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Abstract

Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng) 

are recently described biomarkers for pre- and postsynaptic integrity known to be elevated in 

symptomatic Alzheimer disease (AD). Their relationship with Apolipoprotein E (APOE) ε4 
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carrier status, the major genetic risk factor for AD, remains unclear. In this study, CSF SNAP-25 

and Ng were compared in cognitively normal APOE ε4 carriers and noncarriers (n = 274, mean 

age 65 ± 9.0 years, 39% APOE ε4 carriers, 58% female). CSF SNAP-25, not CSF Ng, was 

specifically elevated in APOE ε4 carriers versus noncarriers (5.95 ± 1.72 pg/mL, 4.44 ± 1.40 

pg/mL, p < 0.0001), even after adjusting for age, sex, years of education, and amyloid status 

(p < 0.0001). CSF total tau (t-tau), phosphorylated-tau-181 (ptau181), and neurofilament light 

chain (NfL) also did not vary by APOE ε4 status. Our findings suggest APOE ε4 carriers have 

amyloid-related and amyloid-independent presynaptic disruption as reflected by elevated CSF 

SNAP-25 levels. In contrast, postsynaptic disruption as reflected by elevations in CSF neurogranin 

is related to amyloid status.
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1. Background

Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease 

(AD) and is thought to modify both amyloid- (Fleisher et al., 2013; Kok et al., 2009; Liu 

et al., 2017; Morris et al., 2010), and tau-related pathology (Shi et al., 2017; Shi et al., 

2019). APOE genotype has also been implicated in a variety of neurodegenerative disorders 

including α-synucleinopathies such as Parkinson disease and Lewy Body dementia (Li et 

al., 2004; Zhao et al., 2020), Huntington disease (Panegyres et al., 2006), frontotemporal 

dementia (Agosta et al., 2009), and chronic traumatic encephalopathy (McKee et al., 2009). 

The mechanism by which APOE genotype affects these diverse disorders remains unclear. 

However, multiple studies have highlighted amyloid-independent toxicity through synapse 

related pathways (Dumanis et al., 2009; Love et al., 2006; Nwabuisi-Heath et al., 2014; 

Tannenberg et al., 2006; Wang et al., 2005; Zhao et al., 2020).

The APOE ε4 allele has been implicated in both presynaptic and postsynaptic 

dysfunction. This includes reductions of key presynaptic proteins (Tannenberg et al., 2006) 

and disruptions of presynaptic vesicular release and glutamine-to-glutamate production 

(Dumanis et al., 2013). Postsynaptic effects include disruptions of reelin-mediated long-term 

potentiation and plasticity (Weeber et al., 2002) and reductions in dendritic spine density 

and complexity (Dumanis et al., 2009; Jain et al., 2013; Wang et al., 2005) that may be 

further amplified in the presence of amyloid plaques (Holtzman et al., 20 0 0). However, 

the relationship between APOE genotype and pre- or postsynaptic dysfunction in cognitively 

normal older adults remains unclear.

Two recent cerebrospinal fluid (CSF) biomarkers have emerged for assessing synaptic 

integrity in humans: synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng). 

SNAP-25 is a component of the presynaptic SNARE complex, which is essential for 

vesicular trafficking (Shin, 2014). Ng is expressed in postsynaptic dendritic spines (Chang 

et al., 1997). Both CSF SNAP-25 (Brinkmalm et al., 2014; Zhang et al., 2018), and Ng 

concentrations (De Vos A, et al., 2015; Kester et al., 2015; Kvartsberg et al., 2015a; 
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Kvartsberg et al., 2015b; Portelius et al., 2015; Tarawneh et al., 2016; Thorsell et al., 2010) 

are elevated in individuals with AD dementia.

In this study, we compared levels of CSF SNAP-25 and Ng in cognitively normal individuals 

as a function of APOE ε4 status. We adjusted for the effects of age, sex, years of 

education and amyloid status. Additionally, we evaluated levels of CSF total tau (t-tau), 

tau phosphorylated at position 181 (ptau181), and neurofilament light chain (NfL). Finally, 

we replicated our major finding in an independent cohort.

2. Materials and methods

2.1. Participants

The primary cohort consisted of participants enrolled at the Knight Alzheimer Disease 

Research Center (Knight ADRC) at Washington University in St Louis. Inclusion criteria 

were the following: participants who were cognitively normal (Clinical Dementia Rating 

[CDR] 0; Morris, 1993), had APOE genotype data, and had undergone analysis of 

CSF SNAP-25 and/or Ng. Methods for recruitment and assessment have previously been 

described (Morris et al., 2019). This study was approved by the Washington University 

Institutional Review Board and each participant provided signed informed consent.

