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Background
Recent emergence of high throughput technologies has allowed the generation of previ-
ously unbelievable amounts of big biological data. The speed of data generation has sur-
passed data analysis, providing biomedical scientists with tremendous datasets of a size 
that they have not been encountering before. Hence, big data analysis is a major chal-
lenge in modern biology. Although a variety of methods have been developed for omics 
data analysis in recent years, inter-omics data integration remains a major challenge. 
It is now commonly believed that the description of biomedical phenomena cannot be 
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reduced to alterations of a single type of biomolecule. Indeed, it is pivotal to consider 
not only the interactions between one layer of omics data but also complex inter-layer 
communications to identify the flow of biological information and generate a thorough 
holistic view of the underlying events.

A number of methods have been developed for omics data integration in order to 
predict inter-omics interactions. However, they are mostly dependent on specific bio-
chemical properties of network nodes. Hence, their applicability remains restricted to a 
specific network type. For instance, gene expression data has been used as node features 
in some previously algorithms [1, 2]. Obviously, these methods can not be applied for 
the integration of genomics and epigenomics data, for example.

Network embedding, also known as network representation learning, has been 
recently proposed as a method to embed network nodes into a low-dimensional vector 
space named latent features, by capturing topological properties of networks and side 
information. In other words, this method calculates similarity between pairwise nodes 
to find a low-dimensional manifold structure that is hidden in the corresponding high-
dimensional data [3, 4]. One of the methods developed for interaction prediction based 
on network embedding is matrix factorization, where latent features are detected from 
network topology [5]. The Data Fusion by Matrix Factorization (DFMF) [6] is a method 
to predict direct and indirect interactions between heterogeneous nodes. However, 
these methods are not able to extract highly nonlinear patterns from data. A more recent 
interaction prediction method, node2vec, learns low-dimensional representations of 
nodes and tries to maximize the probability of the occurrence of subsequent nodes in 
random walks over a network. This method has been applied for homogeneous [7] and 
heterogeneous interaction predictions [8].

Deep learning is a kind of machine learning technique that automatically extracts 
high-level features from raw data of very large, heterogeneous, high-dimensional data-
sets. This advantage makes deep learning well suited to the complexity of big data in 
biology [9–11] as it can be used for network embedding to find complex structural fea-
tures and learn deep, highly nonlinear node representations [4]. The idea of combining 
matrix factorization and deep learning is known as deep matrix factorization (DMF). 
This method extracts representations with two deep neural networks (DNN) and calcu-
lates similarity of representations through a cosine function as a non-trainable decoder. 
DMF is used for recommender systems and has been shown to be superior to traditional 
matrix factorization [12]. This strategy has recently been used in the prediction of drug–
target interactions [13].

Tensor decomposition is a powerful tool for a variety of heterogeneous, sparse, and 
big data of multi-layer networks [14]. Here, acknowledging the advantages of deep learn-
ing and tensor decomposition, an attempt was made to develop an application of deep 
learning in big biological data integration through employing tensor decomposition by 
an end-to-end strategy for handling multi-layer networks without relying on specific 
biochemical features. Data Integration with Deep Learning (DIDL) method is proposed 
for various kinds of inter-omics interaction prediction. This method consists of an 
encoder with two DNNs, that extracts representations for biological entities considering 
node heterogeneity, and a tensor factorization predictor, that predicts the probability of 
interactions. To demonstrate the applicability of the proposed method, it is evaluated 
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on three different biological datasets, namely drug–target protein, transcription factor 
(TF)-DNA element, and miRNA–mRNA.  Overall, a novel big data integration is pro-
posed that connects heterogeneous layers without being dependent on specific bio-
chemical properties of interacting molecules.

Methods
Interactions between heterogeneous biomolecules are based on biological princi-
ples. For instance, an miRNA targets a group of genes that are functionally related [15, 
16], and a TF regulates a bundle of genes that incorporate a specific sequence in their 
upstream [17]. Hence, the probability of interaction between two given nodes in two dif-
ferent layers can be estimated based on known interactions between each of these two 
nodes with other elements in the opposite layer. Indeed, unknown interactions can be 
predicted based on network topology. In this regard, DIDL can serve as an alternative to 
recommender systems or completion matrix task.

