

cytokines during both hyperacute and late-acute infection. Production of IL-10 by B cells 

during AHI (Liu et al., 2014) may have deleterious effects on early CTL responses, which 

are inhibited by IL-10 (Brockman et al., 2009). Secreted factors by other cells, especially 

macrophages and DCs, likely also influence T-B cell interactions and must be investigated 

further.

Relatedly, B-cell activating factor (BAFF), which has been shown to be produced by 

monocytes and pDCs during late-acute HIV infection (Borhis et al., 2016), has been posited 

to dysregulate Tfh-B cell responses in GCs (Borhis et al., 2017). Indeed, an anergic subset 

of CD21−CD27+IgD+ B cells (termed marginal zone B cells) was found to emerge in 

AHI and expand during chronic infection (Liechti et al., 2019). Treatment of SIV infected 

macaques throughout hyperacute infection with a BAFF antagonist, however, inhibited the 

proliferation of GC B cells, and delayed the upregulation of IFN-α and CXCL10 (Borhis 
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et al., 2020), suggesting that levels of BAFF may need to be finely tuned to promote 

productive antibody responses. More generally, the extent of cytokine/chemokine production 

and signaling, rather than its presence or absence, likely tips the balance between disease 

and control (Figure 1c).

Peripheral B cells are activated starting in hyperacute infection and persist throughout 

AHI. Longitudinal sampling of acutely infected individuals in the FRESH study revealed 

a relative depletion of resting memory B cells from the blood during hyperacute infection 

alongside gradual increases in tissue-like and activated memory B cells and plasmablasts 

in the late-acute stage [also confirmed in other cohorts (Liechti et al., 2019; Muir et al., 

2016)], consistent with increased levels of BAFF and CXCL13 in the plasma (Mabuka et al., 

2017). Interestingly, levels of CXCL13 at several timepoints during AHI were predictive of 

the development of cross-neutralizing antibodies at 1 year[ (Mabuka et al., 2017), though the 

direct relationship or mechanism is unknown [NB the development of broadly neutralizing 

antibodies is complex and outside the scope of this review; see (Dashti et al., 2019; 

Sadanand et al., 2016; Wang and Zhang, 2020) for additional details]. The majority of 

antibodies targeting critical HIV proteins Gag, Pol, and Env produced throughout AHI 

are non-neutralizing (Kardava et al., 2014; Tomaras et al., 2008). Knox and colleagues, 

however, showed that T-bet+ B cells specifically contribute to effective HIV Env (i.e. binding 

protein) memory response (Knox et al., 2017), suggesting that targeted transcription factor 

induction may direct productive B cells. B cell mediated cytokine signaling, especially in the 

hyperacute infection window, must be explored further to ascertain their relative contribution 

to blocking successful T cell responses.

HIV-specific CD8+ T cells also activate following peak plasma viremia and are associated 

with enhanced control of viremia. Both the FRESH and RV254 studies have shown that 

HIV-specific CD8+ T cells expand in the periphery and upregulate cytotoxic effector 

molecules perforin and granzyme B within the first month of infection (Demers et al., 

2016; Ndhlovu et al., 2015; Takata et al., 2017). The extent of this response has also been 

shown to associate with slower disease progression (Streeck et al., 2014), supporting the 

theory of protective HLA alleles against HIV (Figure 1c) (Carlson et al., 2015; Goulder 

and Walker, 2012). The magnitude of the activated (HLA-DR+CD38+) CD8+ cytotoxic 

lymphocyte (CTL) response also negatively correlated with viral load setpoint (Ndhlovu et 

al., 2015). Interestingly, activated HIV-specific CD8+ T cells were found to be present in 

cerebral spinal fluid (CSF) during AHI (Kessing et al., 2017). The ability of these cells to 

traffic to sites of viral persistence is likely a key factor; relatedly, SIV-specific CTLs are 

restricted from entry into germinal centers (GCs) in LN in both acute and chronic infection 

(Fukazawa et al., 2015; Li et al., 2019), indicating tissue/microenvironment specific control 

of their migration. The exclusion of CTLs from LN starting early in infection [though 

unclear in humans; (Petrovas et al., 2017)] may enhance early seeding of the reservoir in 

these tissues and must be further explored in HIV.