2.2. Genetic analyses

DNA samples were collected at enrollment and genotyped using either an Illumina 610 or 

Omniexpress chip, as previously described (Cruchaga et al., 2013). APOE ε4 carriers were 

defined by the presence of at least one ε4 allele (ε2/ε4, ε3/ε4, or ε4/ε4) in contrast to APOE 
ε4 noncarriers (ε2/ε2, ε2/ε3, or ε3/ε3).

2.3. CSF acquisition and processing

Participants underwent CSF collection as previously described (Fagan et al., 2006). Briefly, 

CSF was collected at 8 AM after overnight fasting in a polypropylene tube via gravity 

drip using an atraumatic Sprotte 22 gauge spinal needle. Samples were gently inverted and 

centrifuged at low speed to pellet any cellular debris. CSF was then aliquoted into 500 μL 

volumes in polypropylene tubes and stored at −80°C until the time of assay.

CSF Aβ42, t- tau, and ptau181 were measured with corresponding Elecsys immunoassays 

on the Roche cobas e601 analyzer (Schindler et al., 2018). Amyloid status was established 

per previously published cutoffs for CSF ptau181/Aβ42 (Schindler et al., 2018), with 

individuals with a CSF ptau181/Aβ42 ratio ≤0.0198 categorized as amyloid-negative and 

individuals with ptau181/Aβ42 > 0.0198 categorized as amyloid-positive.

CSF SNAP-25 and Ng were measured via the microparticle-based immunoassay, Single 

Molecule Counting Erenna system (EMD Millipore, Burlington MA) system, with 

antibodies developed in the laboratory of Dr. Jack Ladenson at Washington University. 

CSF NfL was measured with an immunoassay kit manufactured by Uman Diagnostics 

(UmanDiagnostics, Umeå, Sweden).
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2.4. PET image acquisition and processing

Amyloid positron emission tomography (PET) images were acquired on a subset of 

participants per previously described methods (Mintun et al., 2006; Su et al., 2015; Su 

et al., 2018; Su et al., 2019) using either [11C] Pittsburgh Compound B (PiB) or florbetapir 

(18F-AV-45). Standard uptake value ratios (SUVR) were calculated for the 30–60 minute 

postinjection window for PiB and 50–70 minutes for 18F-AV-45. Raw PET data were 

then processed using a PET Unified Pipeline (github.com/ysu001/PUP). FreeSurfer 5.3 was 

employed for region of interest (ROI) segmentation. For each region, a tissue mask was 

generated based on segmentation, and partial volume correction performed (Su et al., 2015). 

SUVRs, also known as regional target-to-reference intensity ratios, were evaluated for each 

region using the cerebral cortex as the reference region. The partial volume corrected SUVR 

derived from cortical regions was used as a summary value for each PET imaging modality. 

To standardize across PiB and 18 F-AV-45, SUVRs were converted to centiloids (Klunk et 

al., 2004; Su et al., 2018).

2.5. Statistical analyses

Testing between subgroups was compared using unpaired t-tests for continuous variables 

and chi-square testing for categorical variables. Secondary validation for multiple 

comparisons was performed by calculating a false discovery rate. Analysis for covariance 

were implemented using the Matlab function LinearModel.fit between CSF SNAP-25 or Ng 

and APOE ε4 status, amyloid status, age, gender (female), and years of education.

2.6. Data availability policy

Data are available to qualified investigators upon request to the Knight ADRC (https://

knightadrc.wustl.edu/Research/ResourceRequest.htm)

2.7. Replication cohort

For replication of the major finding, data were also obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. 

The primary goal of ADNI has been to test whether serial magnetic resonance imaging 

(MRI), PET, other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment (MCI) and early AD. 

For up-to-date information, see www.adni-info.org. Inclusion criteria were identical to the 

primary cohort: participants who were cognitively normal (CDR 0), had available APOE 
genotype data, and had undergone analysis of CSF SNAP-25 and/or Ng using consistent 

assay lot number.

3. Results

3.1. Participant characteristics

The Knight ADRC cohort consisted of 274 participants who met inclusion criteria. The 

characteristics of the cohort, grouped by either amyloid status based on CSF ptau181/Aβ42 

or APOE ε4 carrier status, are shown in Table 1. There was no significant difference in years 
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of education or gender by either amyloid status or APOE ε4 carrier status. Amyloid-positive 

individuals tended to be older and were more likely to carry an APOE ε4 allele (p < 0.0001). 

