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Abstract

T cells able to control neoplasia or chronic infections display a signature gene expression profile 

similar or identical to that of central memory T cells. These cells have qualities of self-renewal 

and a plasticity that allow them to repeatedly undergo activation (growth, proliferation, and 

differentiation), followed by quiescence. It is these qualities that define the ability of T cells to 

establish an equilibrium with chronic infectious agents, and also preserve the ability of T cells 

to be re-activated (by checkpoint therapy) in response to malignant cancers. Here we describe 

distinctions between the forms of inhibition mediated by tumors and persistent viruses, we review 

the properties of T cells associated with long-term immunity, and we identify the transcription 

factor, FOXO1, as the control point for a program of gene expression that allows CD8+ T cells to 

undergo serial reactivation and self-renewal.

Introduction

Cytotoxic T cells specific for an infectious intracellular pathogen (or neoplasia) rapidly 

diverge toward three major differentiation states characterized as memory precursor cells, 

that ultimately become central memory cells, short-lived effector cells, and tissue resident 

memory cells [1–5]. Between the extremes of central memory and cytotoxic effector cells 

there exists a continuum or at least multiple cell-types in which the differentiated function 

of cytotoxic T cells is present at the expense of a retained potential for self-renewal and 

serial reactivation [6,7]. The appearance and maintenance of these cell populations are 

strongly influenced by the course and disposition of an infection. With rapid clearance of 

the recognized foreign agent, the effector cells slowly contract and leave the long-lived 

memory population in a state of prepared responsiveness—an acute primary response 

followed by a state of immunity. In those instances where neutralizing antibodies are absent 

or not protective [8•], a secondary infection provokes a rapid expansion of the memory 

population that once again diverges into effector and long-term memory cells—a secondary 

or anamnestic response.
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When the immune response does not clear the intracellular threat, be it an infection or 

neoplastic growth, the differentiation of CD8+ cytotoxic T cells is less well delineated. 

In addition to effector cells and a fate resembling memory cells, antigen-specific CD8+ T 

cells may enter yet another state of differentiation characterized by reduced responsiveness 

that has been termed exhaustion [9]. The importance of this state in the progression of 

cancer or the persistence of intracellular infections is that T cells which can be effectively 

reactivated to clear or restrain the inciting principle are those that retain characteristics of 

central memory [10••,11,12••,13••]. Highly differentiated effector cells do not expand further 

upon reencounter with antigen [14,15], whereas exhausted T cells, though they continue 

to possess the potential to mount a response [16], are attenuated in their capacity for 

dispatching an infection or a tumor mass [9]. In this review, we will highlight the state of T 

cells present in the face of chronic antigen exposure, and the variable ability of such T cells 

to continue to mount an effective immune response. This topic has important implications 

for the failure of immune mechanisms to contain or clear chronic viral infections and 

neoplastic growth.

Feedback control, evolved under pressure of chronic infections, is 

disadvantageous to cancer immunosurveillance

Long-lived animal hosts and their parasitic viruses are often characterized as engaging in 

an arms race, where each is selected to evolve the means to survive and procreate at the 

expense of the other, an example of Van Valen’s ‘Red Queen Hypothesis’ [17]. But this 

is not quite accurate. The evolution of a virus (and other infectious agents) is based on a 

generation time that is orders of magnitude shorter than that of its host. Furthermore, viruses 

are selected to replicate and be transmitted within and between a limited number of host 

species, and thus they can evolve specifically targeted mechanisms of virulence. Importantly, 

they are constrained to accomplish transmission before rendering their host unable to spread 

an infection. In contrast, the host is co-evolving with a plethora of diverse parasitic agents, 

each displaying distinct sets of virulence mechanisms. So, in addition to a long generation 

time, the need to simultaneously resist hundreds of different parasitic agents most probably 

means that host immune mechanisms evolve on a different time scale when compared with 

the world of parasites. We posit that this arms race is almost entirely one-sided where the 

parasites, such as persistent viruses, define their niche in a relatively static population of 

hosts.

This is not the case with neoplasia. With the exception of a few cancers found in Tasmanian 

devils, domestic canines, and bivalve species [18,19], cancers themselves are not infectious. 

