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Bioinformatics analysis is a key element in the development of in-house next-generation sequencing assays for tumor
genetic profiling that can include both tumor DNA and RNAwith comparisons to matched-normal DNA in select cases.
Bioinformatics analysis encompasses a computationally heavy component that requires a high-performance comput-
ing component and an assay-dependent quality assessment, aggregation, and data cleaning component. Although
there are free, open-source solutions and fee-for-use commercial services for the computationally heavy component,
these solutions and services can lack the options commonly utilized in increasingly complex genomic assays. Addition-
ally, the cost to purchase commercial solutions or implement and maintain open-source solutions can be out of reach
for many small clinical laboratories. Here, we present Software for Clinical Health in Oncology for Omics Laboratories
(SCHOOL), a collection of genomics analysis workflows that (i) can be easily installed on any platform; (ii) run on the
cloud with a user-friendly interface; and (iii) include the detection of single nucleotide variants, insertions/deletions,
copy number variants (CNVs), and translocations from RNA and DNA sequencing. These workflows contain elements
for customization based on target panel and assay design, including somatic mutational analysis with a matched-
normal, microsatellite stability analysis, and CNV analysis with a single nucleotide polymorphism backbone. All of
the features of SCHOOL have been designed to run on any computer system, where software dependencies
have been containerized. SCHOOL has been built into apps with workflows that can be run on a cloud platform
such as DNANexus using their point-and-click graphical interface, which could be automated for high-throughput
laboratories.
1. Introduction

The rapid expansion and decreasing cost of next-generation sequencing
(NGS) technology present an opportunity to improve the diagnosis and
treatment of cancer through identifying tumor-specific mutations and en-
abling physicians to adapt treatment plans that suit the unique molecular
profile of each patient.1,2 To address the evolving list of clinically action-
able and prognostic biomarkers in the treatment of cancer, academic clini-
cal laboratories have developed sequencing assays with varying size gene
panels (100–1600 genes), with consistent quality to detect relevant genetic
variants.

Bioinformatics analysis of sequence data includes two phases:
(i) primary analysis, which converts the raw sequencing reads into pre-
dicted genetic variants and read abundances, and (ii) secondary analysis,
which is customized for each clinical assay to maximize sensitivity and
specificity by identifying artifact and poor-quality variant predictions. For
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a quick turn-around-time, the primary analysis is computationally demand-
ing and requires computational resources with high memory (>32 GB) and
multiple processors using a local high-performance cluster or cloud-
computing resources. Furthermore, the primary analysis requires multiple
elements for complete somatic variant detection including single nucleo-
tide variants (SNVs), insertions/deletions (indels), copy number variants
(CNVs), and structural variants such as translocations, large deletions,
internal tandem duplications, and differences in microsatellite length.
Because each assaymight include different elements for detecting these dif-
ferent variant types, the primary analysis should be customizable for a vari-
ety of assays. Secondary analysis ismuch less resource-intensive, can be run
on a desktop computer, and should be tailored to the needs of the specific
assay.

Both commercial and open-source solutions have been introduced to
address primary analysis needs in cancer genomics. Commercially devel-
oped bioinformatics pipelines are proprietary, often have limited options
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for customization, and require licensing, which can increase computational
costs. By contrast, open-source solutions are usually customizable and lack
licensing costs.3,4 However, common best-practice tools for variant detec-
tion, such as BWA and GATK4, require computational programming exper-
tise to run in a Linux command line environment. Some commonly used
open-source tools for more complex variant detection lack thorough docu-
mentation, continued support for development, or the flexibility to process
varied data types (tumor-only samples versus matched tumor/normal con-
trol). Additionally, many existing software tools are difficult to install and
maintain, due to the sometimes difficult installation of software dependen-
cies, which make them sensitive to updates and changes to default pro-
grams. Finally, these tools are not natively packaged as an end-to-end
analysis pipeline, which starts with raw sequencing reads and results in
predicted variants. A user-friendly interface is critical in a customizable,
open-source bioinformatics pipeline that is easy to install and run without
specialized computational training.

In order to address the need for an end-to-end customizable bioinfor-
matics pipeline for the primary analysis of sequence data, we have devel-
oped a collection of analysis workflows for NGS data and the detection of
genetic alterations in cancer called Software for Clinical Health in Oncology
for Omics Laboratories (SCHOOL) [Fig. 1]. SCHOOL: (i) can detect SNVs,
indels, CNVs, and translocations from RNA and DNA sequencing, (ii) has
tools for mutational profiling and omics integration, and (iii) is designed
to be easy to run on local computing resources or the cloud, with all
software packaged alongside dependencies, so that they can work on any
system where singularity or docker programming packages are available.
We have optimized each step to use a minimal amount of RAM and
processors to reduce computation costs on the cloud. These workflows
contain the steps necessary to complete primary NGS analysis, including
variant detection and annotation. Furthermore, these workflows can
execute on a local cluster using Nextflow,5 a command-line workflow
manager, or on the cloud, https://platform.dnanexus.com/panx/projects/
FvPKK200Y9g81KqkKjJ9X818/data/, using the DNANexus applets and
workflows code.

