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Background: Population-based state cancer registries are an authoritative source for cancer statistics in the United
States. They routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis,
first course of treatment, and survival, on every cancer case that is reported across all U.S. states and territories. The
goal of our project is to enrich NCI’s Surveillance, Epidemiology, and End Results (SEER) registry data with
high-quality population-based biospecimen data in the form of digital pathology, machine-learning-based classifica-
tions, and quantitative histopathology imaging feature sets (referred to here as Pathomics features).
Materials and methods:As part of the project, the underlying informatics infrastructurewas designed, tested, and imple-
mented through close collaboration with several participating SEER registries to ensure consistency with registry pro-
cesses, computational scalability, and ability to support creation of population cohorts that span multiple sites.
Utilizing computational imaging algorithms and methods to both generate indices and search for matches makes it
possible to reduce inter- and intra-observer inconsistencies and to improve the objectivity with which large image
repositories are interrogated.
Results: Our team has created and continues to expand a well-curated repository of high-quality digitized pathology
images corresponding to subjects whose data are routinely collected by the collaborating registries. Our team has sys-
tematically deployed and tested key, visual analytic methods to facilitate automated creation of population cohorts for
epidemiological studies and tools to support visualization of feature clusters and evaluation of whole-slide images. As
part of these efforts, we are developing and optimizing advanced search and matching algorithms to facilitate
automated, content-based retrieval of digitized specimens based on their underlying image features and staining
characteristics.
Conclusion: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to
support the expansion and management of a growing repository of high-quality digitized pathology and
information-rich, population cohorts containing objective imaging and clinical attributes to facilitate studies that
seek to discriminate among different subtypes of disease, stratify patient populations, and perform comparisons of
tumor characteristics within and across patient cohorts. We have also successfully developed a suite of tools based
on a deep-learning method to perform quantitative characterizations of tumor regions, assess infiltrating lymphocyte
distributions, and generate objective nuclear featuremeasurements. As part of these efforts, our team has implemented
tics, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903-2681, USA.
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reliablemethods that enable investigators to systematically search through large repositories to automatically retrieve
digitized pathology specimens and correlated clinical data based on their computational signatures.
1. Introduction

The NCI’s Surveillance, Epidemiology, and End Results (SEER) program
is a coordinated system of 19 cancer registries that is charged with provid-
ing timely and accurate data regarding cancer incidence, mortality, treat-
ment, and survival. Pathology datasets currently available in the SEER
registries are qualitative in nature, consisting of scoring and staging data
captured in normal registry abstracts and pathology reports. Such datasets
are generally subject to inter-observer variability, which can result in biases
in population-wide studies of cancer incidence, mortality, survival, and
prevalence. The main goal of our project is to enrich SEER registry data
with high-quality population-based digital biospecimen data in the form
of pathology tissue images and detailed computational tissue characteriza-
tions and features (also referred to as Pathomics features) derived from the
images. Examples of Pathomics data include detailed characterizations of
cancer and stromal nuclei and quantification and mapping of tumor-
infiltrating lymphocytes (TILs) along a supplementary histology classifica-
tion generated through deep-learning algorithms. These data will augment
existing registry data with quantitative features obtained directly from clin-
ically acquired whole slide tissue images and provide detailed and nuanced
information on tumor histology.

The scientific premise motivating this work is that the incorporation of
quantitative digital pathology into the cancer registries will result in a valu-
able population-wide dataset that can provide additional insight into the
underlying characteristics of cancer. Next Generation Sequencing (NGS)
technologies have captured much attention of the clinical community for
their capacity to provide insight as to personalized choice in treatment
and therapy. A major limitation of NGS technologies is that they obliterate
the spatial information associated within and throughout the tumor envi-
ronment. Histopathology and immunostaining localization techniques
preserve this information which is invaluable in making accurate determi-
nations. In fact, it is through the process of histopathology examination
that tumor margins/volumes are determined by pathologists prior to the
NGS analysis. These parameters are subsequently used to help guide deci-
sions regarding appropriate cut-offs for allele frequencies and drive other
components of the overall analysis. Pathomics features extracted from
high-resolution pathology images are a quantitative surrogate of what is
described in a pathology report. The important distinction is that these fea-
tures are reproducible, unlike human observations, which are highly qual-
itative and subject to a high degree of inter- and intra-observer variability.
The importance of increasing reproducibility and reducing inter-observer
variability in pathology studies has been previously reported.1–26 More-
over, many studies have demonstrated that quantitative image character-
izations (e.g., nuclear features, patterns of TILs) are promising biomarkers
which can be used to predict outcome and treatment response, if available
in a large population.27–39 These biomarkers integrated with clinical and
genomics data can provide new opportunities to enhance our understand-
ing of cancer incidence, mortality, survival, along with statistical character-
izations of lifetime risk, and to improve prediction and assessment of
therapeutic effectiveness.