The first HIV-specific CTL responses appear to have a detectable antiviral effect, but this 

is not durable in most persons. CTLs sampled from five participants during late-acute 

infection and cocultured with primary CD4+ T cells infected with various transmitter/

founder strains inhibited viral replication in vitro (Freel et al., 2012). However, when 
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cocultured with target cells infected with HIV containing known early escape mutations, 

these cells relatively underperformed, suggesting that any given HIV-specific response may 

be limited in its usefulness over time. Indeed, recent work suggests that while CTLs can 

kill infected cells and induce escape mutations in HIV during late-acute infection, these 

cells lack cross-reactivity, are dysfunctional, and become exhausted and/or do not develop 

into long-term effector memory cells (Du et al., 2016; Ndhlovu et al., 2015; Takata et al., 

2017). HIV-specific cells expressing CD38 but reduced levels of CD8 and CD27 within the 

hyperacute window were shown to have reduced efficacy in inhibiting HIV replication and 

made up to 40% of all HIV-specific cells (Eller et al., 2016). The expansion of these cells 

was associated with CD4+ T cell depletion, suggesting that a loss of CD4+ T cell help may 

lead to a dysfunctional CTL phenotype. Stimulating HLA-DR+CD38+ CTLs collected at 

various Fiebig Stages (I-III) ex vivo through the T cell receptor (TCR) revealed reduced 

IFN-γ, TNF-α, and IL-2 production from those sampled at Fiebig Stage III, indicating 

dysfunction begins within one-month post detection (Takata et al., 2017).

Impaired function of CTLs with constant antigen exposure, termed T-cell exhaustion, has 

been widely explored in chronic viral infections and cancer (McLane et al., 2019). Studies 

in acute SIV infection suggest that SIV-specific CTLs may be primed for exhaustion 

due to persistent high expression of PD-1 (Petrovas et al., 2007). In addition to reduced 

T cell help, several putative mechanisms of CTL dysfunction during AHI have been 

proposed including: (1) dysregulation of T-bet expression leading to lower levels of perforin 

(Demers et al., 2016), (2) apoptosis after activation without transition to effector memory 

(Ndhlovu et al., 2015), and (3) altered metabolism (Takata et al., 2017; Trautmann et al., 

2012). These various dysfunctional states likely represent concerted CTL programming 

induced by changes in T cell help in addition to other immune signaling events. Whether 

dysfunction arises first in HIV-specific T cells, hindering helper and antibody responses 

through uncontrolled viremia, or improper help and cytokine production induce dysfunction 

in HIV-specific T cells, is unclear. Moreover, exacerbated viral replication in the absence 

of productive HIV-specific CD8+ T cell responses could further fuel functional changes to 

naïve T and B cells. Understanding precisely when, where, and how CTLs begin to fail is 

critical to develop novel interventions to prevent dysfunction during AHI (Figure 1b,c).

Collectively, the depletion and subsequent phenotype skewing of CD4+ T cells during 

hyperacute infection likely imparts lasting dysfunction on other adaptive lymphocytes, 

leading to skewed cytokine production in B cells and a pro-apoptotic phenotype in HIV-

specific CD8+ T cells. Improper neutralization or killing of virally infected cells throughout 

AHI could lead to persistent antigen presentation, potentially by monocytes and DCs (Chen 

et al., 2017; Kazer et al., 2020; Liu et al., 2019), and thus contribute to early T cell 

exhaustion. Targeting differentiation and class-switch programming in CD4+ T cells and B 

cells, respectively, could enhance helper and antibody responses during AHI and promote 

effective CTL killing and memory generation.

Understanding multicellular immune responses throughout AHI

While recent cell-type-centric studies of various lymphocyte and myeloid cells have begun 

to highlight specific cell states, circulating factors, and PRRs as critical “lynch pins” to 
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target during AHI, their relationships with one another are only beginning to be understood. 

We propose how the measured responses in various cell types may form both productive 

and dysfunctional immunity during untreated AHI, as depicted in Figure 2. Following 

inflammatory responses at mucosal tissue sites, peripheral myeloid cells expand and 

orchestrate a multicellular antiviral Type-I IFN signal to induce cell trafficking. These 

cells also prime B-T cell interactions through BAFF and CXCL13 production, likely in 

germinal centers. B cells produce pro-inflammatory cytokines, which may skew CD4+ T cell 

differentiation and helper function. Persistent B cell activation and uncontrolled viremia 

potentially inhibit neutralizing antibody production. Deficient T cell help also hinders 

effective and durable CD8+ T cell responses in the periphery, which in turn may allow 

for persistent antigenic stimulation and subsequent lymphocyte exhaustion throughout the 

body.