Consider a two-layer network in which two omics layers are linked by inter-omics 
interactions between heterogeneous biomolecules. If the first and second omics layers 
contain n1 and n2 biomolecules, respectively, the network structure can be represented 
by an n1 × n2 adjacency matrix R12 as follows:

where 1 ≤ i ≤ n1 , 1 ≤ j ≤ n2 and R12(i, j) = 0 corresponds to non-interaction or an 
unknown interaction (an interaction that is not yet investigated). Although both non-
interactions and unknown interactions are represented as zero in R12 , they are different. 
The DIDL method uses the information of inter-omics interactions to predict new inter-
actions. Remarkably, it is not necessary to know homogeneous interactions in a specific 
omics layer.

This method has two main components:

•	 An encoder: two DNNs operating on adjacency matrix and producing latent features 
for biomolecules of first and second omics layers, and

•	 A predictor: a tensor factorization model that predict the probability of interactions 
based on the latent features.

The DIDL method seeks to find the best latent features for representing each biomole-
cule according to existing interactions. Details of the network structure and model train-
ing are given in the following:

Encoder

As a first stage, encoder extracts the best latent features for representing each biomol-
ecule. For a given biomolecule, its latent feature captures information of all associated 
kinds of interactions. In this work, two DNNs are proposed to serve as an encoder for 
extracting high-level features from adjacency matrix R12 for inter-omics interaction 
prediction. As biomolecules of the first and second omics layers are heterogeneous, 

(1)R12(i, j) =







1 if there is interaction between ith node of the first
and jth node of the second omics layer

0 otherwise
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different DNNs are used for biomolecules of the first and second omics layers. To 
extract feature vectors of the first layer, the DNN for the first layer, DNN1 , takes as 
input rows of R12 , which are n2 × 1 vectors, and produces k × 1 latent feature vec-
tors representing the biomolecules of the first omics layer. Similarly, to extract feature 
vectors of the second layer while considering heterogeneity of the nodes, the DNN for 
the second layer, DNN2 , takes as input columns of R12 which are n1 × 1 vectors, and 
produces k × 1 feature vectors representing the second layer nodes. These features 
have less dimensions than the rows and columns of R12 , therefore k < n1, n2.

In order to investigate possible interactions between ith biomolecule of the first 
omics layer and jth biomolecule of the second omics layer, (i.e., the pair ith, jth), the 
corresponding latent feature vectors were calculated. The latent feature vector of ith 
biomolecule of the first omics layer and the latent feature vector of jth biomolecule 
of the second one were represented by Ui and Vj , respectively. To find Ui , the ith row 
of R12 , which represents inter-omics interactions of ith biomolecule of the first layer 
with biomolecules of the second omics layer, is fed to DNN1 and the output is Ui . In a 
similar way, to find Vj, Jth column of R12 , which represents inter-omics interactions of 
jth biomolecules of the second omics layer with biomolecules of the first omics layer 
is fed to DNN2 and the output is Vj . So, the outputs of these DNNs take the following 
form:

where fDNN1 , fDNN2 , R12(i, :) and R12(:, j) are total functions of DNN1 and DNN2 and ith 
and jth row and column of R12 , respectively. Notably, the heterogeneity of biomolecules 
was herein considered by designing a separate DNN for each omics layer.

Predictor

Once finished with calculating feature vectors by the encoder, a predictor is devised 
to apply these feature vectors to investigate existence of interactions. The predictor 
aims to calculate the probability of interaction between heterogeneous biomolecules. 
It utilizes latent feature vectors Ui and Vj to assign a score that represents likelihood 
of interaction between ith biomolecule of the first omics layer and jth biomolecule of 
the second one.

In this research, a predictor based on tensor factorization  [18] was suggested. On 
the basis of latent feature vectors Ui and Vj , the predictor scores the possibility of 
interaction through an operation based on tensor factorization, as follows:

in which Score(i, j) measures the probability of interaction between the pair (ith, jth) and 
D is a k × k trainable parameter matrix that models interactions between heterogene-
ous biomolecules according to the latent feature vectors. As probabilities must logically 
range between 0 and 1, a sigmoid function was applied on Score(i,  j) to calculate the 
probability of interactions, as follows:

(2)
Ui = fDNN1(R12(i, :))

Vj = fDNN2(R12(:, j))

(3)Score(i, j) = UT
i DVj
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in which R̂12(i, j) is the probability of interaction between pair (ith, jth). In the following, 
training of the neural network weights and biases of the model for interaction prediction 
is described.