The emergence and ‘success’ of one cancer is not inherited by the next. Rather, neoplasia 

is a ‘new formation’ that is selected for unrestrained growth, without selective pressure to 

be transmitted or keep its host alive; one cancer resembles another only through convergent 

evolution [20]. Embedded within this somatic evolution, cancer cells appear to be selected 

individually and as a population to frustrate mechanisms of immunity that can impede their 

growth. As such, the forms of immune attenuation and negative feedback control that occur 

as a result of persistent virus infections and that which occurs coincident with the growth of 

malignant tumors are based on distinct evolutionary pressures. The former we presume to be 
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advantageous to the long-term survival of the host, the latter favors unrestrained, metastatic 

tumor growth.

Feedback attenuation displayed by CD8+ T cells is proportional to T cell antigen receptor 

(TCR) signaling, and it involves expression of receptors connected to inhibitory signaling 

pathways that activate, for example, tyrosine phosphatases that block signaling cascades 

based on tyrosine phosphorylation [21]. The prototype for this feedback pathway is initiated 

by the inhibitory receptor PDCD1 (PD-1) that is expressed following TCR-mediated 

signaling on subsets of both CD4+ and CD8+ T cells, and is also expressed by B cells and 

myeloid cells [22,23]. This type of control applied to CD8+ T cells would appear to allow 

a burst of cytotoxic T cell activity, followed by attenuation that limits immunopathology. 

It is consistent with an evolutionary acknowledgement by pathogen-susceptible hosts that 

all-out resistance is futile, if not life-threatening, and often unnecessary in that co-evolved, 

persistent, intracellular infectious agents are not selected to cause premature demise of their 

hosts [24–26]. It may be a manifestation of the concept of tolerance—the ability of a host to 

accommodate infectious agents without disease [27].

We speculate that most of the mechanisms we associate with acquired immunity were 

most strongly selected for resistance to infectious agents. Although immunodeficient mice 

and human beings can be found to exhibit higher rates of cancer compared with their 

wildtype brethren, this is most clearly seen under the influence of carcinogens [28]. 

Furthermore, completely immunodeficient mice housed under standard conditions may 

experience increased inflammation associated with opportunistic infections, a condition 

known to favor oncogenesis [29]. We assert that an animal with a severe congenital 

immunodeficiency in the wild is likely to die of an infection long before metastatic cancer 

takes hold. The importance of this is that mechanisms of immunity, but also mechanisms 

of control, have been most strongly selected for relative resistance to infectious agents 

counterbalanced by regulation that minimizes immunopathology associated with persistent 

or latent infections. From this we deduce that the immune reaction that arises in response to 

a cancerous growth is subject to these same regulatory mechanisms, even though they may 

be disadvantageous in the presence of a life-threatening malignancy. We propose that the 

vertebrate immune system, although displaying the plasticity to recognize neoplastic growth, 

has been selected to anticipate a latent or chronic infection, not a rapidly malignant, lethal 

cancer.

Negative feedback and the regulation of ‘exhaustion’

A manifestation of negative feedback control in response to persistent infectious agents 

is ultimately a state of attenuated responsiveness termed exhaustion. Exhaustion in CD8+ 

T cells was first observed in the context of a chronic lymphocytic choriomeningitis virus 

(LCMV) infection in mice [30–32], and it has been observed in both mice and human beings 

subject to several chronic infectious agents as well as the persistent inflammation present 

in autoimmune pathologies or in the context of cancer [33–41]. Exhaustion has also been 

reported to occur in CD4+ T cells, although not necessarily characterized by the expression 

of negative feedback receptors such as PDCD1 [42], and yet, CD4+ T cells play an essential 

role in the viral-immune equipoise characterizing both chronic and latent infections [43]. 
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Exhausted CD8+ T cells are characterized by the sequential loss of (presumably pathogenic) 

effector function, and particularly, impairment in IL-2, TNF, and IFNγ production [41]. 

This altered state is also marked by the sustained induction of inhibitory receptors that, in 

addition to PDCD1, include LAG3 (Lymphocyte Activation Gene-3), HAVCR2 (TIM3) and 

TIGIT (T cell immunoglobulin and ITIM domain) [44,45].