It is critical that future work incorporate longitudinal multicellular studies across tissue 

compartments to discern who, when, and where the balance is tipped between control 

and progression of viremia. In hyperacute infection, NK and MAIT cells exhibit direct 

antiviral activity through cytolytic killing whereas monocytes and DCs serve to recruit 

antiviral and inflammatory agents. Whether the loss of helper ILCs during the hyperacute 

window impacts disease trajectory must be further explored. Throughout the late-acute 

window, CD8+ T cells, CD4+ T cells, and B cells directly combat viremia through killing, 

IFN-γ secretion, and antibody production, respectively. IL-17 producing CD4+ T cells 

and activated monocytes, however, may hinder antiviral responses in this timeframe; these 

skewed responses may stem from pro-inflammatory signals produced in LNs and the GI 

tract. To understand the persistent role for various innate immune cell subsets in helping or 

impeding adaptive responses and/or directly fighting viremia, more granular characterization 

of these cells across tissue compartments will need to be performed, likely in NHP models 

given current standard of care (i.e., treatment at detection) and a dearth of samples. NHP 

models also provide opportunities to functionally test both already established cell-cell 

relationships, and their antiviral contributions, and those yet to be discovered.

Early initiation of ART drastically mitigates systemic and cellular immune 

responses during AHI in the periphery

In addition to providing insight into some of the earliest responses during untreated AHI, 

recent studies have provided invaluable opportunities to understand the impact of early 

treatment (at HIV detection, Fiebig Stage I-III) on both AHI trajectory and long-term 

disease progression (Ananworanich et al., 2017; Dong et al., 2018). Alongside results from 

NHP early treatment models and chronic infection studies, it is becoming clear that the 

timing of ART makes a significant difference in the dynamics and quality of antiviral 

immunity and disease trajectory in humans (Figure 3) (Crowell et al., 2016; Hellmuth 

et al., 2019; Ndhlovu et al., 2019; Schuetz et al., 2014). Critically, early treatment can 

be utilized as a control-of-sorts to compare against progressive infection, to identify the 

timing and quality of viral spread, and the impact of dysfunctional and/or overreactive 

immune responses during AHI. Moreover, it can be used to examine how different tissues 

dynamically adapt (or maladapt) to the loss of direct viral targets, potentially elevating risk 
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for conditions associated with chronic inflammation (Deeks et al., 2013; Somsouk et al., 

2015), as well as the ability of early treatment to reestablish homeostatic function across 

tissues.

Profiling of the viral reservoir in early treated individuals (ETIs; at onset of plasma viremia) 

has shown that immediate ART administration restricts the detected copies of HIV DNA 

(per million cells) in PBMCs, gut tissue, and LNs (Ananworanich et al., 2012; Crowell et 

al., 2016; Leyre et al., 2020). Long term, ETIs demonstrate lower levels of cell-associated 

HIV DNA 10 years after infection and faster decay of HIV infected cells in the periphery 

when compared to individuals treated during chronic infection (Buzon et al., 2014). An 

in-depth longitudinal study of 2 ETIs sampling multiple tissue sites starting from Fiebig 

Stage I showed that even near complete depletion of detectible HIV RNA or DNA from 

LN, bone marrow, and CSF through 2 years after infection in one individual (but not the 

other) still resulted in viral rebound after ceasing ART with HIV sequences matching those 

measured during AHI (Henrich et al., 2017). Given the direct association of granzyme B 

producing HIV-specific CTLs and reduced viral reservoir in early infection (Yue et al., 

2017), treatments that facilitate CTL trafficking to lymphoid GCs in conjunction with 

ART may be required for HIV eradication. While early ART can mitigate the spread and 

magnitude of the viral reservoir, it cannot prevent seeding in humans. Thus, with current 

prophylactics, only pre-exposure prophylaxis, or post-exposure prophylaxis initiated within 

72 hours post-infection (Barouch and Deeks, 2014), appear able to inhibit the establishment 

of the viral reservoir.

