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Abstract

We applied graph theory analysis on resting-state functional Magnetic Resonance Imaging data 

to evaluate sex differences of brain functional topography in normal controls (NCs), early mild 

cognitive impairment (eMCI), and AD patients. These metrics were correlated with RAVLT verbal 

learning and memory scores. The results show NCs have better FC metrics than eMCI and AD, 

and NC women show worse FC metrics compared to men, despite performing better on RAVLT. 

FC differences between men and women diminished in eMCI and disappeared in AD. Within 

women, better FC metrics relate to better RAVLT learning in NCs and eMCI groups.

Introduction

Men and women differ in prevalence, incidence, or symptomatology of neuropsychiatric and 

neurodegenerative disorders, including Alzheimer Disease (AD). Two-thirds of current AD 

sufferers are women, and their greater longevity cannot explain this ratio [1]. The reasons 

behind sex disparities in AD are not completely understood, but one area of interest is 

functional neuroimaging. Resting-state functional magnetic resonance imaging (rs-fMRI) 

can be used to reveal and characterize brain FC [2]. Here, the healthy brain is a complex 

dynamic system composed of networks with multiple spatial and time scales, modular 

structure and balance between neural network segregation and integration [3]. Considering 

AD a disconnection syndrome [4] graph theory analysis is a robust tool to explore rs-fMRI 

connectivity patterns [5]. Regarding sex differences in rs-fMRI, across the lifespan, NC 

women show higher cortical FC mostly in the left hemisphere, whereas men have higher 

connectivity in the right [6]. A recent review of studies in children and young adults showed 

males had more between-module, and females had more within-module, connectivity [7]. 

Our group also has found network-level sex differences in rs-fMRI in AD [8]. However, no 

studies employing graph theory have examined sex differences in NCs, eMCI and AD.
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The investigation of modularity pattern changes in physiological and pathological aging may 

illuminate sex disparities in AD. However, elucidating sex differences in FC is difficult, 

as fMRI data contains significant noise, for example from head-motion and physiological 

oscillations [9]. As such, data denoising techniques are key. Our group has developed and 

validated an artificial intelligence, time-dependent deep neural network approach, which 

substantially improves fMRI data quality and strengthens statistical power to detect effects 

by disentangling the time series between gray matter (GM) and non-GM [10–12]. The 

aim of our study was to apply this technique on data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI, http://adni.loni.usc.edu/) to evaluate sex differences in 

graph theory metrics of FC in NC, eMCI, and AD, and their relationship with learning 

and memory.

Materials and Methods

Subjects.

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, 

including longitudinal study of AD biomarkers.193 participants with resting-state fMRI and 

T1 MRI data available in the ADNI database were included. Subjects were scanned on 3.0 

Tesla Philips MRI scanners and diagnosed as NCs (27 men/33 women, age 75.9±5.6 years, 

education 16.5±2.4), eMCI (39 men/31 women, age 73.6±7.0 years, education 15.9±2.8) or 

AD (36 men/27 women, age 73.5±8.4, education 15.9±2.7).

Rey Auditory Verbal Learning Test (RAVLT):

We assessed verbal learning and recall with RAVLT total immediate recall (i.e., total of 

5 learning trials), learning (i.e., total immediate recall – Trial 1 total), and delayed recall 

scores [13].

MRI data.

Structural MRI scans were collected with 24cm field of view, 256×256×170 resolution, 

for 1×1×1.2mm3 voxel size. Standard echo-planar imaging sequence was used to collect 

rs-fMRI data with 140 time points, TR/TE=3000/30 ms, flip angle=80 degrees, 48 

slices, spatial resolution=3.3× 3.3×3.3mm3 and imaging matrix=64 × 64. The first five 

volumes were discarded. Preprocessing steps included slice-timing correction, realignment, 

coregistration to skull-stripped T1 images and spatial normalization to MNI152 2mm 

template space.

