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Abstract

Alcohol is one of the most widely used recreational substances worldwide, with drinking 

frequently initiated during adolescence. The developmental state of the adolescent brain makes 

it vulnerable to initiating alcohol use, often in high doses, and particularly susceptible to alcohol-

induced brain changes. Microglia, the brain parenchymal macrophages, have been implicated in 

mediating some of these effects, though the role that these cells play in the progression from 

alcohol drinking to dependence remains unclear. Microglia are uniquely positioned to sense and 

respond to central nervous system insult, and are now understood to exhibit innate immune 

memory, or “priming,” altering their future functional responses based on prior exposures. In 

alcohol use disorders (AUDs), the role of microglia is debated. Whereas microglial activation 

can be pathogenic, contributing to neuroinflammation, tissue damage, and behavioral changes, or 

protective, it can also engage protective functions, providing support and mediating the resolution 

of damage. Understanding the role of microglia in adolescent AUDs is complicated by the fact that 

microglia are thought to be involved in developmental processes such as synaptic refinement and 

myelination, which underlie the functional maturation of multiple brain systems in adolescence. 

Thus, the role microglia play in the impact of alcohol use in adolescence is likely multifaceted. 

Long-term sequelae may be due to a failure to recover from EtOH-induced tissue damage, altered 

neurodevelopmental trajectories, and/or persistent changes to microglial responsivity and function. 

Here, we review critically the literature surrounding the effects of alcohol on microglia in models 

of adolescent alcohol misuse. We attempt to disentangle what is known about microglia from 

other neuroimmune effectors, to which we apply recent discoveries on the role of microglia 

in development and plasticity. Considered altogether, these studies challenge assumptions that 

proinflammatory microglia drive addiction. Alcohol priming microglia and there by perturbing 

their homeostatic roles in neurodevelopment, especially during critical periods of plasticity such 
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as adolescence, may have more serious implications for the neuropathogenesis of AUDs in 

adolescents.
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INTRODUCTION

Alcohol remains the most commonly used drug among adolescents in the United States 

where drinking rates in the Americas are the second highest in the world at 38.2% (Johnston 

et al., 2020; SAMHSA, 2018; World Health Organization, 2018). Adolescents (10 to 19 

years, or 25 for some measures) drink less frequently than adults but consume similar 

quantities when they do drink (Deas et al., 2000; SAMHSA, 2018). Often, alcohol is 

consumed in “binges” defined as 4+ (females) or 5+ (males) standard drinks consumed 

within 2 h and achieving a blood alcohol level (BAL) topping 0.08% (>80 mg/dl; NIAAA, 

2004). In 2018, 4.7% of adolescents aged 12–17 and 34.9% aged 18–25 were current binge 

drinkers in the United States (SAMHSA, 2019), while rates in Europe were even higher 

(Chung et al., 2018). Strikingly, approximately 10% of adolescents report extreme binge 

drinking of 10+ drinks per occasion with 5% reporting over 15 drinks in the past 2 weeks 

alone (Johnston et al., 2020; Patrick et al., 2013). Males remain overrepresented in the 

extreme binge drinking category (Patrick & Terry-McElrath, 2019), though the gender gap is 

narrowing in adolescents (Johnston et al., 2020).

Unfortunately, these surveys likely underestimate binge drinking in adolescents due to the 

definition of a binge, which is based on BALs in adults (NIAAA, 2004), and that teens 

underestimate the amount of alcohol in a standard drink (White et al., 2005). The smaller 

size and body weight of adolescents and therefore higher BAL per standard drink force 

reconsideration of these definitions for adolescents as they may hit the >0.08 mg% threshold 

with as little as 1–2 drinks within a 2-h period (Chung et al., 2018; Donovan, 2009). Such 

hazardous drinking patterns increase the risk for developing an alcohol use disorder (AUD), 

for which 1.6% of young adolescents aged 12–17 meet criteria, while older adolescents are 

similar to adult rates (~14%; Clark et al., 2002, 2016; Grant et al., 2015; SAMHSA, 2019). 

Adolescent drinking also predicts later alcohol misuse and/or dependence in adulthood 

(DeWit et al., 2000; Grant & Dawson, 1997).

Disentangling the factors that underlie this vulnerability toward excessive alcohol drinking 

in adulthood from those that are a consequence of adolescent drinking remains a challenge 

(Crum & Hulvershorn, 2020). Microglia have emerged as an interesting target due to not 

only their role in brain development and homeostasis but also their dual roles in response 

to insult both proinflammatory and reparative/resolving of inflammation. This critical review 

gathers and integrates findings on the effect of adolescent alcohol exposure on microglia 

and considers them in relation to processes that occur during adolescence and those that 

underlie vulnerability for addiction. Microglial activation states are outlined, and the concept 

of priming, a type of innate immune memory, is introduced. Finally, we highlight evidence 
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of microglial priming following adolescent alcohol exposure and identify several gaps in our 

understanding of the role of microglia and their activation in adolescent susceptibility to the 

causes and consequences of AUD pathogenesis.

ADOLESCENT VULNERABILITY FOR EXCESS ALCOHOL CONSUMPTION

Adolescence, typically 10 to 19 years of age, is a critical time for brain and behavioral 

maturation with neurodevelopmental changes occurring up to age 25 (Brenhouse & 

Schwarz, 2016; Lees et al., 2020; Spear, 2000). In rodents, adolescence ranges between 

postnatal days (PND) 28 and 42, with 43 to 55 considered late adolescence, especially 

in males (Brenhouse & Andersen, 2011; Spear & Brake, 1983). During this time, white 

matter volume increases remarkably from ongoing myelination, while gray matter volume 

decreases due to synaptic pruning and refinement (Giedd, 2004; Lees et al., 2020; 

Pfefferbaum et al., 2018). The relative developmental immaturity of the adolescent brain 

and behavior coupled with specific effects of alcohol in adolescents favor the development 

of alcohol misuse (Crews & Boettiger, 2009; Crews et al., 2016; Spear, 2000, 2018). 