2. Technical background

2.1. NGS analysis

The primary analysis of sequence data for the detection of somatic var-
iants in tumor samples requires five main steps including (i) alignment of
the raw sequencing data to a reference genome, (ii) identification of SNVs
and indels in DNA, (iii) identification of CNVs in DNA, (iv) identification
of copy number and structural variants in RNA and DNA, and
(v) annotation and the prediction of effect.6 For each step, there are many
considerations for the bioinformatics workflow that can affect accuracy.6
Fig. 1. Overview of SCHOOL workflow from sequencing through reporting. In SCHOO
quality control, alignment, and variant calling appropriate for the sample type. Then, in
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For alignments, the user should consider the genome reference, removal
of duplicate reads, and the alignment program. There are currently two
available versions of the reference human genome: GRCh37 (hg19), re-
leased in 2009, and GRCh38 (hg38), released in 2013. GRCh38 has been
shown to produce more accurate alignments.7 Sequence duplicates are
caused when polymerase chain reaction (PCR) errors are amplified. Dupli-
cates can be marked or removed, so that they are ignored in downstream
steps, Picard (http://broadinstitute.github.io/picard/) can be used to
mark duplicates, and Samtools can be used to remove duplicates. When
unique molecular barcodes are included in the sequencing adapter, added
during sample preparation, FGBio (see URLs) can be used to create consen-
sus sequences of duplicates. BWA-MEM8 is the most used tool for sequence
alignment of sequencing reads to the human reference genome. The output
of BWAmust be converted to BAM, sorted, and indexed using Samtools9 in
order to be used in variant detection tools.

For SNVs and indels, there aremany different open-source tools that can
be used for the detection of these variant types. Somatic variants can be de-
tected in somatic or tumor-only mode using the following tools: Strelka2,10

Freebayes,11 MuTect2,12 Pindel,13 BCFtools call,14 LoFreq,15 VarScan,16

Platypus,17 GATK4,18 and Scapel.19 Some tools such as GATK and BCFtools
are designed to identify germline variants, whereas other tools, such as
LoFreq and MuTect2, are designed to identify low-frequency variants com-
mon in tumor samples. A comparison of nine somatic variant calling pro-
grams found that Mutect2, Strelka2, and Virmid were among the most
accurate.20

There are alsomany different methods for the detection of copy number
and structural variation. Somemethods use sequence depth of coverage, or
the average number of reads overlapping each region of the genome, to
determine copy number changes. Because biases in coverage differ in
each region of the genome, this coverage is not uniform, but can be normal-
ized with healthy control samples. Additionally, some methods can take
into account the allele frequency of common polymorphisms, called
b-allele frequency, to correct these biases in the depth of coverage. A com-
parison of four CNV detection tools found that CNVKit had high sensitivity
but a lower specificity relative to other programs like Control-FREEC.21

Although there are also many methods for the detection of structural
variants, the accuracy of detection of structural variants is low compared
with SNV and indels for short-read data. The strategy that most laborato-
ries employ is the validation of known clinically actionable structural
variants such as the FLT3 internal tandem duplication or known gene
fusion events.

2.2. Computation interoperability and graphical interfaces

A software container is a freestanding unit that comprises the software
of interest and all of its dependencies. Containerization allows for better
L, data flow from the sequencer into the primary analysis pipeline, which includes
secondary analysis, the variants can be annotated for eventual clinical reports.
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maintenance and stability of computer software because it supports: (i) the
deployment of the same code on the same running environment on any
computer system (on premises or cloud); (ii) the separation of software
packages to their own environment to satisfy specific running conditions;
and (iii) dependencies and easier implementation of new packages or
tools. Two popular containerization tools are docker, which was designed
to work in a cloud environment, and singularity, which was designed to
work in a local high-performance computing environment. Fortunately,
containers that are created using docker can be converted to run using sin-
gularity on a local cluster. Additionally, containers can be versioned and
easily shared, making them ideal to distribute code for bioinformatics
pipelines.