Our project began as collaboration among investigators within the state
cancer registries of New Jersey, Georgia, and Kentucky. The consortium of
partnering sites has recently expanded to include the newly established
New York Cancer Registry. In this collaborative effort, we are imple-
menting a framework of data curation and analysis workflows, computa-
tional imaging tools, and informatics infrastructure to support the
creation and management of a well-curated, integrated repository of
high-quality digitized pathology images and Pathomics features, for sub-
jects whose data are being collected by the registries. The framework is
being developed in close collaboration with SEER registries to ensure that
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it is scalable and in-line with existing registry processes and can support
queries and the creation of population cohorts that span multiple registries.

In our framework, whole slide tissue images in the repository are
systematically processed to compute Pathomics data and to establish
linkages with registry data. The current set of Pathomics data includes
(1) quantification of TILs, (2) segmentation and computational description
of cancerous and stromal nuclei, (3) segmentation of tumor regions, (4)
characterization of regional Gleason grade for prostate cancer, and (5) iden-
tification of non-small cell lung cancer (NSCLC) adenocarcinoma subtypes.
This initial set is primarily motivated by an increasing number of scientific
studies that investigate TILs and the relationships among TILs, tumors, and
nuclear structure of tissue.40–45 Such investigations can provide important
information to advance our understanding of immune response in many
cancer types. In the future, additional Pathomics features, such as the
spectral and spatial signatures of staining characteristics exhibited by the
digitized specimens, will be incorporated into our framework.

The informatics infrastructure for this project is being built on
open-source software and leverages modern software technologies, such
as containerization and web-based applications, for a scalable, extensible
implementation.46,47 The infrastructure facilitates visualization of high-
resolution whole slide tissue images along with associated Pathomics
datasets. User authentication and access controls are implemented to
thwart unauthorized access to data. The informatics infrastructure is
being expanded to include tools to support content-based image retrieval.

Presently, the repository manages diagnostic whole slide tissue images
and analysis results obtained from 772 prostate cases, 1410 NSCLC cases,
70 breast cancer cases, and 48 lymphoma cases from the New Jersey
State Cancer Registry and from 198 breast cancer cases from the Georgia
State Cancer Registry. The scientific validation of the proposed environ-
ment will be undertaken through performance studies led by investigators
throughout the four collaborating sites with an overarching focus on breast
cancer, colorectal cancer, lymphoma, melanoma, NSCLC, and prostate can-
cer.We are confident that this repositorywill enable effective integration of
pathology imaging and feature data as an invaluable resource in SEER
registries.

In the rest of the paper, we describe the design and implementation of
the key components of the framework: the data curation and analysis
processes, the initial set of image analysis methods, and the underlying
informatics infrastructure for data management and visualization.

2. Materials and methods

2.1. Aggregation, quality control, and linkage of image data

The first component of our framework is the curation of pathology
imaging data and linkage with other data from the cancer registries.
Image quality control is an essential step, because specimen preparation
protocols and tissue scanning procedures may result in imaging artifacts
and variations in image quality.We devised and refined aworkflow to facil-
itate the collection and quality control of digitized tissue specimens and
linkage of images with correlated data extracted from the cancer registries.
Here we describe the workflow deployed at Rutgers and the New Jersey
SEER registry; the other sites—Georgia, Kentucky, and New York—are
incrementally adopting analogous workflows as approved by their SEER
registries and Institutional Review Boards (IRBs).

Fig. 1 depicts an instance of theworkflow. Specimen retrieval and imag-
ing are coordinated at the Biomedical Informatics Shared Resource (BISR)
of Rutgers Cancer Institute of New Jersey (RCINJ). Breast, colorectal,
lung, melanoma, and prostate cancer cases suitable for the project
exhibiting well-defined tumor type and diagnoses are selected by a



Fig. 1.Workflow for assembling linked image/data cohorts.
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pathologist at the RCINJ and Rutgers Robert Wood Johnson Medical
School. Cases within approximately a 2-year window are retrieved
from onsite storage, whereas others are requested from offsite storage
with the help of BioSpecimens Repository Service of RCINJ. After a certi-
fied pathologist selects suitable slides according to requirement of each
cancer type—e.g., prostate cancer specimens are selected according to the
Gleason grade—the specimens are imaged with an Olympus VS120 whole
slide scanner with no protected health information appearing in image
filename, image metadata, or the images themselves.