Exploration, risk-taking, and sensation seeking are behaviors associated with adolescence 

and correspond to relatively immature regions and circuits in the adolescent brain (Spear, 

2018). The brain's “go system,” including structures such as the mesolimbic nucleus 

accumbens (NAc) that are involved in reward and motivation, are functionally more mature 

at this time, whereas the “stop system” inclusive of the prefrontal cortices, involved in 

judgment and reasoning, develops later into adolescence (Gulley & Juraska, 2013; Markham 

et al., 2007; Sowell et al., 1999; Spear, 2018). Thus, age-typical impulsive behavior 

during adolescence likely results from hyperresponsivity to reward-based stimuli (Spear 

& Varlinskaya, 2005), while the underdeveloped top-down control systems hinder the ability 

of the frontal cortex to assess risk or exhibit impulse control (Gulley & Juraska, 2013; 

Townshend & Duka, 2005). Impulsive behavior, a hallmark of adolescence, often manifests 

as risk-taking or sensation seeking (Romer & Moreno, 2017), which are thought to play 

major roles in the initiation of alcohol use (Bardo et al., 2013; Crum & Hulvershorn, 2020; 

Hamilton et al., 2019). In preclinical models, measures of impulsivity are predictive of 

both increased sensitivity to drug reward (Yates et al., 2012) and dose-related aspects of 

subjective reinforcement (Marusich & Bardo, 2009).

In addition to an immature “stop system,” adolescents are more prone to excess 

consumption. Adolescents demonstrate enhanced sensitivity to the positive reinforcing 

action of alcohol with reduced sensitivity to sedation and motor impairment that normally 

help to regulate consumption (Gee et al., 2018; Li et al., 2003; Little et al., 1996; 

Spear, 2011, 2018). For example, rats consume more saccharin-sweetened ethanol (EtOH) 

solution during adolescence compared with adulthood, while consumption induced a greater 

tachycardic effect, which is associated with enhanced EtOH reward (Doremus et al., 2005; 

Ristuccia & Spear, 2008; Spear & Varlinskaya, 2005). Enhanced sensitivity to reward may 

be due to changes in the striatal dopaminergic system, which demonstrates high plasticity 

during adolescence, with evidence of increased activity and responsivity of mesolimbic 

and mesocortical projections (Gulley & Juraska, 2013; Lees et al., 2020; Silverman et al., 

2015; Sowell et al., 1999; Spear, 2018; Wahlstrom et al., 2010). Indeed, bidirectional, 

dopaminergic projections between prefrontal cortex (PFC) and hippocampus - regions 
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important for modulating reward processing, attention, working memory, and episodic 

memory - are still maturing (Gee et al., 2018). Developmental differences in alcohol's 

effects on GABAergic neurotransmission may underlie the reduced sensitivity of adolescents 

to regulators of consumption, including the sedative/motor impairing effects of alcohol, 

compared with adults (Fleming et al., 2007; Li et al., 2003; Little et al., 1996). Several 

animal model studies, however, suggest faster EtOH metabolism in adolescents, which 

would also influence the sedative and motor impairing effects of EtOH (Walker & Ehlers, 

2009; Watson et al., 2020). The literature varies widely, discussed below, and it remains a 

significant gap as to whether EtOH pharmacokinetic differences occur in human adolescents 

versus adults as well.

ADOLESCENT VULNERABILITY TO NEGATIVE CONSEQUENCES OF 

EXCESS CONSUMPTION

The adolescent's enhanced vulnerability to alcohol-induced neurotoxicity, particularly in 

regions still maturing, profoundly impacts development (Crews et al., 2000, 2016; Spear, 

2018). These damaging effects occur within 2 domains: (1) alterations in brain structure/

function through damage and/or derangement of physiology and (2) disruptions of the 

brain's developmental trajectory. Negative impact from either domain may persist into 

adulthood and drive and/or be exacerbated by continued alcohol misuse.

Imaging studies have revealed that immature regions such as the PFC are targets of alcohol 

toxicity (Gulley & Juraska, 2013; Jacobus & Tapert, 2013; Luciana et al., 2013; Pfefferbaum 

et al., 2018; Silveri et al., 2016; Squeglia et al., 2014). Seminal cross-sectional studies 

have shown that heavy drinking adolescents have smaller frontal and temporal gray and 

white matter volumes than low to no drinking teens (Alba-Ferrara et al., 2016; De Bellis 

et al., 2000, 2005; Fein et al., 2013; Jones et al., 2018; Medina et al., 2008; Silveri 

et al., 2016). However, the cross-sectional designs of this early work are marred by the 

limitations that predisposition (e.g., family history of AUD or psychiatric disorders) or 

existing structural deficits cannot be ruled out. Thus, results from preclinical models coupled 

with recent human, longitudinal data have been essential to our understanding of how the 

course of adolescent brain development is impacted by heavy drinking (Luciana et al., 2013; 

Pfefferbaum et al., 2018; Squeglia et al., 2014, 2015). Specifically, age-typical decreases 

in cortical gray matter volume were exacerbated, while expected increases in white matter 

volume were attenuated in heavy drinking adolescents (Luciana et al., 2013; Pfefferbaum 

et al., 2018; Squeglia et al., 2014, 2015). In addition, subcortical regions involved in the 

development of AUDs such as the hippocampus and amygdala also show volume reductions 

in adolescents with an AUD (De Bellis et al., 2000, 2005; Nagel et al., 2005). Preclinical 

studies are consistent with many of these deficits described in human adolescents as rodent 

models show that alcohol exposure leads to death of neurons and glia across cortical regions 

and hippocampus (Crews et al., 2000, 2016, 2019; Hu et al., 2020; Marshall et al., 2020; 

Morris et al., 2010a; Risher et al., 2015; Swartzwelder et al., 2019).

The increased risk for development of alcohol dependence or AUDs in adulthood after 

adolescent alcohol consumption is associated with long-term damage or impact on the 
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developmental trajectory of brain structures essential for normal, adaptive behaviors (DeWit 

et al., 2000; Grant & Dawson, 1997). However, it is difficult to extricate factors that underlie 

the propensity to drink to excess from the consequences of excessive alcohol drinking. 

Although alcohol-induced damage and neuroimmune effects in the adolescent are more 

widespread, we focus on 3 brain areas or circuits involved in addiction processes that 

are also vulnerable to alcohol damage and neuroimmune effects: the PFC, mesolimbic 

reward system, and hippocampus. Evidence from human imaging, behavior, and preclinical 

models converges for these 3 areas, though we acknowledge that this overlooks exciting 

new discoveries in regions underappreciated for their role in addiction, including especially, 

the cerebellum (Sullivan et al., 2020). We briefly review each area as a foundation for 

understanding the effects of innate immune system dysregulation by alcohol on these key 

regions that contribute to the pathogenesis of AUDs in adolescence.