Model training and optimization

The encoder maps all biomolecules to latent feature vectors. Then, the predictor predicts 
probability of interactions. The encoder trains network structure to find the most repre-
sentative feature vectors for inter-omics interaction prediction. This was done by com-
paring R12(i, j) predictions R̂12(i, j) against actual data R12(i, j) and calculating an error 
term that has to be minimized. Thus, DNNs of encoder and tensor factorization predic-
tor are trained by optimizing encoder parameters and matrix D using cross-entropy loss, 
which takes the following form:

It adjusts the model to produce high-probability results for interactions (positive sam-
ples) and low-probability outcomes for non-interactions (negative samples), with m 
being the number of samples. As encoder and predictor parameters were trained simul-
taneously, the DIDL became an end-to-end trainable model for inter-omics interaction 
prediction.

For a multi-layer network, the proposed method needs a list of interactions where each 
interaction is identified by a triplet (biomolecule in the first omics layer, biomolecule 
in the second omics layer, interaction identifier). The interaction identifier is 1 (positive 
sample) if there is interaction between the pair of biomolecules, and 0 (negative sam-
ple) if no interaction is between the pair of biomolecules. For proper functioning of the 
model, the training set in Eq. 5 had to include triplets with positive and negative interac-
tions. The adjacency matrix R12 includs information of interactions between heterogene-
ous biomolecules, with no data on non-interacting biomolecules. Therefore, R(i, j) = 0 
implies an ambiguity between non-interaction or an interaction not yet discoverd. This 
ambiguity represents a challenge for deep learning methods that rely on both positive 
and negative interactions for training. In order to solve this challenge, we applied nega-
tive sampling. Since negative sampling is equal to 1, therefore the data is balanced. That 
is, some pairs of biomolecules for which we were unaware of the interaction existence 
were randomly chosen as negative samples  [19]. Actually, every pair of nodes might 
belong to one of these subsets: positive samples, negative samples, and unknown sam-
ples. We do not apply unknown samples in the training, optimizing and evaluating of the 
model. Positive and negative samples are applied for 10-fold cross-validation. We accept 
that among the negative samples set, there could be some yet undiscovered interactions. 
In experimental biology, there is a lack of sufficient data on the absence of interactions. 
Indeed, only the presence of interactions is commonly shown in wet lab experiments. 
Hence, negative sampling can be considered as a practical solution to this limitation. 
This strategy is widely employed in previous studies  [20–22].

(4)R̂12(i, j) = sigmoid(Score(i, j)) =
1

1+ e−UT
i DVj

(5)loss =
1

m

∑

(i,j)∈train set

R12(i, j) log R̂12(i, j)+ (1− R12(i, j)) log(1− R̂12(i, j))
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According to Eq. 5, the DIDL considers the first-order proximity that means local pair-
wise proximity between two connected biomolecules  [4] across a biological network. 
In addition, heterogeneous biomolecules exhibiting high second-order proximity share 
many common neighbors [4], i.e. the rows or columns of the adjacency matrix are simi-
lar to each other. Because these rows or columns are the DNNs inputs, biomolecules 
with high second-order proximity have similar encoder inputs. Consequently, latent fea-
tures of biomolecules with high second-order proximity become similar, and the DIDL 
can capture the first-order and second-order proximities simultaneously to preserve the 
biological network structure.

Prediction of interaction types

Some omics networks may contain different types of interactions. Consider a network in 
which two omics layers are linked by c types of inter-omics interactions between hetero-
geneous biomolecules. If the first and second omics layers respectively contain n1 and n2 
biomolecules, the network structure can be represented by an n1 × n2 adjacency matrix 
R12 as follows:

The encoder is the same as the binary model. In predictor, for tth type of interaction that 
1 ≤ t ≤ c , there exists the matrix of Dt . The matrix D0 is also considered for the absence 
of interaction. The scores of each kind of interaction is obtained through tensor factori-
zation operation:

Values of st are scores. Then, these scores are passed through a softmax layer. The equa-
tion for the softmax function is as follows:

that:

(6)R12(i, j) =















1 if there is 1th kind of interaction between pair (i, j)
...
c if there is cth kind of interaction between pair (i, j)
0 otherwise

(7)

s0 = UT
i D0Vj

s1 = UT
i D1Vj

...

sc = UT
i DcVj

(8)
softmax(st) =

est

c
∑

l=0

esl

(9)softmax(
−→
S ) =











P(R̂12(i, j) = 0)

P(R̂12(i, j) = 1)
...