Teammembers from the BISR and NJCR perform cross-specialty review
of the data for quality control. A secure, IRB-approved, Oracle-based
(Redwood Shores, CA, USA) Clinical Research Data Warehouse is used at
Rutgers to facilitate review of imaging and correlated clinical information
on an individual patient basis or as part of large cohorts. The data ware-
house has been commissioned to house multimodal data (genomics, digital
pathology, radiology images). It orchestrates aggregation of information
originating from multiple data sources including Electronic Medical
Records, Clinical Trial Management Systems, Tumor Registries, Biospeci-
men Repositories, Radiology and Pathology archives, and Next Generation
Sequencing services (Fig. 2). Innovative solutions were implemented in the
warehouse to detect and extract unstructured clinical information that was
embedded in paper/text documents, including synoptic pathology reports.
TheWarehouse receives objective oversight by a standing Data Governance
Council.48 An Informatica-based (Redwood City, CA, USA) extraction trans-
formation and load interface (ETL) has been developed to automatically
populate the Data Warehouse with data elements originating from the
multimodal data sources. This past year our team worked closely with the
Google Healthcare team to successfully create and test an instance of
the Data Warehouse on the Google Cloud Platform (GCP). In May 2020,
we demonstrated the scalability of the cloud-based ETL, Warehouse, and
DataMart. As part of the project, our teamwill expand the use of theWare-
house by configuring it to integrate digitized pathology specimens with
data originating from all of the collaborating cancer registries.

The images and cases are linked through deidentified ID sequences. The
New Jersey State Cancer Registry receives the deidentified ID as well as
case information including specific surgery number and date, so that after
3

data retrieval and decoding encrypted fields, the deidentified ID is linked
with clinical data associated with the case and, more specifically, with the
diagnostic surgery. This ensures that the cancer specimen images are asso-
ciatedwith the correct staging of the disease at the time of diagnosis so that
it can be used in downstream research. The total corpus of data comprising
the linked data sets encompasses more than 150 data elements, including
the de-coded NAACCR data, as shown in Table 1. The de-identified images
are analyzed through a set of deep-learning analysis pipelines as described
in the subsequent sections.

2.2. Extraction of pathomics features

Development of tissue image analysis methods is a highly active area of
research and implementation. A variety of analysis methods for segmenta-
tion and classification of objects, regions, and structures (such as nuclei,
tumors, glands) in tissue images have been developed. Excellent overviews
of existing techniques can be found in several review papers.49–55

Deep-learning-based analysis approaches have become popular, because
deep-learning methods have been shown to outperform traditional image
analysis methods in many application domains, including digital pathol-
ogy. Our current tissue image analysis library consists of deep-learning
methods developed by our group to classify patterns of TILs,56,57 segment
tumor regions, classify tumor subtypes,58,59 and segment nuclei in whole
slide images (WSIs) of hematoxylin and eosin-stained tissue samples.60,61

We should note that the analysis functionality is not limited to methods
implemented by our group only. We have started with these methods be-
cause (1) they are based on state-of-the-art convolutional neural network
architectures, suchasVGG16,62 Inception V4,63 ResNet,64 and U-Net,65

(2) they have achieved high accuracy scores, and (3) they have been previ-
ously used, refined, and validated in generating large, curated Pathomics
datasets. For example, the TIL models were developed in close collabora-
tion with pathologists, who generated a large set of training data, evaluated
analysis results, and helped refine the models. The final models were
employed to produce and publish a TIL dataset from 5202 WSIs from 13
cancer types.56,57 The nucleus segmentationmodel was developed in a sim-
ilar approach with one difference. In addition to manually annotated



Fig. 2.Clinical Research DataWarehouseworkflow. The research data warehouse aggregates information frommultiple data sources such as electronic health records, tumor
registries, and radiology and pathology archives. It facilitates review of imaging data and linked clinical data on a single patient or cohort basis.
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segmentations, a synthetic data generation method, based on generative
adversarial networks,66 was used to significantly increase the diversity
and size of training data.60 The model trained with the combined manual
and synthetic training data was used to generate a quality-controlled
dataset of 5 billion segmented nuclei in 5060 WSIs from 10 cancer
types61 in the Cancer Genome Atlas (TCGA) repository. We plan to expand
the suite of analysis methods and incorporate state-of-the-art methods de-
veloped by other groups over time. Indeed, at the time of writing this man-
uscript, we are in the process of integrating and validating Hover-Net67 in
the framework for segmentation and classification of nuclei.