Graph Theory Analysis.

With the functional network generated with AAL atlas [14], graph theory analysis was 

applied using GRETNA toolbox [15]. Five global metrics derived from graph theoretical 

analysis were found to be significantly different between NC and AD groups [12], including 

degree centrality (DC), global efficiency (GE), local efficiency (LE), clustering coefficient 

(Cp), and characteristic path length (Lp). In this study, we specifically examined the sex 

differences of brain functional topography using these five graph theory metrics.
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Data Analysis.

2-sample t-tests were applied to evaluate differences between women and men in each 

diagnostic group on memory scores and graph theory metrics. ANCOVA was used to 

evaluate the interactive effect of sex, diagnosis, and network metrics on memory scores. 

A post-hoc generalized linear regression model then was applied to test the significance 

of the association in each diagnostic group for women and men separately. In addition, 

we carried out regression analysis to compare the slope difference between learning and 

memory (including immediate and delayed recall) scores versus graph theory metrics. Age, 

handedness and education were included as confounding factors in ANCOVA and regression 

analyses.

Results

NC women had significantly lower DC, GE, LE, and Cp, and significantly higher Lp. 

This sex difference diminished in eMCI, with only DC, GE, and Lp remaining significant. 

No significant sex difference was observed in AD for graph theory metrics (See Fig. 1). 

Women had significantly higher immediate recall scores than men in NC (p=0.04) and eMCI 

(p=0.008) but no significant difference in AD. Learning scores were also higher in women 

than men in NC (p=0.05) and eMCI (p=0.01); a marginal difference was observed in AD, 

with men showing better learning (p=0.08). Delayed recall scores were not significantly 

different by sex in any diagnostic group. ANCOVA showed a significant 3-way diagnosis 

by gender by graph theory metric interaction effect on RAVLT learning for four out of 

five network metrics (p=0.021, 0.023, 0.023, 0.023 and 0.036 for DC, GE, LE, Cp and 

Lp, respectively) However, no interaction effect was observed for RAVLT immediate or 

delayed recall. When broken down by diagnosis, NC women had significant associations 

between network metrics and learning scores (all positive with the exception of Lp). No 

significant association was observed in eMCI women, though opposite direction, significant 

associations were observed in AD women. None of the associations were significant for 

men. The significance of the association between RAVLT learning and network metrics were 

shown in Fig. 2a with only significant p values marked in the figure. The scatter plots for 

DC and Lp, along with the fitting lines with 95% confidence interval, were shown in Fig. 

2b. The plots for GE, LE, Cp within each diagnostic group for women and men were similar 

to the corresponding plots for DC, thus these plots were not shown in the manuscript. We 

compared the slope difference between memory and learning scores versus network metrics 

within each diagnostic group for women and men separately (see p values Table 1 and 

scatter plots in Supplementary Fig. 1). The majority of the significant difference occurred 

in women among NC or AD group, indicating that brain functional network topology is 

more strongly associated with learning instead of memory scores and such an effect is sex 

dependent.

Discussion

We applied our recently validated DeNN method [12] to explore sex differences in NC, 

eMCI, and AD subjects from ADNI, showing that consistent with the literature [16; 17] 

NCs had better graph theory metrics than those with eMCI and AD. Within NCs, women 
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showed significantly lower values of all metrics, except Lp (significantly higher). Sex 

differences diminished in eMCI, though women continued to show significantly lower DC 

and GE, and higher Lp than men. In AD, no significant sex difference was observed. In 

NC women, FC metrics were positively correlated with RAVLT learning, except Lp, which 

was anticorrelated (Fig. 2). In eMCI women, there were no significant correlations, and 

AD women showed significant anticorrelation of learning scores and FC metrics, except 

Lp, which was significantly positively correlated. Although not significant, RAVLT and FC 

associations were essentially opposite in men.