Programs of gene expression associated with CD8+ T cell differentiation

Transcriptional profiling and network analysis of individual T cells have revealed the 

different programs of gene expression that correlate with memory, effector function, and 

exhaustion [9]. The transcription factors that appear to be necessary for long-lived memory 

cell formation and maintenance are: FOXO1, EOMES, and TCF7 (Tcf-1), whereas the 

alternative CD8+ T cell fate, short-lived effector cells, requires TBX21 (TBET), PRDM1 

(Blimp-1), and ID2 (reviewed in Ref. [3]). These differences in memory and effector T cells 

appear to arise with an initial asymmetric division followed by the dynamics of metabolism, 

proliferation and survival determining the subsequent make-up of the T cell response [46–

48]. An interesting concept to emerge, and one that we will discuss below is that most of 

the highly expressed genes in memory cells are commonly expressed by naïve T cells and 

many by hematopoietic stem cells. A conclusion is that there are common programs of gene 

expression found in cells endowed with the capacity for self-renewal [3].

The transcriptional profile of exhausted T cells differs from that of effector and memory 

cells and extends beyond genes encoding inhibitory feedback circuitry. The profile includes 

genes encoding transcription factors, metabolic pathways, and signaling intermediates, as 

well as chemokines, cytokines and their respective receptors [44,49]. Some of the major 

transcription factors implicated in the T cell exhaustion include EOMES and TBX21, TCF7, 

TOX, PRDM1, NFAT, FOXO1, FOXP1, BATF, IRF4 and VHL [50–57]. Most recently, the 

transcription factor TOX was shown to be required for important aspects of an exhausted 

phenotype, although one report provided evidence that functional exhaustion could take 

place without the presence of TOX [58••,59•,60•,61••,62•]. Interestingly, transcription factors 

that are key to T cell exhaustion are also important for T effector and memory formation, but 

they are utilized distinctly in the context of exhaustion. In chronic infection, the expression 

of TBX21 and EOMES appears to guide the formation of specific subsets within the T 

exhausted population, such that elevated expression of TBX21 is associated with a non-

terminally exhausted, progenitor, subset (TBEThi PDCD1int EOMESlo, while, contrary to its 

role in T cell memory, high expression of EOMES is associated with a terminally exhausted 

T cell subset (EOMEShi PDCD1hi).

Perhaps most importantly for this discussion, TCF7, characterized for its essential role in the 

induction and maintenance of memory T cells, similarly plays a key role in sustaining long-

lived T cells labeled as ‘exhausted’. It is this subpopulation, TCF7+ PDCD1int HAVCR2lo, 

that is credited with mediating a therapeutic response to ‘checkpoint’ immunotherapy 

[10••,12••,13••,63••]. The ability of this subset to revive a functional response when inhibitory 

signals are blocked is further evidenced by the ability of these TCF7+ T cells to clear a 

viral infection upon transfer to a naïve host [64,65••,66]. scRNA-sequencing analyses reveal 

that during a chronic infection TCF7 overrides T effector differentiation and skews the 
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differentiation to exhausted T cells via the upregulation of MYB which is a known regulator 

of BCL2 and EOMES (for persistence of exhaustion phenotype) [67]. We emphasize that 

PDCD1 is induced under a variety of circumstances in CD4+ and CD8+ T cells, and alone, it 

does not signify unresponsive, exhausted T cells.

The origin of responsive TCF7-expressing T cells depends on FOXO1

Studies to date consistently reveal TCF7 to be a nexus of signaling and transcription 

necessary for T cell survival and self-renewal—and this transcends species (at least applies 

to human beings and mice) and the inciting chronic immune stimulus [67–69]. In addition 

to its role in late-stage T cell differentiation, survival and function, TCF7 is important, along 

with its paralog, LEF, for differentiation and transition through several stages of early T cell 

development [70]. It also functions to promote the differentiation of precursors to all innate 

lymphoid cells (ILCs) (reviewed in Refs. [69,71]). The means by which TCF7 accomplishes 

these varying roles depends upon transcriptional context, but also the many splice forms 

known for Tcf7 transcripts. These variously include the N-terminal β-catenin interacting 

domain mediating Wnt signaling, a 30 amino acid domain with intrinsic HDAC activity [72], 

and a C-terminal high-mobility-group (HMG) box DNA binding domain that allows TCF7 

to directly mediate transcriptional activity [73]. There is presently little understanding of the 

splice forms that are important for TCF7 activity in mature T cell differentiation, although 

reports show its role in establishing a memory precursor cell requires WNT signaling and 

β-catenin [74–76,77•,78].