As expected, the individuals categorized as amyloid-positive by CSF ptau181/Aβ42 had 

significantly higher PET centiloid values. APOE ε4 carriers also had a higher average PET 

centiloid values (p = 0.0004).

3.2. Differences in CSF biomarkers by amyloid status or APOE ε4 carrier status

Concentrations of CSF biomarkers including Aβ42, t-tau, ptau181, SNAP-25, Ng, and NfL 

were examined as a function of amyloid status and or APOE ε4 carrier status. All six CSF 

biomarkers were significantly different between amyloid-positive individuals and amyloid-

negative individuals (p < 0.0001). When grouped by APOE ε4 carrier status, significant 

group differences in Aβ42 (p < 0.0001), t-tau (p = 0.01), and ptau181 (p = 0.01) were 

observed (Table 1). Significant elevations in SNAP-25 (p < 0.0001) and Ng (p = 0.04) were 

also observed, although the difference in Ng did not survive after correction for multiple 

comparisons. Finally, no significant group difference in NfL was observed between APOE 
ε4 carriers and noncarriers.

3.3. CSF biomarkers in different APOE allele genotypes

CSF SNAP-25 and Ng as a function of APOE genotype were evaluated (Fig. 1). Presence of 

the APOE ε4 allele was associated with higher CSF SNAP-25 levels (Fig. 1A). In contrast, 

Ng levels did not vary consistently by APOE genotype (Fig. 1B). Similarly, no consistent 

relationship was observed between APOE ε4 carrier status and CSF t-tau, ptau181, or NfL 

(Fig. S1 A–C).

3.4. CSF SNAP-25 and Ng by amyloid status

We next determined whether elevations in either CSF SNAP-25 or Ng were present when 

controlling for amyloid status in our cohort of cognitively normal participants (Fig. 2). 

Amyloid-positive individuals had higher CSF SNAP-25 levels (p < 0.0001; Fig. 2A). Among 

amyloid-negative individuals, APOE ε4 carriers had higher SNAP-25 levels (p < 0.0001); 

among amyloid-positive individuals, APOE ε4 carriers also had higher SNAP-25 levels (p 
< 0.05; Fig. 2C). In contrast, while amyloid-positive individuals had higher CSF Ng levels 

(Fig. 2B), there was no difference between APOE ε4 noncarriers or carriers after controlling 

for amyloid status (Fig. 2D).

3.5. Modeling CSF biomarker as function of amyloid status and APOE ε4 carrier status

All previous group comparisons were between unadjusted values for each CSF biomarker. 

Linear modeling was next used to examine the relationship between either CSF SNAP-25 

or Ng and APOE ε4 carrier status, amyloid status, participant’s age, sex, and years of 

education (Table 2). Linear modeling revealed that both APOE ε4 carrier status (p < 0.0001) 

and amyloid status (p = 0.004) significant determinants of CSF SNAP-25 levels. In contrast, 

CSF Ng levels were affected by amyloid status (p < 0.0001) and age (p = 0.003), but not by 

APOE ε4 carrier status.

Identical models for CSF t-tau and ptau181 demonstrated only a clear relationship with 

amyloid status (p < 0.0001) and age (p < 0.0001) (Table S1). For CSF NfL, only age (p < 
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0.0001) and female sex (p < 0.0001) were significant determinants; no significant effect of 

amyloid status or APOE ε4 carrier status was observed (Table S2).

Finally, modeling was repeated using an independent cohort from the ADNI dataset (n = 

57, mean age 76 ± 5.3 years, 21% APOE ε4 carriers, 40% female). In to contrast our 

Knight ADRC dataset, participants were older with a lower percentage of cognitively normal 

individuals who were APOE ε4 carriers and female participants (Table S3). The relationship 

between CSF SNAP-25, Ng, APOE ε4 carrier status, amyloid status, age, sex, and years 

of education was evaluated in the ADNI cohort using the same models as applied to the 

Knight ADRC cohort (Table 3). As before, CSF SNAP-25 levels were significantly higher 

in APOE ε4 carriers (p = 0.03). In this smaller cohort, CSF Ng levels were not significantly 

associated with any of the predictors. In summary, two independently collected datasets both 

reveal that CSF SNAP-25 levels are higher in cognitively normal APOE ε4 carriers, even 

after accounting for possible confounds.