P(R̂12(i, j) = c)










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Each value in the output of the softmax function can be interpreted as the probability of 
each type of interaction or no interaction. Furthermore, the loss function was changed 
to categorical cross-entropy. The advantage of this method is that not only predicts the 
existence of interaction but also the types of interactions.

Experimental setup

The DIDL method is implemented based on Tensorflow. The encoder was developed 
with pairs of 4-layer neural network architectures with the Relu activation functions 
and two 64 and 32 hidden units in the first and second hidden layers, respectively. The 
latent feature vector dimension, k, was set to 20 for all three datasets and the batch sizes 
were 32, 32, and 1024 for the miRNA–mRNA dataset, the drug–target dataset, and the 
TF–DNA dataset, respectively. The model parameters were randomly initialized with a 
Gaussian distribution with zero mean and a standard deviation of 0.01. To optimize the 
model, the Adam optimizer [23] was utilized with a learning rate of 0.0001. In order to 
improve the generalization of the model for the prediction of unforeseen inter-omics 
interactions, the drop out and L2 normalization for encoder weights and D matrix were 
applied and set to 0.5 and 0.08, respectively. The random search was further applied for 
hyperparameter tuning. In kind of interaction prediction, the encoder’s DNNs had 512 
and 128 hidden units in the first and second hidden layers, respectively. The latent fea-
ture vector dimension, k, was set to 64.

Performance of the developed DIDL was evaluated against the node2vec, Deep-
Walk [24], Common Neighbor (CN), and Jaccard Index (JI) [25] methods. In node2vec 
and DeepWalk methods, the window size, walk length, walks per vertex and dimensions 
were set to 10, 40, 10, and 20, respectively.

Results
Recently, tremendous generation of omics data provides a unique opportunity to con-
struct holistic maps for complex disorders. However, construction of integrative 
networks is limited due to lack of sufficient data about the interactions between het-
erogeneous biological entities, a problem that has come to some sort of solution by the 
emergence of machine learning methods. In this study, DIDL was developed as a deep 
learning-based method for big biological data integration, where “encoder” extracts rep-
resentation vectors based on existing interactions and negative samples, followed by 
predicting the probability of interactions by “predictor” (Fig.  1). To assess the perfor-
mance of the developed method, it was applied on three different heterogeneous biologi-
cal datasets: drug–target protein, TF–DNA element, and miRNA–mRNA. In addition, 
to assess the performance of DIDL in a more complicated situation, it is applied on the 
Hetionet [26] network which includes interactions between 11 different layers.

Drug–target interaction prediction

Drug repositioning or repurposing is a promising approach in drug discovery. In recent 
years, a few strategies have been developed for drug repurposing, which are known to 
suffer from particular disadvantages, including their need for retrieving huge amounts 
of biological information from the literature or existing databases [27]. To demonstrate 
the capability of the proposed model in this research for drug repositioning, the DIDL 
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method was employed to predict new links between drugs and proteins. For this pur-
pose, known drug–target interactions were extracted from DrugBank database  [28]. 
This dataset covers a total of 1507 drugs, 1642 target proteins, and 6439 interactions 
(Additional file  1). To evaluate the application of DIDL for drug target prediction, a 
10-fold cross-validation procedure was performed and different indices were evaluated, 
including area under receiver operating characteristic curve (AUC), area under preci-
sion–recall curve (AUPRC), precision, recall, and accuracy measures  [29]. DIDL was 
further assessed using comparison with node2vec [7], DeepWalk [24], CN, and JI [25]. 
DIDL could outperform the mentioned methods, as per the outcomes of T test analysis 
(P value < 0.05, Fig. 2a).

To further evaluate the performance of DIDL, it is compared with the GCN-DTI 
method, which in addition to known interactions between drugs and proteins, utilizes 
drug-drug interactions and protein–protein interactions data  [20]. Although DIDL 
method does not use such information, the difference in performance of these two 
methods is subtle. Indeed, in spite of using less information, the output is in the same 
order (Additional file 2). Noteworthy, the reliance of DIDL only on inter-layer interac-
tions, not intra-layer data, allows its application for a wide spectrum of networks.