Given that ETIs exhibit decreased seroreactivity, and occasionally lack HIV-specific antigen 

and/or antibody in the periphery (Dong et al., 2018; Manak et al., 2019), the frequencies 

of other circulating factors like cytokines and chemokines may also be reduced or altered 

during AHI. Indeed, cytokine profiling in the FRESH study showed that pro-inflammatory 

and Type-I IFN cytokines in plasma stay closer to baseline levels in ETIs treated in Fiebig 

Stages I-II throughout the first month post-detection (Muema et al., 2020). ETIs in the 

FRESH and RV254/304 studies (Hellmuth et al., 2019; Sereti et al., 2017), however, show 

increased levels of CXCL13 and soluble CD14 ~36 weeks after infection and C-reactive 

protein, TNF, soluble IL-6R, soluble CD14, CXCL10, and CCL2 ~96 weeks after infection, 

compared to uninfected individuals. These persistent elevated cytokine levels suggest that 

even early ART administration cannot mitigate systemic changes to circulating immune 

factors. Moreover, increased levels of inflammatory cytokines TNF and IL-6R may reflect 

ongoing viral replication or tissue damage throughout the body despite mitigating systemic 

viral spread. Interestingly, Hellmuth and colleagues demonstrated that in the CSF, however, 

cytokine levels return to uninfected levels by 96 weeks (Hellmuth et al., 2019), indicating 

that timing of treatment also affects compartmentalization of the immune response.

Peripherally, early ART administration mitigates the emergence of dysfunctional adaptive 

immune cells and prevents the loss of innate lymphoid cells. ART initiation before 6 

months after infection reduced peripheral CD8+ T cell counts closer to healthy levels 2 

years post-infection compared to ART naïve individuals or those treated in chronic infection 

(Cao et al., 2016). Multiple studies demonstrated that HIV-specific CTLs in AHI from ETIs 

downregulate cytotoxic and activation markers and genes compared to untreated infection 
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(Ndhlovu et al., 2019; Takata et al., 2017). Moreover, early treatment prevents apoptosis 

of these cells, and shifts their memory differentiation trajectory toward effector and central 

memory, resulting in longer lasting and more functional (IFN-γ and proliferation) CTLs. 

This more “normal” function may be imparted by HIV-specific CD4+ T helper cells, 

which demonstrate better proliferation capacity and IFN-γ production in ETIs, though the 

directionality of this relationship is unknown.

B cell responses are also markedly altered with early ART. B cell activation is mitigated, 

and resting memory cells are maintained near baseline levels (Mabuka et al., 2017; Moir 

et al., 2010; Muir et al., 2016), potentially due to reduced cytokine levels. Moreover, Moir 

et al. showed that the number of antibody secreting cells following influenza immunization 

are increased in ETIs compared to individuals who started ART during chronic infection, 

suggesting sustained improvement in B cell and GC function. Finally, ETIs maintain normal 

levels of ILCs and lymphocyte hematopoietic progenitor cells in the periphery, whereas 

these cells are depleted without treatment (Bordoni et al., 2018; Kløverpris et al., 2016). 

The contributions of the absence of virus/ongoing replication, reduced peripheral cytokine 

levels, or something yet to be described to the overall reconstitution of adaptive immune 

responses in ETIs is unclear. Understanding differences in innate immune subsets and 

antigen presenting cells, and their frequencies and durations of function, is critical to further 

contextualize these differences in adaptive immune function and antiviral activity.

Gut and lymphoid tissues are still impacted even with early ART initiation

ART administration studies in NHP models within hours to days following infection have 

established the near un-avoidable depletion of CD4+ T cells in the GI tract during acute SIV 

infection. While early ART does not prevent CD4+ T cell loss, central memory CD4+ T 

cells have been shown to repopulate to near pre-infection levels by 6 months post infection 

in the GI tract (George et al., 2005; Verhoeven et al., 2008), similar to natural SIV hosts 

that experience non-pathogenic infection. Limited sampling in early treated humans has 

also demonstrated recovery of CD4+ T cell numbers in the GI tract in this timeframe 

(Allers et al., 2016; Ananworanich et al., 2012), though the full extent of clonal diversity 

and polyfunctionality of these cells has not yet been determined. Th17 cells, however, 

are mostly preserved if treatment is started during Fiebig Stages I-II (Kök et al., 2015; 