Dysregulation of prefrontal cortical behavioral control systems is involved as both cause 

and consequence of adolescent alcohol drinking. Impaired behavioral control, or impulsivity, 

contributes to exploratory alcohol use during adolescence (Fernie et al., 2013); however, 

it also results from excess alcohol use and therefore plays a role in the persistence of 

this maladaptive behavior (Ivanov et al., 2021; Lopez-Caneda et al., 2014). Impulsivity 

or risky choice behavior has been observed in human heavy drinkers and preclinical 

models of AUD (Sanchez-Roige, Baro, et al., 2014; Sanchez-Roige, Pena-Oliver, et al., 

2014). For example, emerging adult binge drinkers (aged 18 to 30) displayed greater 

motor impulsivity in a visual search matching task than nonbinge drinkers (Townshend 

& Duka, 2005). In adolescent males with higher self- and parental-reported impulsivity 

ratings, increased impulsive behavior was found to be a consequence of heavy drinking, 

an effect not seen in individuals with low a priori impulsive behavior ratings (White et al., 

2011). Additionally, baseline measures of impulsivity in adolescents during the monetary 

incentive delay task were predictive of subsequent drinking rates, while heavy drinking 

predicted increases in impulsivity upon follow-up (Ivanov et al., 2021). In this cohort, 

blunted activity of the medial orbitofrontal cortex (OFC) in response to reward at baseline 

also predicted greater alcohol use (Ivanov et al., 2021). These behavioral studies parallel 

preclinical evidence that alcohol damages behavioral control systems, including the OFC 

required for response inhibition (Spinella, 2004), or alters neurotransmitter systems such as 

serotonin, dopamine, and acetylcholine, which are associated with heightened impulsivity 

or increased risky choice (Boutros et al., 2015; Leamy et al., 2016). For example, rats 

with the highest voluntary drinking in adolescence displayed greater risk preference in 

a probability discounting task (Nasrallah et al., 2009), while chronic adolescent alcohol 

exposure results in more prevalent risky choice in probability discounting tasks measured 

in adulthood, whether voluntary (Nasrallah et al., 2009; Schindler et al., 2014), or forced 

exposure to alcohol was used (Boutros et al., 2015). Rodent studies also implicate the OFC 

in both impulsive action and choice, where decreased OFC DAT function was associated 

with enhanced impulsive action (Yates et al., 2016), while enhanced OFC SERT function 

was associated with greater impulsive choice (Darna et al., 2015).

While the development of “top-down” control of the mesolimbic reward system emerges 

during adolescence, alcohol exposure during this time can derange the reward system, 

leading to an increased incidence of addictive-like behaviors in adulthood. For example, 
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in rats, 2-bottle choice alcohol consumption during adolescence increased appetitive 

and consummatory operant behaviors toward alcohol as adults (Amodeo et al., 2017). 

Interestingly, compared with controls, rats exposed to intermittent EtOH in adolescence 

displayed reduced frontolimbic functional connectivity following acute EtOH administration 

as adults, and showed decreased baseline resting-state connectivity between subregions of 

the PFC and between the PFC and striatum (Broadwater et al., 2018). Mechanistically, 

evidence from both animal and human studies supports that adolescent alcohol exposure 

persistently changes brain dopaminergic systems that may lead to enhanced vulnerability to 

developing an AUD in adulthood. Whole-cell patch clamp recordings in PFC slices from 

adult rats exposed to intermittent EtOH vapor during adolescence display a loss of D1 

receptor modulation over intrinsic excitability and synaptic transmission between the mPFC 

and NAc core, and the mPFC and basolateral amygdala (Trantham-Davidson et al., 2017).

In rats, basal dopamine levels in the NAc septi reach adult levels by PND 35 and peak in 

late adolescence (PND 45) before returning to adult levels around PND 60 with levels of 

the dopamine metabolite, DOPAC, consistent from PND 35 forward (Philpot et al., 2009). 

However, there is a developmental transition in the rat's ability to adapt to repeated EtOH 

exposure between PND 35 and 45: Peak dopamine release upon acute EtOH challenge is 

blunted in younger (PND 25 and 35) versus older (PND 45 and 60) rats with a history 

of prior EtOH exposure. These data may reflect an enhanced susceptibility for addiction 

vulnerability during early adolescence (Philpot et al., 2009). Rats exposed intermittently 

to alcohol during adolescence consumed more alcohol in a 2-bottle choice test, which 

was driven potentially by enhanced motivation for EtOH in a self-administration paradigm, 

effects that were correlated with reduced c-Fos reactivity in the NAc (Alaux-Cantin et al., 

2013). Alcohol-induced disruptions in dopamine signaling come about through a variety 

of mechanisms (Nixon & McClain, 2010). In humans, young adults who were either 

high reward-seekers, behaviorally disinhibited, or low responders to the effects of alcohol 

showed increased dopamine release in the striatum post oral alcohol administration versus 

placebo (Setiawan et al., 2014). Even moderate amounts of alcohol in adolescence enhanced 

a reward predictive cue through increasing phasic dopamine release during Pavlovian 

conditioned approach in adulthood (Spoelder et al., 2015). Polymorphisms in the D1 

receptor have been associated with changes in signaling (BOLD response) in the medial 

OFC after an alcohol reward anticipation cue (Baker et al., 2019). Other neurotransmitter 

systems affected directly by alcohol also influence dopaminergic signaling. For example, 

increased GABAergic transmission in the ventral tegmental area leads to decreased basal 

dopamine, an effect thought to underlie maladaptive decision making as a consequence of 

adolescent alcohol drinking (Schindler et al., 2016).

Finally, hippocampal systems, which are well known for their canonical role in learning and 

memory, also contribute to behavioral control (Abela et al., 2013; Nixon et al., 2011; Rubin 

et al., 2017). Although this region has the least direct role in controlling consumption, it 

is a primary target of alcohol toxicity during adolescence, impacting PFC and mesolimbic 

functions that rely on interaction with the hippocampus (White & Swartzwelder, 2004). 