TF–DNA interaction prediction

Transcriptional regulation of gene expression is a result of the interactions of TFs 
with specific DNA sequence elements named transcription factor binding sites 
(TFBSs), which is a critical step to control cell behaviors. The existing knowledge 
about these interactions is preliminary. Current algorithms use data derived from 
chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequenc-
ing (ChIP-Seq) techniques or rather apply a combination of in-silico sequence motif 
detection with experimental data for prediction of TF–TFBS interactions. However, 
their performances are limited due to insufficient data  [30]. To assess validity of 
DIDL for predicting the link between TFs and TFBSs, known experimental data on 
human TF–TFBSs were extracted from the Enrichr database using ChEA 2016 [31]. 
This dataset contains data on a total of 175 TFs, 35116 genes, and 407245 interac-
tions (Additional file 3). This data on known TF–DNA interactions was exploited by 
DIDL to predict unforeseen interactions. A 10-fold cross-validation scheme was used 
and performance indices were also measured. Once more, node2vec, DeepWalk, CN, 

Fig. 1  Overview of DIDL method framework. Rows and columns of R12 are fed to an encoder which consists 
of two DNNs. The outputs of the encoder are latent features of the biomolecules. Finally, these latent features 
are transformed into a tensor factorization predictor and its output indicates the probability of interaction 
between heterogeneous biomolecules
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and JI were also applied and performances were evaluated in terms of AUC, AUPRC, 
precision, recall, and accuracy measures. Notably, DIDL outperformed the mentioned 
methods, as indicated by all of the indices (P value < 0.05 , Fig. 2b).

Fig. 2  Evaluation of DIDL using 10 fold cross-validation. The performance of DIDL for interaction prediction 
in drug–target (a), TF–DNA (b), and miRNA–mRNA (c) is assessed using different measures and compared 
with node2vec, DeepWalk, CN, and JI



Page 10 of 17Borhani et al. BMC Bioinformatics           (2022) 23:53 

miRNA‑mRNA interaction prediction

The complexity of the RNA world has been increasingly appreciated in recent dec-
ades. The miRNA is a key regulator of a variety of cellular processes and identifica-
tion or prediction of its interaction with mRNA is yet a major challenge. Despite 
huge efforts, current tools still have suboptimal performance and even the best avail-
able algorithms have low accuracy and sensitivity  [30, 32]. In order to assess the 
performance of DIDL in miRNA target prediction, experimentally validated human 
miRNA–mRNA interactions were retrieved from miRTarBase 7.0, and a total of 8112 
interactions with strong evidence for 735 miRNAs and 2746 mRNAs were chosen 
(Additional file  4). Next, DIDL was employed to predict further interactions, end-
ing up with good performance, as per indices equaling or exceeding 0.8. Remarkably, 
DIDL method also outperformed node2vec, DeepWalk, CN, and JI, as revealed by the 
results of T test analysis (P value < 0.05 , Fig. 2c).

The proposed method was further compared with some state-of-the-art methods. 
The miRAW dataset was harvested from the study by Pla et al. [11] to compare DIDL 
with TargetScan (conserved) [33], miRAW (7–2:10 AE) [11] and DIANA microT [34]. 
This dataset consists of 449 miRNA, 6318 mRNA, 33142 positive samples, and 32248 
negative samples. In this dataset, non-functional interactions have been assumed as 
negative samples. Comparing DIDL method with the existing algorithms, it was fig-
ured out that this proposed method was superior to other state-of-the-art target pre-
diction methods (Fig. 3). The measures of TargetScan, miRAW, and DIANA microT 
for miRAW data set are harvested from Pla et al. study [11].

Although the validity of DIDL was evaluated per various indices, we further evalu-
ated the method by performing a literature survey for novel interactions. The prob-
ability of interaction between every heterogeneous pair of miRNA and mRNA was 
determined using the developed algorithm and the interactions were sorted based on 
their probability scores. Interestingly, 7 out of 10 top predicted interactions were con-
firmed by experimental investigations that are not yet incorporated in miRTarBase 
(Table 1). These validation strategies underscore the applicability of DIDL for miRNA 
target prediction.