Schuetz et al., 2014). Moreover, their cytokine production polyfunctionality remains intact 

(IL-17 and IL-22 subsets) only when treated this early. Deleage et al. also showed that 

neutrophil infiltration in the GI tract is reduced in ETIs compared to untreated individuals 24 

weeks after ART initiation (Deleage et al., 2016). Immunohistochemistry revealed reduced 

proliferating Ki67+ cells when treated during Fiebig Stages I-II, but levels of TNF-α+ cells 

were similar between ETIs and untreated individuals. On the cellular level, frequencies 

of resting memory B cells and Tfh were preserved and expanded, respectively, in the gut 

compared to untreated individuals, suggesting improved GC function in secondary and 

tertiary lymphoid tissue sites in the GI tract (Planchais et al., 2018). Indeed, HIV Env 

gp140-reactive memory cells were shown to expand in ETIs. It is unclear, however, how 

maintaining Th17, Tfh, and resting memory B cells in the gut directly contributes to antiviral 

activity, impacts CTL function, or affects long-term disease outcome and to what degree 

early treatment can restore pre-treatment functionality and clonal diversity.
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Progressive SIV models show establishment of viral reservoir and CD4+ T cell death, likely 

by inflammation-mediated pyroptosis (Doitsh et al., 2014), in lymphoid tissues as early as 

4-6 days post infection (Lu et al., 2016a; Rabezanahary et al., 2020). ART initiation 5 weeks 

post SIV infection failed to mitigate Tfh and GC B cell proliferation and activation, likely 

facilitating ongoing viral infection during treatment (Hong et al., 2017). However, when 

ART was started at 4 days post-infection, mesenteric LNs contained lower frequencies of 

HLA-DR+ and CD39+ CD8+ T cells, but Tregs were still depleted relative to Th17 cells 

(Yero et al., 2019). This is in contrast to the blood, where frequencies of Tregs were restored 

and CTLA-4+PD-1− memory CD4+ T cells [known to contribute to viral persistence in SIV 

(McGary et al., 2017)] were diminished compared to untreated acute infection. Given the 

potential role of the LN in harboring ongoing HIV infection during ART (McManus et al., 

2019), sampling this tissue during AHI could provide critical insight for developing novel 

treatments to eliminate HIV in both acute and chronic infection.

We summarize the known effects of early ART administration in acute HIV and SIV 

infection in Figure 3. It is critical to further distinguish molecular and cellular differences 

in the earliest stages of AHI, before complete suppression of viremia, between ETIs and 

untreated individuals. These earliest time points provide the best opportunity to discern how 

mitigating viremia, and potentially inflammation, affect the longevity and quality of both 

adaptive and innate immune responses, as well as tissue functionality. Moreover, linking 

these events to long term disease progression and comorbidities (e.g., inflammation) could 

inform clinical or cellular metrics and indicate alternative, or adjunctive, treatments to 

daily ART for life [e.g., therapeutic vaccines (Stephenson, 2018) or monoclonal broadly 

neutralizing antibody treatments (Ananworanich et al., 2015; Dashti et al., 2019)].

Discussion & Future Directions

Studies of acute HIV and SIV infection have been instrumental to determine how the quality 

and quantity of the immune response affects long term outcome and persistent disease. 

Moreover, these findings have highlighted how both adaptive and innate immune subsets 

develop dysfunctional phenotypes. However, the extent to which this dysfunction imparts 

subsequent disadvantages to other cell types, modulates overall tissue function, impacts 

antiviral activity, and the durability thereof without ongoing viral infection, are unknown. 

Further perturbations of putative cell-cell signaling events in NHP models and in vitro 
coculture settings will help determine which cell types and signals should be targeted 

by vaccines and/or treatments. Moreover, as multiple measurements accumulate from the 

same individuals in prospective and early infection studies, systems biology approaches 

using machine learning-based classifiers [like those successfully applied in systems serology 

vaccine settings (Chung and Alter, 2017)] may begin to causally link cellular and molecular 

features of the AHI response to disease outcome. More broadly, the extensive, valuable 

literature of AHI provides a guide and foil for investigating host responses to other acute 

viral infections, and demonstrates the need for longitudinal, early sampling to ascertain the 

phenotypes and dynamics of immune responses to target with treatments or therapeutics.