Adolescent binge drinkers consistently demonstrate learning and memory deficits across a 

variety of hippocampal-dependent tasks (Jacobus & Tapert, 2013; Mahmood et al., 2010; 

Schweinsburg et al., 2010; Vinader-Caerols, Duque, et al., 2017; Vinader-Caerols, Talk, et 

Melbourne et al. Page 6

Alcohol Clin Exp Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2017). These findings in humans are paralleled by several studies in preclinical models 

where alcohol exposure impairs learning and memory through accelerated forgetting, 

decreased retention, or other impairments on hippocampal-dependent tasks such as the 

Morris water maze or radial arm maze (Ji et al., 2018; Schulteis et al., 2008; Seemiller 

& Gould, 2020; Sircar et al., 2009; Sircar & Sircar, 2005; Swartzwelder et al., 2014). 

Indeed, impairments on the Morris water maze persisted longer in adolescent than in adult 

rats (Sircar & Sircar, 2005), which may reflect alcohol's more damaging effects on limbic 

circuitry in adolescents (Broadwater et al., 2014; Crews et al., 2000; Markwiese et al., 

1998; Morris et al., 2010a). Following binge treatment, adolescent rats also displayed greater 

sensitivity to EtOH's memory impairing effects in a radial arm maze (Risher et al., 2013, 

2015; White et al., 2000). For hippocampus, the role of adult neurogenesis must also 

be considered. Neurogenesis occurs throughout the lifetime of the organism, and alcohol 

impacts multiple aspects of this process, particularly in adolescence (Broadwater et al., 

2014; Crews et al., 2006; Macht et al., 2019; McClain et al., 2014; Morris et al., 2010a; 

Sakharkar et al., 2016; Vetreno & Crews, 2015; reviewed in Wooden et al., 2021). Thus, 

both cell death and cell birth mechanisms contribute to the enhanced sensitivity of the 

adolescent brain to alcohol's damaging effects.

MECHANISMS OF ADOLESCENT VULNERABILITY TO ALCOHOL: 

MICROGLIA

Activation of the innate immune system is implicated in the causes and consequences of 

adult AUD (Crews et al., 2017; Erickson et al., 2019; Melbourne et al., 2019) but much 

less is known for adolescence. Growing evidence supports that innate immune system 

activation impacts adolescent vulnerability to developing AUDs at multiple levels, from 

influencing cell signaling to roles in synaptic and structural plasticity both during normal 

development and in response to insult. This review focuses on microglia, the hallmark cell of 

the brain's innate immune system. An overview of microglial functions in development and 

homeostasis is described in Figure 1A.

MICROGLIAL RESPONSE TO INSULT: PHENOTYPES AND PRIMING

Microglia were originally investigated in the context of illness and injury, where tissue 

examined histologically was noted to contain “reactive” microglia with enlarged cell bodies 

and retracted processes (Prinz et al., 2019). This marked response is now understood to 

reflect an extreme phenotype along a continuum of states of cellular activation (see Figure 

1B for an overview of microglial activation; Dubbelaar et al., 2018; Kreutzberg, 1996). The 

microglial response to a particular stimulus appears to be highly dependent on the history 

of that cell's previous systemic or microenvironmental exposures, further complicating the 

picture. When sensitized, macrophages and microglia are referred to as primed, essentially 

a form of innate immune memory (Haley et al., 2018; Locati et al., 2013; Neher & 

Cunningham, 2019; Perry & Holmes, 2014; Ransohoff & Perry, 2009; Wendeln et al., 

2018). Primed microglia, according to models of aging, stress, and neurodegeneration, do 

not exhibit a fully proinflammatory phenotype; they show an exaggerated or heightened 

response to an inflammatory stimulus compared with that observed in stimulus-naïve 

Melbourne et al. Page 7

Alcohol Clin Exp Res. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microglia (Fonken et al., 2016; Neher & Cunningham, 2019; Perry & Holmes, 2014; 

Rosczyk et al., 2008). Identifying primed microglia remains challenging as unique markers 

have not been identified, though changes in morphology and up-regulation of cell surface 

antigens occurs (Perry & Holmes, 2014).

Numerous endogenous and exogenous stimuli have been shown to prime microglia. Of 

particular relevance to AUDs are pathogen-associated molecular patterns and endogenous 

damage-associated molecular patterns (DAMPs), or sterile insult signals that are released 

from neurons during cellular stress or neurotoxicity and are detected by microglial pattern 

recognition receptors (Haley et al., 2018). Molecules expressed in the degenerating or 

injured brain, such as colony-stimulating factor (Chapoval et al., 1998) and C-C motif 

chemokine ligand 2/monocyte chemotactic protein 1 (CCL2/MCP-1; Rankine et al., 2006), 

also prime microglia. The DAMP, high mobility group box protein 1 (HMGB1), has been 

implicated as a key factor mediating priming in stress, aging, and most recently in substance 

misuse including adolescent susceptibility to developing an AUD (Coleman et al., 2018; 

Crews et al., 2013; Kang et al., 2014; Wang et al., 2015; Weber et al., 2015; Yang & Tracey, 

2010). Though the exact mechanisms of microglial priming remain poorly understood, 

evidence suggests that shifts in the microglial epigenetic landscape underlie these changes to 

microglial responsivity (Martins-Ferreira et al., 2020).

The priming phenomenon is pertinent to adolescence and AUD development as microglia 

are long-lived compared with their peripheral counterparts and therefore have a greater 

propensity to “remember” prior insults (Eyo & Wu, 2019; Neher & Cunningham, 2019). 

Activation of previously primed microglia results in a stronger inflammatory response and 

may exacerbate damage or disease progression. Evidence of priming in alcohol studies has 

been observed in repeated binge models in adult rats where a sensitized microglial response 

was observed (Marshall et al., 2016) or in a fetal alcohol spectrum disorder model (Chastain 

et al., 2019). The shift in cellular phenotype that occurs in primed microglia leads to 

a decreased expression of homeostatic genes. Studies in primed peripheral macrophages 

demonstrate an accumulation of permissive histone modifications at proinflammatory 

gene promoters and repressive modifications at genes that underlie homeostatic and 

reparative functions (Kang et al., 2017). Therefore, priming in adolescence may result 

in microglia that are redirected from their homeostatic, protective, and developmental 

functions. This persistent shift in microglial set point following perturbation provides a 

framework for understanding how cumulative insults, particularly those experienced during 

developmentally sensitive windows, could have a lasting impact on brain function later in 

life.