4. Discussion

This study investigated CSF levels of the presynaptic marker SNAP-25 and the postsynaptic 

marker Ng in cognitively normal, older individuals. Presynaptic SNAP-25, but not 

postsynaptic Ng, was specifically elevated in the CSF of APOE ε4 carriers even after 

adjusting for age, sex, years of education, and amyloid status. The elevation of SNAP-25 

but not Ng in APOE ε4 carriers may indicate selective presynaptic damage in APOE ε4 

carriers; alternatively, Ng (or the Ng assay used in this study) may simply not be as sensitive 

to APOE ε4-related changes. CSF levels of t-tau, ptau181, and NfL also did not vary by 

APOE ε4 carrier status. These results are the first to demonstrate a relationship between 

CSF SNAP-25 elevation and APOE ε4 carrier status in cognitively normal older individuals 

without biomarker evidence of brain amyloidosis, and extend earlier reports of elevated 

CSF SNAP-25 levels in APOE ε4 carriers with early symptomatic AD (equivalent to mild 

cognitive impairment (MCI) due to AD and mild AD dementia (Galasko et al., 2019; 

Sutphen et al., 2018; Tible et al., 2020; Wang Q et al., 2018; Wang S et al., 2018; Zhang et 

al., 2018).

Previous work examining CSF SNAP-25 and Ng levels report that levels reach their 

maximum in individuals with early symptomatic AD, and then decline with progression 

to AD dementia (Sutphen et al., 2018). However, after accounting for APOE ε4 carrier 

status, differences between the cognitively normal and early symptomatic AD groups were 

present for Ng but not SNAP-25. This suggests that differences in SNAP-25 were related 

to APOE ε4 carrier status rather than diagnosis. Wang S et al. (2018) also demonstrated 

significantly higher levels of CSF SNAP-25 in APOE ε4 carriers compared to noncarriers 

with MCI, but no significant relationship was observed for participants who were cognitively 

normal or who had dementia due to AD. Both studies relied on the ADNI dataset, which 

includes a sizeable number of participants with MCI or AD dementia, but comparatively 

fewer cognitively normal elderly participants. Cognitively normal APOE ε4 carriers are 

particularly under-represented in the ADNI cohort, but are well represented in the Knight 

ADRC cohort, explaining why our current findings were not previously observed. More 

recently, Galasko et al. (2019) reported elevations in CSF SNAP-25 and Ng in AD dementia 
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compared to cognitively normal individuals, but did not specifically evaluate the effect of 

APOE genotype in cognitively normal individuals. Finally, Tible et al. (2020) also reported 

CSF SNAP-25 and Ng elevations in APOE ε4 carriers with AD and non-AD dementia, but 

again, the effects of APOE genotype in cognitively normal individuals were not evaluated.

A number of studies have demonstrated that APOE ε4 is associated with synaptic 

dysfunction. Neuropathologic analyses of human brain from normal APOE ε4 carriers 

demonstrate decreased protein levels of synaptic markers (Love et al., 2006). APOE ε4 

targeted replacement (TR) mice exhibit progressive loss of dendritic arbors and lower levels 

of excitatory synaptic activity (Dumanis et al., 2009; Klein et al., 2010). APOE ε4 has 

been shown to interfere with endosome recycling and glutamate receptor function via effects 

on Reelin signaling (Chen et al., 2010). Isogenic iPSC-derived human neurons expressing 

APOE ε4 exhibit early synaptic maturation and reduced expression of a number of genes, 

most of which are associated with synaptic function (Lin YT et al., 2018). Thus, most of the 

previously described mechanisms have been restricted to the postsynaptic compartment.

The mechanism(s) underlying possible presynaptic dysfunction in cognitively normal APOE 
ε4 carriers remains unclear. In animal models, the APOE ε4 allele has been associated with 

decreased presynaptic protein levels in response to environmental factors (Levi et al., 2003). 

Subsequent studies using transgenic mice expressing human APOE (ApoE4-TR, ApoE3-TR, 

and ApoE2-TR) reveal disruptions in vesicular release of several neurotransmitters (Dolejší 

et al., 2016; Dumanis et al., 2013). ApoE4-TR mice demonstrated impaired glutaminase 

activity resulting in a net decrease in glutamate present in the nerve terminals not observed 

in ApoE2-TR or ApoE3-TR mice (Dumanis et al., 2013). More recent work reveals 

inhibition of hippocampal ACh release from cholinergic nerve terminals in ApoE4-TR mice 

in a choline acetyltransferase-independent manner (Dolejší et al., 2016). Human studies 

are more limited, with reports of decreased presynaptic protein levels in APOE ε4 carriers 

(Tannenberg et al., 2006).