For HIV specifically, NHP models have been incredibly productive in depicting the roles 

of the antiviral and pro-inflammatory responses in the periphery, CD4+ T cell privileged 
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tissues, and at sites of transmission (Box 1). As more data are generated from studies 

of AHI and the effects of early ART administration, re-purposing of these models to test 

human-infection-informed hypotheses may yield fruitful results to guide future vaccine and 

therapeutic efforts. Critically, innate immune subsets—especially NK cells, helper ILCs, 

monocytes, and macrophages—and their roles during acute infection are poorly described in 

SIV models, and must be further functionally characterized and subsequently perturbed 

to contextualize recent findings from hyperacute infection studies (Kazer et al., 2020; 

Kløverpris et al., 2016; Muema et al., 2020; Wang et al., 2020). Given the literature 

suggesting that HIV controllers have enhanced subsets of myeloid cells (Kazer et al., 2020; 

Martin-Gayo et al., 2015, 2018; Sáez-Cirión et al., 2011; Walker et al., 2015), changes 

to their phenotype during, or before, AHI may impart and/or reflect protective function 

in chronic infection. Indeed, a body of literature describing innate immune cell training 

in NK cells and macrophages in many infection and vaccine settings (Arts et al., 2018; 

Kaufmann et al., 2018; Netea et al., 2020) suggests that these cells may be potential 

targets alongside antibody- and T-cell-based vaccine approaches. With the advent of high-

throughput clonotype sequencing, NHP models are also being used to study how T and 

B cell clones are shared across tissues and individuals and relate to disease progression 

(Price et al., 2009; Starke et al., 2020). While applied to chronic infection in humans (Costa 

et al., 2015; Meyer-Olson et al., 2010), this approach could further reveal the interplay 

of host-pathogen dynamics and link immune repertoire evolution to disease progression in 

future NHP and human acute infection studies.

With more advanced and sensitive tools to measure cellular state and phenotype from 

low-input human samples (Box 2) and multi-omic approaches [reviewed in (Chappell et al., 

2018)], the community is better equipped than ever to thoroughly map immune responses 

throughout the earliest stages of acute HIV infection. Moreover, by applying them to both 

tissue samples (biopsies or fine-needle aspirates) and matching peripheral blood samples, 

we will begin to understand viral and immune dynamics in peripheral blood compared to 

different tissues. Critically, further investigation across tissues is needed to understand how 

the earliest host-pathogen interactions in CD4+ T cell rich tissues impact long-term disease 

outcome. Together, new genomic technologies, paired with more traditional approaches, 

have demonstrated their capacity to inform actionable hypotheses (Shalek and Benson, 

2017; Shema et al., 2019), and will nominate a new set of vaccine and therapeutic strategies 

for not only HIV infection, but also other viral, bacterial and fungal infections moving 

forward.
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Box 1:

Inflammation and Type-I IFN signaling in progressive and non-progressive 
SIV infection models

Early events in the GI tract may be particularly revealing regarding the extent of local 

and peripheral cytokine response, since this is the site of the majority of lymphoid 

tissue in the body (Brenchley et al., 2006; Redd et al., 2009). Acute infection leads 

to dramatic depletion of both activated and resting CD4+ T cells in the gut, already 

evident within 4 days of experimental NHP infection (Li et al., 2005; Mattapallil 

et al., 2005). This massive cell death during hyperacute infection manifests chronic 

inflammation and permanent damage to the gut epithelial barrier, promoting microbial 

translocation and IL-17 production in the tissues (Klase et al., 2015; Klatt et al., 2010). 

SIV infection of African green monkeys (non-progressive infection), compared to Rhesus 

Macaques (progressive infection) revealed induction of inflammation-induced genes 

TNF-α and IL10 in peripheral blood mononuclear cells (PBMCs) and LN lymphocytes 

at 5 and 10 days post infection only in non-progressive infection, suggesting that early 

inflammation may reduce antiviral signaling and lead to further CD4+ T cell depletion. 