THE ROLE OF MICROGLIA IN NEURODEVELOPMENT

Across different stages of life, from embryogenesis to adolescence and adulthood, microglia 

display distinct morphologies, transcrip tomic and proteomic signatures (Masuda et al., 

2019; Prinz et al., 2019). Though research demonstrates a critical role of these cells in 

sculpting early brain development, far less is known about their function in adolescence. As 

discussed above, the brain continues to mature throughout adolescence, with widespread 

fine-tuning of synaptic connections, and ongoing myelination and neurogenesis, all 
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processes in which microglia are thought to play an important role. Factors that affect 

the immune system during adolescence not only impact existing circuity but also perturb 

developmental trajectories, affecting development of brain circuits and behaviors, such as 

decision making, impulsivity and cognition, that occur during this time.

In the early developing brain, microglia induce normal programmed cell death, phagocytose 

dying neurons, and contribute to synapse formation and elimination, shaping the architecture 

and wiring of the developing brain (Frost & Schafer, 2016; Konishi et al., 2019; Prinz et al., 

2019; Schafer et al., 2012; Schafer & Stevens, 2015; Squarzoni et al., 2014). Microglial 

trophic support is critical for neuronal survival and the development and homeostasis 

of oligodendrocytes and their precursors (Ueno et al., 2013; Wlodarczyk et al., 2017). 

During early postnatal development, microglia are perhaps best appreciated for their role 

in synaptic pruning (reviewed in Salter & Stevens, 2017), mediated through an experience- 

and complement-dependent mechanism (Schafer et al., 2012; Stevens et al., 2007; Wu 

et al., 2015). Conversely, a complement-independent mechanism has been demonstrated 

involving the ligand fractalkine and the microglial fractalkine receptor CX3CR1 (Gunner 

et al., 2019). Knockout of CX3CR1 decreases synaptic pruning and hippocampal–frontal 

functional connectivity postnatally (Paolicelli et al., 2011; Zhan et al., 2014). When 

microglial TREM2 receptors were knocked out, mice showed similar deficits in synaptic 

pruning and connectivity, with alterations predominantly in hippocampus (Filipello et al., 

2018). Thus, microglia have critical roles in normal brain developmental processes.

Less is known about the contribution of microglia to adolescent neurodevelopment. As 

adolescence is a critical period for synaptic pruning, refinement, and myelination—events 

involving microglia directly—perturbing microglia likely impacts these events (see Figure 

1; Schafer & Stevens, 2015). Microglial engulfment of dendritic spines and glutamatergic 

presynaptic terminals in the PFC is elevated following the peak in spine density in 

adolescent rats (Mallya et al., 2019), and depletion of microglia during early adolescence 

(P30) altered glutamatergic spine plasticity via microglia-derived BDNF, impairing learning 

(Parkhurst et al., 2013). Microglia, through complement-dependent mechanisms, mediated 

down-regulation of dopamine receptors in the NAc during adolescence, which affected 

social play behavior in male, but not female, rats (Kopec et al., 2018). This exciting finding 

aligns with the hypothesis that factors that impact the neuroimmune system could have 

widespread effects on systems that are being developmentally fine-tuned during this critical 

period.

In adult animals, microglia are necessary for myelin homeostasis, promoting survival of 

oligodendrocyte precursor cells and phagocytosing myelin (Hagemeyer et al., 2017; Li 

& Barres, 2018). However, the precise nature of microglia–oligodendrocyte interactions 

during the significant myelination that takes place throughout adolescence remain to be 

elucidated (Giedd et al., 1999). Another developmental process modulated by microglia 

is adult neurogenesis, levels of which begin to asymptote in adolescence (Ekdahl et al., 

2009; He & Crews, 2007; Wooden et al., 2021). In adult animals, microglial effects on 

adult neurogenesis depend upon their phenotypic state (Ekdahl et al., 2009): Inflammatory 

microglia reduce adult neurogenesis (Ekdahl et al., 2003; Monje et al., 2003), while 

noninflammatory microglia are beneficial (Butovsky et al., 2006; Kreisel et al., 2019; Sierra 
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et al., 2010, 2014). Finally, recent data indicate that microglia have important homeostatic 

function in regulating neuronal activity, acting as a negative feedback mechanism by 

detecting and suppressing excess neuronal activation in the healthy brain and following 

insult (Badimon et al., 2020; Cserep et al., 2020; Pfeiffer & Attwell, 2020).

THE EFFECT OF ALCOHOL ON MICROGLIA IN ADOLESCENT MODELS: A 

REVIEW OF THE EVIDENCE

It is generally well accepted that alcohol affects the neuroimmune system; however, the 

precise nature and mechanisms of the effect are debated (summarized in Coleman & Crews, 

2018; Erickson et al., 2019; Guerri & Pascual, 2019a,b; Melbourne et al., 2019). The most 

convincing evidence that the neuroimmune response is relevant for AUDs is that bacterial 

or viral mimetics escalate alcohol consumption in rodents (Blednov et al., 2011), an effect 

reversed by the microglial “inhibitor” minocycline (Agrawal et al., 2011), in addition to the 

observation of an activated microglial morphology in the brains of humans with AUDs (He 

& Crews, 2008). Activation of the neuroimmune system, including microglia, is apparent 

in adult animals: Subtle to moderate changes in morphology, up-regulation of cell surface 

proteins, and changes in cytokine and/or growth factor expression have been observed 

(reviewed in Melbourne et al., 2019). The nature of immune and microglial alterations, 

however, varies according to the species, duration and pattern of alcohol administration, and 

outcome measure (e.g., Bell-Temin et al., 2013; Doremus-Fitzwater et al., 2014, 2015; Gano 

et al., 2016; Guergues et al., 2020; Marshall et al., 2013; Qin et al., 2008; Rath et al., 2020; 

Zahr et al., 2010). Furthermore, many of these studies have failed to consider microglial 

phenotype (Melbourne et al., 2019). Based on the presence of cytokines and DAMPs, several 

groups hypothesize that proinflammatory microglial activation produces brain volume loss 

(Crews et al., 2016; Vetreno et al., 2018). However, these immune signals are not specific 

to microglia nor are they a robust indicator of an inflammatory state. For example, some 

extent of increase in NF-κB activation or even TNF-α levels are necessary aspects of the 

immune response, whether that response is pro- or anti-inflammatory (Nennig & Schank, 

2017; Scherbel et al., 1999).