In our sample, when compared to NC men, NC women show a pattern more similar to 

the pathological groups in all graph theory metrics. This is also true in the eMCI group 

for DC, GE, and Lp. Overall, women showed worse integration and segregation values 

compared to men, despite significantly better verbal learning scores. Our sex differences 

findings are partially consistent with work showing higher modularity and transitivity in 

young men versus women [18], though are not consistent with recent review in children and 

young adults [7]. Although we cannot speak to causation, these results may suggest that 

weaknesses in segregation and integration contribute to vulnerability of women to AD.

Despite worse FC metrics, NC women had better learning scores than men, confirming 

previous findings [19]. In the eMCI stage, women show a similar pattern of better learning 

scores than men, but there are no longer sex differences in AD. Women also showed 

differences as compared to men in the way FC metrics related to learning performance. 

Although NC and eMCI women show similar learning performances, which are better than 

men’s, the sign of FC metrics correlation is inverted (not significantly) in three cases out of 

four (DC, LE and Cp; GE remains positive correlated and Lp remains negative correlated). 

In men the change of sign (from positive to negative) occurs only in the AD group (not 

significantly). Perhaps FC metrics in women degenerate earlier than men and baseline 

learning and memory performances offer resilience against aging, but with a paradoxical 

effect. In fact, greater “cognitive reserve” in women is related to reduced clinical progression 

in predementia stages of AD (eMCI), but accelerated cognitive decline after the onset of 

dementia (lower learning scores) and also related to worse FC metrics. This paradoxical 

effect of cognitive reserve has been recently pointed out [20, 21]. Although our data is 

cross-sectional, early resilience showed by women, which is completely lost in dementia 

stage, suggests a steeper rate of decline.

Limitations of our study include absence of longitudinal data and analysis of specific resting 

state networks. Future studies should explore sex differences in memory-specific neural 

networks. Moreover, we know that the Default Network is “normally” highly clustered, but 

it tends to lose “connectedness” in neurodegeneration becoming more intermingled with task 

positive networks [22]. The analysis of these specific networks might clarify our results.

In conclusion, neuroaging seems to occur earlier in women and pathological biomarker 

changes - such as FC - seem to anticipate the cognitive impairment observed in AD. Our 

group has already shown that cognitive healthy women may show normal memory despite 

AD pathology [23, 8]. Our DeNN method confirmed differences between individuals with 

healthy and impaired cognition and showed new differences between men and women.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sex differences in graph theory metrics within diagnostic groups. Significant differences 

were observed between AD and NCs. The p values of the sex differences in NCs, eMCI and 

AD groups for these five metrics are shown in the bottom.
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Fig. 2. 
Association of network metrics with RAVLT learning score. a. p values of the association, 

only the significant associations are marked with p value in the figure. b. Scatter plots of 

the association for degree centrality (DC) and characteristic path length (Lp). The plots for 

global efficiency, local efficiency and clustering coefficient are similar to the corresponding 

plots for degree centrality and thus these plots are not shown in the figure.
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Table 1.

Significance of slope difference between memory and learning scores versus network metrics. Significant p 

values are marked in bold.

Metrics Immediate recall - Learning Delayed recall - Learning

Men Women Men Women

NC MCI AD NC MCI AD NC MCI AD NC MCI AD

DC 0.489 0.109 0.151 0.005 0.471 0.062 0.264 0.438 0.313 0.009 0.389 0.035

GE 0.478 0.089 0.304 0.005 0.429 0.090 0.267 0.274 0.470 0.008 0.298 0.027

LE 0.263 0.126 0.124 0.021 0.395 0.051 0.438 0.426 0.353 0.035 0.352 0.032

Cp 0.396 0.026 0.124 0.022 0.377 0.079 0.382 0.208 0.307 0.076 0.467 0.141

Lp 0.480 0.105 0.362 0.010 0.448 0.108 0.313 0.289 0.463 0.017 0.304 0.028
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