In its role as a central transcription factor in memory and as a linchpin describing CD8+ 

T cells able to respond to checkpoint therapy, RNA expression studies show that Tcf7 
is often coordinately expressed with Il7r (encoding IL7 receptor α-chain, CD127), Sell 
(encoding L-selectin, CD62L), Ccr7 (encoding CCR7) and in opposition to the expression 

of Klrg1, Havcr2, Cx3cr1 (encoding fractalkine receptor) and effector molecules such as 

Gzmb (encoding granzyme B) [7,69]. This is a program of gene expression that is directly 

controlled by the forkhead ‘O’ family member FOXO1.

TCF7 is expressed at high levels in naïve CD8+ T cells—either wildtype or those deleted 

for Foxo1, but with antigen-induced T cell activation, Tcf7 expression is rapidly lost [79], 

possibly through the action of inflammatory cytokines [80]. In LCMV gp33-specific T cells 

it is only reestablished in a minor subset of responding cells that can be observed starting 

around day five post-activation; however, as described above, the dichotomy of memory 

and effector precursors may be established at the very first asymmetric cell division, one 

where MYC and FOXO1 are segregated into effector and memory precursors, respectively 

[47]. At the peak of the T cell response, about day seven, the memory precursor population 

is characterized as TCF7+ IL7R+ KLRG1− HAVCR2− GZMB−, but with the deletion of 

Foxo1, this subset is completely absent [79,81••]. Without Foxo1, TCF7 expression is 

never again reestablished, and the CD8+ T cell response consists entirely of effector cells 

that lack the ability to undergo a secondary expansion, that is, an anamnestic response 

[81••,82,83,84••]. In fact, the characteristic properties of memory cells generated after an 

acute infection required continuous expression of FOXO1, as late Foxo1 deletion using 

tamoxifen-induced CRE recombinase expression in Foxo1f/f T cells, resulted in a reversion 
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to effector phenotype: the gain of KLRG1 and GZMB and loss of BCL2, self-renewal 

potential, and an ability to proliferate in response to reinfection. Under conditions of chronic 

or latent virus infection, where we presume T cells continued to receive antigen-mediated 

signals, deletion of Foxo1 caused a greatly accelerated loss of memory potential [85•,86•].

Control of Tcf7 transcription and alternate exon usage is likely to be complex, and this 

may be a focus of future studies. We originally looked at the Tcf7 gene from CD4+ T 

cells by analyzing regions of open chromatin, chromosome marks indicative of poised and 

active enhancers, and binding by FOXO1 by chromatin immunoprecipitation and genomic 

sequencing (ChIP-Seq) [81••]. Subsequently, we have carried out similar studies on CD8+ 

LCMV-specific T cells, before, and 12 days post infection by LCMV-Armstrong (data not 

shown). The results were similar to that of CD4+ T cells in that within a 60 kb region 

that includes the body of the Tcf7 gene and a 30 kb region upstream of the transcriptional 

start site, we found six distinct regions of open chromatin as detected by ATAC-Seq [87]. 

Each of these sites was flanked by chromosome marks of H3K27 acetylation (H3K27Ac) 

indicative of active enhancers [88], and each of these sites was bound by FOXO1. FOXO1 

also bound to a 7th site characterized by H3K4 trimethylation (H3K4me3) located at the 

transcriptional start site (TSS), presumably the promoter [89,90]. Although these results are 

correlative, the requirement for FOXO1 in expression post-activation, and the identification 

of FOXO1 binding to nearby enhancers is consistent with a direct role for FOXO1 in 

post-activation Tcf7 regulation; however, we note that other gene elements located much 

further away may play a role in Tcf7 transcriptional regulation. For example, loss of Foxo1 
did not affect TCF7 expression in naïve T cells, yet the Tcf7 proximal sites bound by 

FOXO1 were identical between naïve T cells and antigen-specific T cells from day 12 

post-infection; however, a FOXO1 binding site co-localized with a site of open chromatin 

280 kb downstream of the TSS appears to be inaccessible in Foxo1-null T cells (data not 

shown). Without a systematic mutation of these gene elements, alone and in combination, 

we are presently unable to more exactly identify the mechanism of Tcf7 regulation by 

FOXO1.