Even less is known about the effects of adolescent drinking on the neuroimmune system, 

specifically microglia. Excessive alcohol use in adolescence is associated with even greater 

structural changes and damage to the brain than seen in adults (Crews et al., 2000). The 

loss of brain mass may be due to cell death, altered myelination or synaptic connectivity, 

and/or impaired neurogenesis (Crews & Nixon, 2009), all of which could involve microglial 

activation (Crews et al., 2019). Given the sensitivity of the adolescent brain to the 

damaging effects of alcohol and the potential life-long impact from microglia altering 

developmental trajectories, this gap is striking. Therefore, to better elucidate converging 

results, we summarize existing literature for effects of adolescent alcohol exposure on (a) 

microglia-specific markers and cell morphology, (b) induction of immune molecules related 

to microglia, and (c) evidence that microglia are primed by alcohol.
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Markers and morphology

In adolescent models of alcohol misuse, morphological changes and increased cell 

surface marker expression signifying microglial activation are consistent, but the activation 

phenotype is not clear. As detailed in Table 1, increased binding of translocator protein 

18 kD ligands using PET imaging was observed after EtOH exposure in adolescent 

nonhuman primates and rats, indicating microglial activation but not phenotype specificity 

(Marshall et al., 2013; Saba et al., 2018; Tournier et al., 2020). Increased immunoreactivity 

or immunopositive (+) cell numbers using Iba1, the calcium binding protein specific 

to microglia, are observed in regions such as the cortex, hippocampus, amygdala, and 

substantia nigra in multiple adolescent rat alcohol models (Table 1). In mice, however, 

Iba1 immunoreactivity is mixed, while microglial numbers are decreased (Table 1). These 

discrepancies may be due to the time point examined. As one rat model shows, microglial 

number initially declines with 2 days of binge exposure (Marshall et al., 2020) followed 

by proliferation of microglia in withdrawal, a hallmark of activation (McClain et al., 

2011a; Nixon et al., 2008). Further, immunoreactivity could reflect increased protein 

expression independent of changes in microglial number, which highlights the importance 

of quantifying cell number. Another hallmark of activation, elevated complement receptor 

3 immunoreactivity (CD11b + IR), is observed in frontal cortex and limbic regions after 

chronic intermittent, 4-day binge, but not acute, EtOH exposure in adolescent rats, persisting 

into adulthood with chronic intermittent exposure (Table 1).

Notably, in all of these studies microglial processes remained ramified, though thickened 

compared with controls, consistent with low level activation (Beynon & Walker, 2012; 

McClain et al., 2011b; Walter et al., 2017). Furthermore, several studies in rodents report 

microglial loss, which may be more detrimental for synaptic plasticity and development 

than activation (Grifasi et al., 2019; Hu et al., 2020; Marshall et al., 2020). Only limited 

studies have reported M1-like markers after alcohol exposure in adolescent rats (Table 1). 

Flow cytometric analysis of microglia showed increased expression of both M1 and M2 

markers after binge exposure (Peng & Nixon, 2021). Some MHCII-positive cells were noted 

in the dentate gyrus after binge-like exposure and CD68 was detected in hippocampus after 

chronic alcohol drinking, but both showed ramified morphologies (e.g., see Figure 2 in Li et 

al., 2019) inconsistent with a proinflammatory phenotype.

Immune molecules

A number of studies in adolescents report EtOH-induced increases in mRNA or tissue 

protein expression of cytokines, chemokines, and other inflammatory mediators in the PFC 

and hippocampus (Table 1). While these results support the interpretation that neuroimmune 

activation is a consequence of alcohol exposure in adolescence, gene expression changes 

do not necessarily predict changes in protein. In contrast, others have observed a blunted 

cytokine response to acute EtOH in adolescence versus adults (Table 1). This observation 

has been interpreted as a relative immaturity of neuroimmune function (Doremus-Fitzwater 

et al., 2015), but the specific role of microglia is not clear. Indeed, for all of these reports 

on cytokine effects after alcohol exposure, the source of the cytokine or growth factor 

proteins is not clear as whole tissue homogenates are used. This point includes the hallmark 

proinflammatory cytokine TNF-α, the basis of the neuroimmune hypothesis of addiction 
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(Crews et al., 2011). As detailed in Table 1, more studies report a lack of effect in robust 

measures of TNF-α, such as protein or microglia-specific TNF-α gene expression.

Similarly, a role for the DAMP, HMGB1, in AUD development is compelling but not 

specific to microglia nor necessarily proinflammatory. Adults with a history of adolescent-

onset AUD have increased HMGB1, an effect not only mimicked in adolescent alcohol 

models but also observed in comorbid conditions such as stress or depression (Coleman 

et al., 2018; Franklin et al., 2018; Swartzwelder et al., 2019; Vetreno & Crews, 2012; 

Vetreno et al., 2013; Weber et al., 2015). HMGB1 is released from dying neurons (Scaffidi 

et al., 2002) as observed in a rat AUD model (Wang et al., 2015). As a DAMP, it activates 

neuroimmune signaling and may activate or prime microglia, but outcomes may be pro- 

or anti-inflammatory. Thus, increased expression of cytokines and other innate immune 

molecules implicate neuroimmune activation in response to alcohol, but a causal role of 

these factors in adolescence remains unclear.

Microglial phenotypes and priming

Demonstration of microglial activation is not sufficient to infer that these cells produce 

cell death and structural damage (Marshall et al., 2013). M2 “anti-inflammatory” microglia 

also up-regulate cell surface markers, and morphology becomes hyperramified (Beynon 

& Walker, 2012). Secondary waves of cell death, as would be predicted from M1-like 

microglia, have not been reported in alcohol models (e.g., Crews et al., 2000; Kelso et al., 

2011). Furthermore, the pattern of cell surface and phenotypic markers and gene expression 

changes in microglia isolated from adolescent rats after alcohol dependence support that 

microglia are M2-like, consistent with being primed (Peng & Nixon, 2021).