DIDL encoder cluster omics elements through latent feature extraction. Accord-
ing to Eq.  3, matrix D with the dimension of k × k encodes association between 

Fig. 3  The validity of DIDL for miRNA–mRNA prediction The performance of DIDL for prediction of miRNA 
targets is compared with TargetScan, miRAW, and DIANA microT. The exploited dataset is harvested from the 
study of Pla et al. 11
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latent features. That is, D is a low dimensional compression of R12 . Therefore, the 
unknown interactions are inferred based on the cluster association.

We employ the T-SNE (T-distributed stochastic neighbor embedding) algorithm 
to visualize the node feature vectors learned by the encoder. The T-SNE is a non-
linear dimensionality reduction strategy that embeds similar objects in high-dimen-
sional space close to each other in a reduced dimension space  [35]. Using T-SNE, 
the latent features of miRNAs are projected to a two-dimensional space. Although 
DIDL was not provided with any biological features of miRNAs, the T-SNE analysis 
demonstrated that miRNAs were clustered according to their families (Fig. 4). This 
observation can be explained by the fact that in miRNA–mRNA networks, miRNAs 
which are in the same family have similar seed sequences and hence similar targets. 
Indeed, DIDL clusters miRNAs based on their interactions in an unsupervised man-
ner and it is in concordance with miRNA families. This is strong evidence for the 
validity of this algorithm.

Table 1  Novel miRNA target predictions with the highest probability scores by the DIDL

The first column indicates the rank of predicted miRNA-mRNA pairs based on the probability score. Experimental supports 
for the predictions are cited in the last column. Asterisks denote that the experimental evidence is for another member of 
the same miRNA family

Rank miRNA mRNA Probability Evidence

1 hsa-miR-15b-5p ZEB1 0.9974 [41]

2 hsa-miR-34c-5p EZH2 0.9973 [42]

3 hsa-miR-15b-5p EZH2 0.9973 [43]

4 hsa-miR-34c-5p ZEB1 0.9973 [44]

5 hsa-miR-34c-5p TGFBR2 0.9972 *hsa-miR-34a, 34b [45]

6 hsa-miR-30c-5p EZH2 0.9972 *hsa-miR-30d [46]

7 hsa-miR-15b-5p RUNX2 0.9972 [47]

8 hsa-miR-15b-5p TGFBR2 0.9971 [48]

9 hsa-miR-183-5p SIRT1 0.9971 [49]

10 hsa-miR-34c-5p FOXO1 0.9971 *hsa-mirR-34a, 34b [50]

Fig. 4  T-SNE Visualization of miRNA latent features. T-SNE analysis on latent space of DIDL for miRNA–mRNA 
interaction prediction indicates that miRNAs are clustered according to their families. Families with less than 
four members are not shown
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Prediction of interaction in a complex multi‑layer network

To assess the performance of DIDL for interaction prediction in a more sophisticated 
context, it is applied on the multi-layer Hetionet network  [26]. DIDL was exploited 
for every two layers and could successfully predict interactions in such a complex net-
work (Additional file 5).

Prediction of interaction types

To predict the types of interactions, we are faced with a classification problem with 
the c + 1 class that c is the number of types of interactions. In addition, the elements 
of the adjacency matrix become the class number of interaction types, and the pre-
dictor is extended by having a D matrix for every type of interaction and D0 for no 
interaction (Fig. 5a).

A modified version of DIDL that can predict the types of interactions was devel-
oped and its validity was assessed using a part of the Hetionet dataset [26]. We used 
the Gene-Compound layers in this dataset consisting of three different types of inter-
actions: upregulation, downregulation, and binding. DIDL could successfully not only 
predict the presence of interactions but also their types (Fig. 5b)

Fig. 5  Overview of modified DIDL for kind of interaction prediction. (a) In order to predict the kind of 
interactions, the prediction is extended by having c + 1 matrix D that c is the number of kinds of interactions. 
(b) The performance of the algorithm for the prediction of three different kinds of interaction between small 
molecule compounds and genes in the Hetionet network is demonstrated



Page 13 of 17Borhani et al. BMC Bioinformatics           (2022) 23:53 	

Robustness of DIDL to network sparsity

Big biomedical data is often highly dimensional but sparse  [36]. As the presented 
method is based on adjacency matrix of the biological networks, sparsity of the adja-
cency matrix is potentially an important factor in the modeling performance. Hence, to 
assess robustness of the method to network sparsity, 10% of the interactions were held 
out as the testing subset and then the sparsity of the remaining network was gradually 
increased by random removal of a portion of the remaining interactions in the train-
ing set. As expected, by increasing network sparsity, the model performance degraded. 
However, the model performance remained acceptable until removing around 50% of 
interactions, especially for miRNA–mRNA and drug–target datasets (Fig. 6).