The current suite of TIL analysis models can resolve TIL distributions in
a WSI at the level of 50 × 50 μm2 patches. The characteristics of tumor re-
gions and the relationship between tumor regions and lymphocyte cells can
be used to determine cancer stage and evaluate response to treatment. Our
current models can segment tumor regions in lung, prostate, pancreatic,
and breast cancer types and can classify tumor and non-tumor regions at
the level of 88 × 88 μm2 patches. The model for prostate cancer can
Table 1
Representative categories and linked data elements.

Source Category Representative elements

Cancer
Registry

Demographics age_at_dx, sex, marital_status_at_dx, race, nhia,
napiia, county_at_dx, etc

Vital information vital_status, date_of_death, primary_cause
Tumor information Primary_site, laterality, grade,

diagnosis_confirmation
Tumor extension
and metastasis

cs_extension, cs_tumor_size, cs_lymph_nodes,
cs_mets_at_dx

Pathology info and
tumor staging

histology_icdo3, behavior_icdo3, clinical and
pathology staging in AJCC 6, 7, 8 and SEER staging

Site-specific data cs_site_specific factors
Tumor treatments Surgical, radiation, hormone, BRM, and other

cancer treatment information
Imaging Pathology images Digitized representative diagnostic slides in

Olympus (.vsi) and Philips (.svs?) whole slide image
formats, including image metadata such as imaging
device, optical settings and configuration, specimen
staining, etc.

Computational
imaging signatures

Tumor-infiltrating lymphocytes; tumor pattern
segmentation; tumor and stromal nuclei
segmentation; spatial and spectral signatures
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segment and label a tumor subregion with one of the three Gleason scores:
Benign, Grade 3, and Grade 4+5. The lung tumor segmentation model is
able to segment and label a tumor subregion with one of the six tumor
subtypes: acinar, benign, lepidic, micropapillary, mucinous, and solid.
Nucleus segmentation is one of the core digital pathology analysis steps.
The shape and texture properties and spatial distributions of nuclei in tissue
specimens are used in cancer diagnosis and staging. Our nucleus segmenta-
tionmodel can detect nuclei and delineate their boundaries inWSIs. After a
WSI has been processed by the segmentation model, we compute a set of
shape, intensity, and texture features. We use the PyRadiomics library68

to compute the patch-level features.

2.3. Management, visualization, and review of pathomics features

Our data analysis workflow implements an iterative train-predict-review-
refine process to curate robust Pathomics features. This process is based on
our earlier works in curating large Pathomics datasets57,59,61 and is carried
out as part of the training and prediction phases of the deep-learning anal-
ysis pipelines. We developed a set of tools to enable the iterative process
and to provide support for the management, indexing, and interactive
viewing of WSIs and analysis results. The tools are implemented as a set
of web-based applications and services in the PRISM and QuIP software
platforms.46,47 Using these tools, pathologists can inspect the output of a
tumor or TIL analysis pipeline as full-resolution heatmap overlays on
WSIs. A heatmap is a spatial representation of prediction probabilities
assigned to individual image patches by the deep-learning model; the prob-
ability value indicates if a patch is class-positive (e.g., TIL-positive, tumor-
positive). Fig. 3 shows example heatmaps generated from the TIL (upper
figure) and tumor (lower figure) analysis pipelines. Nuclear segmentation
results can be viewed as polygons, which represent the boundaries of
segmented nuclei as overlays on the images in QuIP (Fig. 4).

Fig. 5 shows how the iterative process is executed with QuIP. For exam-
ple, after a set of WSIs are processed by the TIL and tumor segmentation
models, the source WSIs and the heatmaps are loaded to QuIP for manage-
ment and visualization. The heatmaps and WSIs are also transformed into
feature maps. Feature maps are lower resolution representations of the
heatmaps and WSIs in a four-panel image. Fig. 6 illustrates an example
feature map which combines TIL results from a VGG16 model and tumor
segmentation results from a ResNet model. The upper left corner of the
image is the low-resolution tissue image, the upper right corner is the



Fig. 3. TIL and tumor analysis results displayed as a heatmap on the whole slide
tissue image. TIL analysis results on the left and the tumor segmentation results
on the right. The red color indicates a higher probability of a patch being TIL-
positive (or tumor-positive) and the blue color indicates a lower probability.
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tumor segmentation map, the lower left corner represents the TILmap, and
the lower right corner is the combined and thresholded TIL and tumor
maps. Feature maps allow a pathologist to review results more efficiently
than examining full-resolution images and maps. If the pathologist sees
potential problemswith the results during this review, they use the web ap-
plications in QuIP to visualize theWSIs and heatmaps at higher resolutions.
Fig. 4. Segmented nuclei overlaid as polygons shown in blue on the WSI. Each
polygon represents the boundary of a segmented nucleus.
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If the review necessitates refinements to themodel, additional training data
are generated and added to the training dataset. They can annotate regions
in an image using web-based visualization and annotation tools. Patches
extracted from these annotations are reviewed and labeled to create addi-
tional training data. The model is refined by re-training the method with
the updated training dataset.