Observation of a heightened microglial response to subsequent challenge—the definition of 

priming—confirms this hypothesis (Perry & Holmes, 2014). In an adult rat model, microglia 

show a heightened response upon a double versus single binge, though adolescents have not 

been reported (Marshall et al., 2016). Chronic alcohol exposure in adolescence resulted in 

a heightened microglial response (increased CD11b + IR) to restraint stress in adulthood, 

indicating microglial priming (Walter et al., 2017). Preliminary observations of microglial 

hyperresponse to LPS stimulation following an alcohol binge (Peng and Nixon, 2018) 

correspond to reports of increased presence of priming factors such as the DAMP, HMGB1, 

in rodent models and human AUD (Coleman et al., 2018; Swartzwelder et al., 2019; Vetreno 

& Crews, 2012; Vetreno et al., 2013). EtOH applied directly to neurons in culture increases 

release of HMGB1 (Wang et al., 2015), and its expression is increased in human postmortem 

OFC in subjects with AUD (Crews et al., 2013; Crews & Vetreno, 2014; Flatscher-Bader et 

al., 2005; Lewohl et al., 2000). Thus, alcohol may prime microglia through neuronal damage 

producing extracellular DAMPs such as HMGB1.

ARE ADOLESCENTS MORE SUSCEPTIBLE TO MICROGLIA-BASED 

EFFECTS?

Critical developmental processes occur during adolescence that increase the susceptibility of 

the brain to the consequences of EtOH (Crews et al., 2000, 2007; White & Swartzwelder, 
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2004). One consequence is damage, which is distinct in the adolescent brain when compared 

directly to adults (Crews et al., 2000). The hippocampus is a particular target of alcohol 

toxicity via effects on cell death and birth (De Bellis et al., 2000; McClain et al., 

2014; Morris et al., 2010a; White & Swartzwelder, 2004), both mechanisms of which 

are modulated by microglia (Ekdahl et al., 2009). Whether microglia are impacted by 

alcohol differently in adolescents versus adults is not well described. There are few direct 

comparisons, work from our own laboratories included, though there are a few studies 

of adolescents or adults by the same investigators with identical approaches that allow 

for strong comparisons. Furthermore, valid comparisons between ages requires comparable 

BALs. There is some evidence of faster rates of EtOH clearance in adolescent animals, 

but the presence of significant pharmacokinetic differences varies widely across routes of 

administration, species, strains, and sex (Walker & Ehlers, 2009; Watson et al., 2020, but 

see Carrara-Nascimento et al., 2017; Fleming et al., 2019; Lacaille et al., 2015; Morris et 

al., 2010b; Silveri & Spear, 2000; Vore et al., 2021). Importantly, where EtOH metabolism 

differences were observed, adolescents typically showed quicker clearance and therefore 

lower BALs despite greater pharmacodynamic effects. Thus, the slight metabolic differences 

may not underlie their susceptibility in brain outcomes. Regardless, BALs are critically 

necessary for rigorous valid comparisons of age differences. In addition, drinking-based 

models are not good comparisons as adolescent rats consume more alcohol than adults, 

which produces different BALs and confounds interpretations (e.g., Chung et al., 2008 

versus Morris et al., 2010b). Titrated binge models or vapor exposure can overcome slight 

pharmacokinetic differences between ages as observed in males (Morris et al., 2010b; 

Varlinskaya & Spear, 2004; Walker & Ehlers, 2009).

For microglia, adults and adolescents seem similar prima facie. Two recent papers show 

similar microglial dystrophy and loss in the hippocampus in adolescents and adults or in 

adolescents versus aging rats after days of binge-like exposure (Grifasi et al., 2019; Marshall 

et al., 2020). Another pair of articles described subtle differences in cytokine expression 

but increased microglial reactivity—more regions and timepoints had increased Iba1 + IR 

in adults (Sanchez-Alavez et al., 2019b) versus adolescents (Sanchez-Alavez et al., 2019a) 

despite similar BALs during 35 days of EtOH vapor. For microglial phenotype, both ages 

show mixed phenotypes with a distinct increase in M2-like microglia (Peng et al., 2017; 

Peng & Nixon, 2021). The consequences of these effects in adolescents, however, may be 

where adolescents have greater vulnerabilities. Effects may be more severe and persistent by 

diverting microglia from their homeostatic or developmental roles, impacting brain structure 

and function long term.

EMERGING EVIDENCE FOR A ROLE OF MICROGLIA IN ADDICTION 

BEHAVIOR

The implications of microglial activation on adolescent development of addiction behavior 

remain unclear. In adults, depleting microglia prevented some, but not all, of the 

neuroimmune responses to alcohol, preventing the escalation of drinking after alcohol 

dependence, but not reducing voluntary drinking (Walter & Crews, 2017; Warden et al., 

2020). These results point to a role of microglia on a symptom of addiction, escalation 
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of intake, which is similar to what occurs after adolescent exposure. Speculating on 

how microglia influence increased adult drinking after adolescent exposure requires us to 

revisit the factors in adolescent development that impact consumption and/or predict future 

addiction behaviors.

Impairments in PFC-related behavior are well established to increase risk for addiction 

(Koob & Volkow, 2016), and adolescent alcohol impairs PFC-dependent functions such as 

impulse control, behavioral flexibility, delay discounting, and working memory (Boutros 

et al., 2015; Seemiller & Gould, 2020; Sey et al., 2019). Little is known about the role 

of microglia in these behaviors, and most evidence related to immune signaling is not 

microglia-specific. Enhanced immune signaling in the PFC after adolescent EtOH exposure 

was associated with reversal learning deficits and increased perseverative behavior in adult 

rats tested in the Barnes maze (Vetreno & Crews, 2012). Increased expression of immune 

markers was seen in the PFC of human postmortem AUD and associated with drinking 

onset in adolescence, an effect mimicked in animal models after AIE exposure (Crews 

et al., 2013; Vetreno et al., 2013). Interestingly, adolescent rodents were protected from 

effects of alcohol, such as neuroimmune activation, cell death, and increased drinking, in 

TLR4−/− mice or by treatment with the anti-inflammatory indomethacin (Montesinos et 

al., 2015, 2016; Vetreno & Crews, 2018). However, the role of TLR4 in alcohol drinking 

was discounted in a comprehensive study in adult mice (Harris et al., 2017) and whether 

any of these effects involve microglia specifically is not established. Thus, major gaps 

remain in our understanding of the role of microglia in PFC-controlled behaviors in AUD 

development.