Indeed, characterization of the GI tract during hyperacute SIV infection in African green 

monkeys demonstrated reduced apoptosis of both enterocytes and lymphocytes despite 

transient increases in pro-inflammatory cytokines and chemokines in the plasma and 

increased T-cell activation in the blood (Raehtz et al., 2020). RNA-seq analysis confirmed 

limited transient antiviral and T-cell activation programming during the first two weeks of 

infection, but no genes associated with microbial translocation, which was corroborated 

by lipopolysaccharide immunohistochemistry. Thus, one path to reduce overall disease 

burden could be protection of the gut epithelium to resist infection and inflammatory 

signaling, potentially by modulating resident innate lymphoid cells (Shah et al., 2017), 

macrophages (Swan et al., 2017), or the epithelial cells themselves (Ordovas-Montanes et 

al., 2020).

Persistent Type-I IFN signaling in pathogenic SIV and HIV infection can lead to broad 

dysfunction in both innate and adaptive immunity during chronic infection (Bosinger 

and Utay, 2015; Cheng et al.; Soper et al., 2017; Wang et al., 2017; Zhen et al., 2017). 

Understanding how levels and timing of the initial inflammation at the site of infection, 

GI tract, and in the periphery impacts when and how antiviral Type-I IFN responses 

form and ultimately transition from productive to dysfunctional (Wang et al., 2017) is 

crucial to mitigate chronic inflammation and deter sustained Type-I IFN responses. Given 

the roles of tissue resident macrophages (Grainger et al., 2017), DCs (Sun et al., 2020), 

ILCs (Branzk et al., 2018), and epithelial cells themselves (Okumura and Takeda, 2017) 

in maintaining tissue homeostasis and propagating both inflammatory and Type-I IFN 

signaling in the GI tract, further work is needed to understand how their depletion or 

perturbation in AHI impacts outcome.
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Box 2:

Novel “-omic” technologies and their utility in studying acute HIV infection.

With the advent of next generation sequencing and steady improvements in low-input 

and single-cell profiling technologies, high-content measurements of gene expression, 

protein expression, open chromatin, and other cellular features are becoming increasingly 

accessible and affording substantial insights into disease biology in heterogeneous tissue 

environments (Hartmann and Bendall, 2020; Shema et al., 2019; Stubbington et al., 

2017). Critically, many of these assays can be used to study rare cell types from low-

input samples like tissue biopsies, fine needle aspirates, and small amounts of blood. 

Below, we briefly describe some of these new technologies, their use thus far in HIV 

infection, and some of what we stand to learn through future applications. For a more 

extensive discussion of single-cell technologies that can be applied to study tissues in 

human disease, please see Slyper et al and Rozenblatt-Rosen et al. (Rozenblatt-Rosen et 

al., 2020; Slyper et al., 2020).

Single-cell RNA-sequencing (scRNA-seq):

High-throughput scRNA-seq methods, using droplets (Macosko et al., 2015; Zheng et 

al., 2017), picowells (Gierahn et al., 2017; Han et al., 2018), or split-pool approaches 

(Cao et al., 2017; Rosenberg et al., 2018), enable simultaneous whole transcriptome 

measurements of thousands of single cells. We have applied scRNA-seq to blood 

samples in AHI to discern multicellular responses and identify subsets of innate immune 

cells associated with viral control (Kazer et al., 2020). In chronic infection settings, 

heterogeneity in T cell phenotype has also been explored (Liu et al., 2020; Sannier et al., 

2020). Use in LN and gut tissues may help discern response features associated with CTL 

exclusion from GCs or polyfunctionality and clonality (Azizi et al., 2018; Tu et al., 2019) 

of CD4+ T cells, as well as tissue-level adaptations to the temporary or permanent loss of 

direct viral targets or virally-/antiretrovirally-driven inflammation.

Single-cell Mass Cytometry (CYToF):

Multiplexed measurement of protein expression from single cells using mass cytometry 

(Atkuri et al., 2015) has expanded the range of traditional single-cell measurements 

like flow cytometry to over 50 simultaneous protein and RNA markers. Applied to 

measure NK cell diversity (Strauss-Albee et al., 2015) and CD4+ T cell infection 

susceptibility (Manganaro et al., 2018), its potential to understand changes in cellular 

protein expression during AHI is just emerging. Combined with imaging (Baharlou et 

al., 2019), it will be possible, for example, to discern cell-cell interactions in tissues with 

on-going HIV infection and validate the roles of DCs in orchestrating pro-inflammatory 

and antiviral signaling.