In addition to Tcf7 regulation, FOXO1 controls several genes that are coordinately found 

to be expressed in T cells associated with response to checkpoint therapy. These include 

Il7r, Sell, and Ccr7 [91–94]. In particular, FOXO1 is required for the expression of Il7r 
that encodes the alpha-chain of the receptor for IL7, an important factor in the viability 

of memory T cells [95,96]. FOXO1 binds to an enhancer 3.5 kb upstream of the Il7r TSS 

[92] in order to displace FOXP1 acting as a transcription repressor [97]. From these studies, 

FOXO1 emerges as the upstream control point for the program of gene expression that 

is essential for differentiation and survival of T cells able to control viral or neoplastic 

parasites.

FOXO1 regulation and the physiology of cell renewal

The role played by FOXO family transcription factors in survival, plasticity and self-renewal 

has been described previously [98–101]. In particular, FOXO transcription factors have a 

central role in the ability of metazoans to establish pluripotency and characteristics of stem 

cells. They were first described as essential to the downstream signaling module necessary 
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for an extended life-span in nematodes or flies subject to diminished insulin-like growth 

factor signaling [102–104]. More recently, a FOXO ortholog has been found to be key to the 

establishment of self-renewal in all three stem cell lineages in hydra, an immortal cnidarian 

genus diverged from bilateral phyla on the order of 600 million years ago [105]. Closer 

to home, FOXO1 was found to regulate pluripotency in human embryonic stem cells by 

binding and activating the promotors of two essential ‘Yamanaka factors’, OCT4 (POU5F1) 
and SOX2 [106,107]. In addition, genome-wide association studies have revealed FOXO1 
and FOXO3 to be the most prominent among a small number of genes associated with 

increased age at death or age at natural menopause [108–114]. As such, it is perhaps not 

surprising that FOXO factors are prominent in controlling survival and longevity in T cells 

[115], and a possibility is that the acquired immune system has coopted this ancient pathway 

for maintaining self-renewal properties as a means of accommodating life-long parasitic 

infections. We speculate that, while chronic pathogens accommodate FOXO1-expressing 

long-lived CD8 T cells (selected to maintain host viability), there may be tumors that have 

evolved mechanisms to impede the activity of FOXO1 in T cells.

To understand the program of gene expression consistent with tumor immunity or control 

of latent or persistent viral infections, a future task will be to describe how FOXO 

transcription factors are themselves regulated, and how they regulate downstream gene 

targets. This challenge is highlighted by the observation that multiple studies using single 

cell transcriptional profiling for genes that characterize T cells responsive to check-point 

therapy have identified a common program of gene expression that has not included Foxo1 
[11,12••,13••]—even though it is clearly controlling key aspects of the definitive program 

of gene expression. This is likely due to the fact that FOXO transcription factors, although 

regulated at the level of gene expression [116], are prominently regulated by most known 

post-transcriptional mechanisms.

Foxo1 mRNA amounts are altered by multiple micro RNAs in different cell types [117–

119] including CD8+ T cells via miR-150 [120]. In addition, FOXO factors are potently 

regulated by post-translational modifications, and most prominent are the inactivating 

serine-threonine phosphorylations mediated by AKT (but probably not SGK1 [121]). 