Alterations in mesolimbic reward circuity that influences reward processing may underlie 

the adolescent's increased susceptibility for developing alcohol problems in adulthood (Hill 

et al., 2009; Stice et al., 2013). While there is evidence for differential sensitivity to 

alcohol-induced neuroadaptations in the mesolimbic system in adolescents versus adults 

(Alaux-Cantin et al., 2013; Jacobsen et al., 2018; Liu & Crews, 2015; Nees et al., 2015), 

how microglia influence these changes is difficult to disentangle from the few neuroimmune 

effects reported. For example, nalmefene, an opioid receptor and TLR4 antagonist approved 

for reduction in alcohol consumption in patients with AUD, reduced microglial activation 

and other neuroimmune effects in the striatum and NAc, but astrocytes may be the site of 

action (Montesinos et al., 2017; Tournier et al., 2020). A role for BDNF has been described 

in reward processing in adolescents, with specific gene polymorphisms differentially 

impacting reward processing and striatal function and associated with adolescent drinking 

onset (Nees et al., 2015). Microglia release BDNF and other growth factors depending on 

their phenotype, functions that are affected by alcohol exposure in adolescence (Marshall 

et al., 2020; Peng & Nixon, 2021). Loss of microglia-derived BDNF would have huge 

implications for striatal function, for example increasing alcohol drinking (Jeanblanc et al., 

2009), which is consistent with alcohol preferring rats having lower BDNF levels (Yan et al., 

2005).

The hippocampus plays a broad role in behavior (Abela et al., 2013; Rubin et al., 2017), 

and accordingly, alcohol's neurotoxic effects in hippocampus relate to broad impairments 

in behavior (De Bellis et al., 2000; Jacobus & Tapert, 2013; Nixon et al., 2011; White 
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& Swartzwelder, 2004). Examples of the relationship between neuroimmune activation 

and impairments in hippocampal integrity are numerous in the literature including human 

(Ward et al., 2009b) and animal models (Ji et al., 2018; Ward et al., 2008), though again 

not necessarily specific to microglia. The loss of microglia and its role in hippocampal 

development and function could be more detrimental, but this has not been tested 

mechanistically (Hu et al., 2020; Marshall et al., 2020). A number of groups report alcohol 

effects on microglia and adult neurogenesis in adolescence, but mechanistic ties between 

microglia and neurogenesis specifically are lacking (Ji et al., 2018; Liu & Crews, 2017; 

Morris et al., 2010a; Vetreno & Crews, 2015; Vetreno et al., 2018; Zou & Crews, 2012). 

These interactions are actively being pursed in adult and adolescent AUD models (Alvarez 

Cooper et al., 2020; Nixon et al., 2008).

CONCLUSION

We critically review how adolescent alcohol exposure effects microglia and the implications 

for AUD pathogenesis. We focused on microglia not only because of their varied roles 

in homeostatic processes but also because of their dual response to infection and insult, 

that is, phenotypes, that have been overlooked in the alcohol field (Prinz & Priller, 

2017). We predict that microglia have a greater impact on adolescents due not only to 

relatively subtle effects on addiction relevant behaviors but perhaps more extensive effects 

on developmental trajectories. However, much remains to be studied. It is difficult to 

disentangle effects of neuroimmune signaling in general with that of microglia in particular 

due to a lack of specific tools to manipulate microglia, though these are evolving. Further, 

few studies make direct, valid comparisons between adult and adolescent animals with 

BALs controlled. We describe microglial priming, essentially innate immune memory, as a 

means by which these early insults have long-lasting effects on the brain. There is strong 

evidence that adolescent alcohol exposure primes microglia persistently. Given the role of 

microglia in neurodevelopment and in maintaining CNS homeostasis, perturbations of these 

cells, especially during critical periods of plasticity, have serious implications for brain 

development, function, and AUD pathogenesis.
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FIGURE 1. 
Microglial phenotypes and functions. (A) Healthy adolescent brain. Microglia maintain 

CNS homeostasis and contribute to ongoing neurodevelopmental fine-tuning by surveying 

their environment through frequent contacts with synapses and other glia (Nimmerjahn et 

al., 2005; Tremblay et al., 2010; Wu et al., 2015). This active surveillance accompanied 

by the microglial sensome, the wide array of receptors these cells use to sample their 

environment, makes these cells exceptionally sensitive to changes in the CNS milieu 

(Hickman et al., 2013). Microglia have an even wider range of functions than previously 

recognized (Hammond et al., 2018); not only do they act as primary responders to CNS 

injury, microglia are intricately involved in nervous system development and homeostasis 

(Prinz et al., 2019). (B) Adolescent brain exposed to alcohol. Because microglia can respond 

to activation by releasing high levels of proinflammatory mediators and reactive oxygen 

species leading to tissue damage and cell death, they are often the first culprit implicated 

in neuronal damage. When accompanied by secretion of high levels of proinflammatory 

cytokines and reactive oxygen species, microglia are frequently termed “classical” or “M1” 

activated (Kreutzberg, 1996; Ransohoff, 2016). However, activation of these cells can also 

elicit protective functions that limit tissue damage and facilitate repair. The “alternative” or 

“M2” state is associated with increased secretion of anti-inflammatory cytokines and growth 

factors, and may explain why ablating microglia is associated with poorer recovery or 

outcomes in some conditions (e.g., Lalancette-Hebert et al., 2007; Szalay et al., 2016). With 

advances in single-cell sequencing, mass cytometry, and microglial manipulation techniques, 

current designations of microglial phenotypes are an oversimplification (Ransohoff, 2016; 

Salter & Stevens, 2017). Microglial responses in each disease state have distinct profiles 

that are not easily classified into classical/M1 or alternative/M2 phenotypes. Instead, 

specific signaling systems and functions are engaged in a context-dependent manner, 

with beneficial versus detrimental effects similarly contextually determined. For example, 

microglial phagocytosis may be detrimental in one context, such as in the over-pruning of 

synapses in Alzheimer's disease, but beneficial in another, such as in the necessary clearance 

of cellular debris after injury (Salter & Stevens, 2017). Thus, following EtOH exposure 
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microglia respond in a context-dependent manner and may adopt a spectrum of phenotypes. 

These phenotypes reflect the net response to insult and namely degeneration and recovery 

events, but each of these phenotypes impacts ongoing developmental processes and synaptic 

plasticity
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