There are several limitations of this study. It remains unclear whether in vivo APOE ε4 

mediated disruptions in presynaptic glutamate or acetylcholine are associated with increases 

in interstitial or CSF SNAP-25 levels. Furthermore, the specific pathological change 

reflected by elevated CSF SNAP-25 levels in cognitively normal, amyloid-negative APOE 
ε4 carriers remains unclear. It is possible that changes in SNAP-25 levels in APOE ε4 

carriers are not specific to the presynaptic compartment and instead reflect global synaptic 

dysfunction or loss that is not reflected in the levels of other CSF synaptic markers. This 

uncertainty further extends to the neuroanatomical localization for elevated SNAP-25 levels. 

It remains unclear whether elevations in SNAP-25 reflect a localized or more cortically 

distributed phenomena. Additional studies are needed to better characterize the source of 

CSF SNAP-25 and associated neuropathologic and neuroanatomic changes at the synaptic 

level in cognitively normal, amyloid-negative APOE ε4 carriers.

This study also duplicates a significant association of age and sex with CSF NfL levels 

(Khalil et al., 2020). No clear association between NfL and APOE ε4 or amyloid status 

was observed in our study, also as previously reported (Bos et al., 2019). Previous studies 

exploring NfL in healthy adults reported no change in association of CSF NfL with risk 
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of early symptomatic AD after adjustment for APOE status (Kern et al., 2019). Further 

NfL elevations observed in dementia associated with Parkinson’s disease (Lin YS et al., 

2018) support NfL as a sensitive global marker of cumulative neural injury due to multiple 

etiologies rather than a highly specific marker of AD-related pathology.

5. Conclusions

Increased CSF SNAP-25 levels in cognitively normal APOE ε4 carriers, even those without 

brain amyloidosis, suggest that APOE ε4 may be associated with presynaptic dysfunction 

unrelated to amyloid. This difference is not seen with Ng, a postsynaptic marker, or another 

marker of neuronal injury, NfL. Differences in the longitudinal change of SNAP-25 in 

relation to APOE ε4 status remains unknown. It is also unclear if APOE ε4 carriers 

under 50 years old also have significant elevations in CSF SNAP-25. Further studies are 

needed to further discern the mechanism by which APOE ε4 modulates SNAP-25 levels and 

presynaptic dysfunction.
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ADNI Alzheimer’s Disease Neuroimaging Initiative

APOE Apolipoprotein E

CDR clinical dementia rating

CSF cerebrospinal fluid

Knight ADRC Knight Alzheimer Disease Research Center

MCI mild cognitive impairment (early symptomatic AD)

NfL neurofilament light chain

Ng neurogranin

NS not significant

PiB Pittsburgh compound B

ptau181 tau phosphorylated at 181

ROI region of interest

SNAP-25 synaptosomal-associated protein 25

SUVR standardized uptake value ratio

t-tau total tau

TR targeted replacement (transgenic)
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Fig. 1. 
CSF SNAP-25 and Ng by APOE Allele Genotype. Figure 1. Levels of CSF SNAP-25 (A) 

and Ng (B) by APOE genotype. CSF SNAP-25 was significantly elevated in APOE ε4 allele 

carriers compared to noncarriers. A similar relationship was not observed for CSF Ng; *, p < 

0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001

Butt et al. Page 14

Neurobiol Aging. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
CSF SNAP-25 and Ng by amyloid status. Figure 2. Unadjusted CSF SNAP-25 and Ng as 

a function of amyloid status and APOE ε4 carrier status with confidence intervals. CSF 

SNAP-25 (A) and Ng (B) are significantly higher in cognitively normal participants who are 

amyloid-positive compared to amyloid-negativea. Even after adjusting for amyloid status, 

CSF SNAP-25 (C) is greater in APOE ε4 carriers than APOE ε4 noncarriers. CSF Ng (D) 

does not vary by APOE ε4 carrier status. aAmyloid-negative if CSF ptau181/Aβ42 < 0.0198; 

Amyloid-positive if CSF ptau181/Aβ42 ≥ 0.0198 (36) *, p < 0.05; **, p < 0.01; ***, p < 

0.001; ****, p < 0.0001.
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