Whether it is running in a high-performance computing environment
locally or on the cloud, a bioinformatics pipeline has several important
elements including automated advancement from step to step and
parallelization. Pipelines are designed to take the input of each step as it be-
comes available and run blocks of code to convert it into predetermined
output files. Some steps are serialized, meaning that they are dependent
on the successful completion of earlier steps, such as alignment being
dependent on the completion of read trimming. Other processes, such as
variant calling using different callers, can be run concurrently to save
time in a process called parallelization. Pipelines can be controlled on
local computing resources using languages such as Nextflow, WDL, and
Snakemate. In the cloud, commercial cloud frameworks exist to allow
biologists with limited computational expertise to run pipelines in a
point-and-click environment, using platforms such as DNANexus, Seven
Bridges, and Illumina Connected Analytics.

3. Approach

To implement our pipelines, we (i) tested several software packages for
analysis accuracy, (ii) created docker containers for each self-contained
step in our workflow, (iii) implemented input options for customizing
each step, and (iv) designed an end-end workflow for primary analysis
that could be run on an internal high-performance computing cluster or
run on the cloud using a point-and-click graphical interface.

3.1. Tool testing

We tested 10 variant calling methods, including Strelka2,10

Freebayes,11 MuTect2,12 Pindel,13 BCFtools call,14 LoFreq,15 VarScan,16

Platypus,17 GATK4,18 and Scapel,19 using data generated from an
engineered cell line that was designed with variants with low allele fre-
quency and validated by quantitative PCR (Table S1). Consistent with pre-
vious studies, we found high sensitivity with MuTect2 and Strelka2. Of the
21 SNVs and small indels (<50 bp) present, Freebayes detected all 21 vari-
ants, MuTect2 detected 20 and LoFreq detected 16; each caller was within
10% of the expected variants allele frequency (VAF). Callers such as
Strelka2, GATK2, Platypus, and VarScan, using default parameters, de-
tected the variants with>20%VAF, as designed (Table S1). Pindel detected
the 300 bp internal tandem duplicate (ITD) in the FLT3 gene, along with
two other indels at 35%–40% VAF.

3.2. Tools implemented in docker and customization

Our workflow allows users to choose for SNV and indel detection
Strelka2,10 Freebayes,11 MuTect2,12 and Pindel13 or a combination of the
four. For MuTect2,12 alignments are first recalibrated using GATK418

with BaseRecalibrator and ApplyBQSR. If matched tumor/ normal pairs
are sequenced, users can ensure that these samples originate from the
same patient using BCFtools14 and NGS Checkmate.22

We implemented several tools for the detection of copy number and
structural variants. For CNVs, we implemented CNVKit.23 Because CNVKit
works best with a panel of healthy normal control samples, we have also
implemented a container and tool to generate this healthy control refer-
ence. To detect ITDs, users can use Pindel and ITDSeeker.13,24 When
3

microsatellite-specific baits are included, microsatellite stability can be
estimated with an MSI-Sensor pro.25 Gene fusions (translocations) can be
detected using DNA- and RNA- specific tools. Star-Fusion is implemented
for RNASeq data, and DELLY and SVABA are implemented for DNA26,27

sequencing data.
Because expression can also be assessedwith the RNASeq data, we have

implemented the steps necessary for assessing gene expression. Reads can
be aligned with HiSAT2,28 and expression values are determined using
FeatureCount and StringTie.29,30 Variants in the RNA can be determined
using Freebayes11 and BamReadCt (see URLs).

Variants can be annotated using gnomAD31 for the detection of common
mutations and snpEff for gene effect.32Other sources of annotations include
the database of oncoKB hotspots,33 Encode repeat regions,34 the database
of non-synonymous of functional predictions (dbNSFP),35 and variant data-
bases dbSNP,36 Clinvar,37 and COSMIC.38

3.3. End-to-end workflows

The bioinformatics workflow contains three elements: (i) a software
container created using Docker, which contains all software dependencies
for each step, (ii) scripts written in bash that contain software commands
necessary to complete each step of the workflow, and (iii) the workflow
script and configuration that defines the inputs and outputs of each step,
the compute requirements, the bash script parameters, and the container
used for each step. The workflow script and configuration were imple-
mented for execution on a local high-performance computing cluster,
using the workflow management program Nextflow, and on the cloud,
using the DNANexus Toolkit.

For users with bioinformatics and computing expertise, Nextflow can be
configured to run on a variety of platforms locally and on the cloud.
Nextflow readily submits jobs to commonly used compute cluster schedul-
ing software such as SGE, PBS, and SLURM but also can be configured to
submit jobs to cloud systems on Amazon Web Services (AWS) and Google
Cloud. Users can create a Nextflow configuration file to customize the
workflow for their hardware. Additionally, Nextflow allows for users to re-
sume failed jobs and has extensive logging of each step, making trouble-
shooting easy to document. Finally, these Nextflow workflows can
be configured to run on individual tumor samples or tumor/normal
sample pairs or in a batch mode for processing the data for an entire
sequencing run.