Assessment of the effect of encoder

To investigate the real impact of the encoder, it is removed and rows and columns of 
the adjacency matrix of interactions are fed directly to the tensor factorization predictor. 
This modification makes the model functionality absolutely reduced (Additional file 6). 
Especially for miRNA-mRNA and drug–target datasets, it becomes near to random. 
This experiment underscores the importance of encoder in the proper performance of 
the model.

Discussion
In order to achieve holistic views towards the complex mechanisms of physiological or 
pathological phenomena, it is imperative to construct multi-layer networks that consider 
interactions of heterogeneous biomolecules. This study was aimed at developing a highly 
nonlinear mathematical data integration method based on deep learning for interaction 
prediction between any two layers of biological networks on the basis of known inter-
actions. The encoder and predictor were simultaneously trained according to rows and 
columns of adjacency matrix of network interactions. DIDL efficiency was assessed for 
interaction prediction on drug–target, TF–DNA, and miRNA–mRNA networks and 
compared with alternative methods. Also, the validity of predictions was assessed by lit-
erature surveys. Furthermore, an enhanced version of DIDL was developed which can 
predict the kind of interactions.

We appreciate that DIDL is a combination of multilayer perceptron (MLP) and ten-
sor factorization, but this combination works more effectively and is applicable for 

Fig. 6  Impact of network sparsity. The performance of DIDL is robust to network sparsity
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link prediction in different kinds of multi-omics heterogeneous networks without 
dependence on biological properties of interacting elements. Additionally, some avail-
able methods for the prediction of interactions between two heterogeneous layers rely 
on homogenous interactions inside each layer. DIDL overcomes this limitation as it is 
trained solely with known inter-layer interactions. These advantages make the developed 
algorithm a suitable choice specially for cases such as miRNAs that neither the intra-
layer interactions nor the biological features of nodes and mechanisms of interactions 
are comprehensively discovered. DIDL was found to outperform even the best available 
algorithms for miRNA–mRNA interaction predictions, such as TargetScan, miRAW, 
and DIANA microT. Notably, the visualizing of latent features with T-SNE showed that 
although DIDL was not provided with biological information of miRNAs, it could clus-
ter them based on their families. This is strong evidence for the validity of this algorithm.

Large-scale investigations on interactions between biomolecules including proteins 
have just recently begun and a majority of interactions are possibly yet undiscovered. 
Hence, considering the dependency of DIDL to recognized interactions, we were inter-
ested to know how robust this method is to network sparsity. We observed that DIDL 
retains an acceptable level of performance after removing a considerable fraction of 
known interactions in the training subset. This suggests that even in the current situa-
tion where molecular connections are not completely understood, DIDL can be reliably 
exploited.

Another advantage of the proposed method is that the processes of feature selection 
and network representation are automatic. Although the logic of the method for pre-
dicting new interactions is based on the previous interactions, the tendency of nodes 
toward interaction can vary depending on the network type. For example, in a PPI net-
work, the probability of interaction between two proteins sharing many common neigh-
bors is actually low [37]. On the contrary, in a gene-disease network, genes causing the 
same or similar diseases tend to interact with one another  [38]. Therefore, manual fea-
ture extraction is not a good choice especially when the network behavior is not properly 
known.

DIDL is a novel autoencoder architecture that is capable of learning a joint represen-
tation of both first-order and second-order proximities. This architecture provides for 
efficient end-to-end training in a single learning stage to simultaneously perform node 
representation and link prediction. In this way, the predictor and encoder parameters 
can be jointly optimized. Recent research indicates that the modeling of graph-struc-
tured data can be considerably enhanced with such an end-to-end learning scheme [39, 
40]. This can, at least partly, describe the superiority of the DIDL over node2vec, Deep-
Walk, CN, and JI.

In conclusion, using a deep learning strategy, we have here proposed a novel inter-
omics prediction pipeline that relies on minimum data and is applicable for various 
kinds of networks. It can be exploited to construct multi-layer networks and generate 
comprehensive maps of the underlying mechanisms of complex disorders.

Abbreviations
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