Assay for transposase-accessible chromatin by sequencing (ATAC-seq):

Technological advances allowing for low-input (Corces et al., 2017) and single-

cell (Buenrostro et al., 2015; Cusanovich et al., 2015) measurements of chromatin 

accessibility have begun to link phenotype and gene expression to epigenetic state 

across immune cells in disease settings (see review by (Shema et al., 2019)). Thus far, 
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ATAC-seq has been used to understand changes to chromatin accessibility in central 

memory and effector memory CD4+ T cells (Einkauf et al., 2019) and DCs (Johnson et 

al., 2018) from HIV-infected individuals. Further application to both innate and adaptive 

immune subsets before and throughout AHI, in the presence and absence of prophylactic 

interventions, will help determine how innate immune cells may acquire protective 

responses [e.g. trained immunity or memory; (Netea et al., 2020; Wang et al., 2020)] 

and ascertain when and where T cells begin to acquire features of exhaustion, among 

other insights.

Cleavage Under Targets (CUT) for chromatin profiling:

CUT&RUN for low-input samples (Skene and Henikoff, 2017) and now CUT&Tag for 

single-cell samples (Kaya-Okur et al., 2019) enable efficient, detailed profiling of diverse 

chromatin components like histone modifications and transcription factor binding sites. 

CUT&RUN demonstrated the role of TCF7 in generating memory NK cells during HIV 

infection (Wang et al., 2020), but its application to other cell types and specifically during 

AHI has yet to be accomplished. In addition to highlighting epigenetic marks associated 

with activation or silencing, this approach could help identify and validate transcription 

factors contributing to cellular dysfunction and nominate putative targets for restricting 

cytokine signaling.
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Figure 1. Acute HIV infection dynamics.
(A) Representative dynamics of plasma viral load and peripheral CD4+ T cell counts during 

acute HIV infection. Individuals that develop control of HIV without ART can maintain 

low chronic viral setpoint and reestablish pre-infection CD4+ T cell levels (Elite or Viremic 

Controllers). Individuals and animals can also maintain high chronic viral setpoint but 

also recover CD4+ T cell counts (Long-Term Non-Progressors [LTNP], and natural hosts, 

respectively). (B) Representative immune responses and their timing along the course of 

acute HIV infection. Without structured cohorts to reliably sample before Fiebig Stage I, 

the earliest responses are inferred from SIV/SHIV models and limited human studies. (C) 

Cellular and molecular factors in AHI that contribute to disease progression or control. 

The progression-control spectrum has been linked to the magnitude, timing, and function 

of several distinct immune responses. Box colors represent different cell types or cytokine 

responses.
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Figure 2. Known and inferred immune cell signaling during untreated acute HIV infection.
Understanding the interplay between distinct immune subsets in acute HIV infection is 

essential to disentangle the effects of key cytokines (e.g. Type I and II interferons, IL-10, 

IL-17, etc.) on each cell type. Moreover, realizing the compartment specific responses and 

their effects will allow for more targeted treatment. Experimentally measured interactions 

are depicted with solid arrows. Interactions for which only the signaler or receiver has been 

measured are shown by arrows with hybrid solid and dashed lines, which are inferred from 

literature on chronic infection or other models. The supporting assay for each interaction 

is listed with each cytokine or factor. GZMB = granzyme B; PRF1 = perforin; WB = 

Western Blot; RNA = RNA-sequencing; FC = Flow Cytometry; ELISA = Enzyme-linked 

Immunosorbent Assay; Lum = Luminex Multiplex Assay; CoC = in vitro coculture.
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Figure 3. Effects of early ART administration during acute HIV infection on peripheral and 
tissue immune responses.
We are just beginning to understand the effects of early ART on AHI with improved 

NHP models and cohorts treating at HIV-detection throughout Fiebig Stages I-III. Overall, 

early ART mitigates peripheral cytokine production and adaptive immune cell dysfunction. 

Samples from early ART treated individuals in prospective cohorts provide a unique 

opportunity to explore similarities and differences in cellular response and phenotype across 

tissue compartments. Whether we can use our understanding of these improved antiviral 

responses to inform long-term cure strategies or vaccines is still unknown. Abs = antibodies; 

HPC = hematopoietic precursor cell.
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