In order to make these workflows accessible to users with limited
computational expertise, we transformed the workflows to run on AWS re-
sources on the DNANexus platform. DNANexus has a point-and-click user
interface for running data analysis. Each step of the workflow was trans-
formed into a DNANexus App, and apps were combined into a DNANexus
Workflow. Users can run these pipelines with their raw sequence files in
FastQ, a DNA reference tar gzip file and a gene panel reference tar gzip
file. To reduce the price to run each step, every DNANexus app was run
on test files to determine the minimal resources necessary, largely through
monitoring memory and processor consumption and increasing resources
incrementally when tools reached memory or disk usage limits
(Table S2). We then set these resource requirements as the default settings
for each app. Users can alter these settings to decrease computing time. The
cost of analysis is highly dependent on the size of the data set and the ma-
chines chosen to do the analysis, where the user will want to balance cost
and computational time.

4. Conclusion

We have developed SCHOOL, a set of bioinformatics analysis tools and
pipelines for the analysis of NGS data in an academic clinical oncology lab-
oratory (Fig. S1), which has been in use at the CAP/CLIA laboratory at UT
Southwestern Medical Center for four years. Additionally, SCHOOL pipe-
lines have been used in over 20 research studies ranging from basic science
to case reports.39–43 SCHOOL includes tools and methods for primary
analysis of sequencing data from raw reads to finished variant calls,
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accommodating germline and somatic DNA and tumor RNA.We further in-
clude tools for panel-specific customization, including extensions for: copy
number analysis, microsatellite stability, integration between DNA and
RNA data, and structural variant calling to detect gene fusions in DNA
and ITDs.

The SCHOOL pipeline can be optimized for the panel used in the assay.
For example, when a panel of normal samples is included in assay develop-
ment, a panel customization pipeline will align each sample and generate
panel reference samples and the input BED files for copy number analysis.
The aggregate normal sample VCF file will also be created to use when run-
ning MuTect2 to remove artifacts and rare variant sequences. Lastly, the
normal samples can be used as a microsatellite reference for predicting
microsatellite stability in the absence of a matched-normal sample.

For groups running an RNA Sequencing assay, there are several oppor-
tunities for data integrations, including comparison of RNA and DNA
breakpoints in gene fusion events, comparison of splice site alteration
using RNA data, and independent confirmation of variants by concurrent
expression in RNA. The presence of variants in both the tumor RNA and
tumor DNA provides enhanced confidence that a variant is not an artifact
of the assay. Additionally, the presence of variants in RNA could indicate
that the aberrant gene mutation is expressed in the tumor tissue. This
could provide additional support of the importance of the variant, particu-
larly for a suspected gain of function variants in oncogenic drivers or poten-
tial splice site variants that result in exon exclusion or intron inclusion.
However, it is still important to note that variants in regulatory regions or
gene deletions could prevent RNA expression.

These workflows represent a user-friendly, inexpensive, and flexible
way to implement NGS bioinformatics for mutation detection and annota-
tion in CAP/CLIA laboratories. SCHOOL can be easily installed on a local
computing cluster that uses a queueing system such as SLURM or SGE
with Nextflow with minimal dependency on pre-installed packages or
runs on the cloud for laboratories that lack local resources and expertise
with a user-friendly point-and-click graphic interface. We estimate the
costs for analysis using cloud resources is a fraction of the costs of data gen-
eration and for some labs will reduce the need for additional computational
expertise and resources on site.

These pipelines implemented in SCHOOL perform computationally
heavy analysis in variant detection, which we consider to be the primary
analysis. Users should, in the course of their validation studies, determine
thefiltering parameters of these results tomaximize sensitivity and specific-
ity for their assay using a set of qualitymetrics for the variants based on var-
iant type, including a number of alternate reads, percent of alternate reads,
strand bias, and other quality scores. In this secondary analysis step, in ad-
dition to filtering variants and removing artifacts, the user can determine
mutational profiling metrics like tumor mutational burden and distribu-
tions of SNV by codon change. These secondary analysis steps often need
tuning based on the assay and are less computationally intensive, meaning
they can be done locally on a PC or laptop computer.
URLs

bcl2fastq (https://support.illumina.com/sequencing/ sequencing_
software/bcl2fastq-conversion-software.html).

fgbio (https://github.com/fulcrumgenomics/fgbio).
picard (http://broadinstitute.github.io/picard/).
COSMIC (cancer.sanger.ac.uk).
bamreadct (https://github.com/genome/bam-readcount).
Data availability

All the code used in SCHOOL is available at the UTSW Clinical Labora-
tory github wiki site: https://medforomics.github.io/schoolwiki/ using the
repos: school for pipelines, process_scripts used in each docker container,
and dnanexus_applets for running on DNANexus.
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