Two pathways converge to activate AKT: PI3K (Phosphoinositide 3-kinase) activation of 

PDPK1 (3-Phosphoinositide-Dependent Protein Kinase 1, PDK1) that phosphorylates AKT 

at Thr308 [122], and the mTORC2 complex that phosphorylates AKT at Ser473 [123] 

(Figure 1). Loss of mTORC2 signaling enhances CD8+ memory cell generation [124], 

presumably by preventing the activation of AKT and thus the inactivation of FOXO1. The 

outcome of phosphorylation of FOXO1 by AKT is its association with 14-3-3, exclusion 

from the nucleus, and degradation through ubiquitination [125,126]. AKT phosphorylation 

can also be directly countered by phosphatase 2A [127]. The control of PI3K and mTORC2 

signaling in T cells, especially under conditions of chronic infection or neoplasia is complex 

and has not been studied in detail [128]; however, PI3K delta syndrome is a primary 

immunodeficiency resulting from a gain-of-function in PI3K-delta, in principle leading 

to the increased constitutive phosphorylation of FOXO transcription factors among other 

possibilities. The phenotypic effects of this congenital mutation are varied between affected 

individuals, even within the same family, but they often include severe and recurrent α, β, 

and γ herpes family viral infections [129].
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Other serine-threonine phosphorylation sites on FOXO1 oppose AKT-mediated nuclear 

exclusion. 5′ adenosine monophosphate-activated protein kinase (AMPK) responds to 

reduced energy levels and activates FOXO transcription factors indirectly, and through 

direct phosphorylation [130–132]. Jun N-terminal protein kinase (JNK), responding to 

oxidative stress, phosphorylates FOXO1, and this enhances its nuclear localization, possibly 

by dissociation from 14-3-3 [133]. The biological importance of activating serine-threonine 

FOXO1 phosphorylations is exemplified by familial deficiencies in STK4 (MST1). These 

congenital deficiencies, resulting from consanguineal marriages, arose from STK4 nonsense 

mutations that were found to be associated with several combined skin and respiratory 

infections and multiple herpes virus family infections. Patients experienced a progressive 

loss of naive CD4 T cells and central memory T cells that correlated with cellular 

abnormalities including a loss of FOXO1 expression and its downstream targets, most 

notably IL7R. Further studies showed that Stk4 loss-of-function mice showed a very similar 

phenotype [134,135].

Additional FOXO1 post-translational modifications mediated by oxidative stress or 

restricted nutrients include acetylation regulated by histone acetyltransferases (HATs) 

and histone deacetylases (HDACs) [136], glycosylation catalyzed by O-Linked N-

Acetylglucosamine (GlcNAc) Transferase (OGT) [137], methylation carried out by protein 

arginine methyltransferase (PRMT) [138], and ubiquitination at multiple sites [100,139–

141] (Figure 1). These modifications also affect nuclear versus cytoplasmic localization, and 

in addition, stability, turnover, and transcriptional activity.

A large caveat is that most of the studies characterizing signaling pathways important for 

FOXO1 regulation have not been carried out in T cells, but rather in other differentiated 

cell types especially those that regulate metabolism such as liver, fat and muscle. We do 

not understand the progression of FOXO1 posttranslational modifications in detail in any T 

cell subset, and certainly not in T cells found under conditions of chronic virus infection 

or neoplasia. On top of this, all of these signaling modules, and especially those involving 

mTOR are entangled such that drawing linear pathways is mainly uninformative. The means 

by which FOXO1 regulates physiology in each differentiated cell-type may need to be 

studied from a systems analysis approach that would begin by correlating FOXO protein 

modifications, intracellular localization, chromatin binding and gene expression in T cell 

subsets (or individual cells) at different times subsequent to viral infection or tumor growth. 

If the goal is to understand the biology underlying long-term stem-like activity and a 

continuing capacity for immune activation, a reasonable approach is to compare wildtype 

and Foxo1-deficient cells.
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Figure 1. 
Opposing influences on FOXO1 cellular localization and transcriptional activity. PI3K, 

Phosphoinositide 3-kinase; PTEN, Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase; 

PDPK1, 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1); mTORC2, mTOR 

complex 2 (consisting of 7 components); AKT, (Protein Kinase B); PP2A, Protein 

phosphatase 2A; HDAC, Histone deacetylase; AMPK, 5′ adenosine monophosphate-

activated protein kinase; STK4, Serine/Threonine Kinase 4 (MST1); OGT, O-Linked 
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N-Acetylglucosamine (GlcNAc) Transferase; PRMT1, protein arginine methyltransferase; 

JNK, Jun N-terminal protein kinase.
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