3. Results

The current implementation of the framework—the curation and anal-
ysis workflows, analysis methods, and informatics infrastructure—has
been successfully deployed. The workflows and analytic methods have re-
ceived IRB approval at all collaborating institutions. The framework has
been employed to create a repository of diagnostic images from 772 pros-
tate cases, 1410 NSCLC cases, 70 breast cancer cases, and 48 lymphoma
cases from the New Jersey State Cancer Registry and from 198 breast can-
cer cases from the Georgia State Cancer Registry. The repository also con-
tains results from TIL and tumor segmentation for each image and more
than 2.5 billion segmented nuclei from all of the images. For each image,
there are two TIL analysis results (one generated from the VGG16 network
and the other from the Inception V4 network). The images and Pathomics
data are managed by an instance of QuIP running at Stony Brook for inter-
active visualization of images and Pathomics features. All of the results and
images are also stored in Box folders to facilitate bulk data downloads.

4. Discussion and conclusions

Evaluation of cancer control interventions in prevention, screening, and
treatment and their effects on population trends in incidence and mortality
hinge on accurate, reproducible, and nuanced pathology characterizations.
Diagnostic and treatment guidelines also specify detailed measurements of
TILs, nuclear grade; i.e., evaluation of the size and shape of the nucleus in
the tumor cells, mitoses, and IHC staining, which are currently not included
in cancer registry data abstraction. Presently, the SEER Pathology
workflow, depicted in Fig. 7, beginswith normal registry abstracts and elec-
tronic pathology (e-Path) reports securely transmitted to the SEER regis-
tries. Although scoring and staging data are captured and made available
through the registries, there have been numerous studies that showed a
high level of inter-observer variability among the diagnostic classifications
rendered by pathologists, which can potentially give rise to biases when
conducting population-wide studies. As the diagnosis of cancer and its im-
mune response to therapy is made through tissue studies, the integration of
pathology imaging in SEER registries is critical to precisely classify tumors
and predict tumor response to therapies.

Whole slide tissue scanning technologies have advanced significantly
over the past 20 years.69 They are capable of imaging tissue specimens at
high resolution in several minutes, and with advanced auto-focussing
mechanisms and automated slide trays, they can process batches of tissue
samples with little-to-no manual intervention. Several studies have evalu-
ated the utility of imaged tissue data in pathology workflows.70–75 The
Food and Drug Administration has approved a number of digital pathology
systems for diagnostic use.76 We expect that digital pathology will be em-
ployed increasingly as part of routine pathology workflows at hospitals
and medical research centers. As institutions adopt digital WSIs into their
pathology workflows, we can envision that the images and molecular re-
ports will also be securely transmitted to the SEER registries. Within the
SEER registry, images will be automatically processed by the suite of
feature extraction pipelines appropriate for the type of cancer. The SEER
database will be enhanced with quantitative features and the accompany-
ing pipeline distribution version. SEER*DMS will be used to link and inte-
grate cancer abstracts, e-Path reports, WSIs, and Pathomics feature sets
from all reporting facilities. De-identified images and annotations will
then be extracted for data mining and research use. Our work on building
a repository of curatedWSIs and Pathomics features is an important step to-
ward realizing this capability. Availability of tissue images and Pathomics
datasets will also provide an invaluable resource for medical education



Fig. 5. The iterative workflow starts with a set of patches which are extracted from whole slide tissue images and labeled for initial model training. Predictions from the
trained model are reviewed as feature maps and heatmaps. The heatmaps are annotated to generate additional labeled patches which are added to the training dataset.
The deep learning network is retrained with the updated training dataset to refine the model.

Fig. 6. A feature map representation of TIL and tumor analysis results generated from a WSI in the Cancer Genome Atlas repository. The low-resolution version of the input
WSI is displayed in the upper left corner. The upper right corner is the tumor segmentationmap. The TILmap is displayed in the lower left corner. The lower right corner is the
combined and thresholded TIL and tumor maps.
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Fig. 7.Pathology imageworkflow.WSIs are de-identified and analyzed by deep-learning analysis pipelines deployed in containers. Image data are linked to the SEERRegistry
database to enhance it with quantitative imaging features (such as TIL distributions and tumor segmentations) extracted by deep-learning models. De-identified images and
imaging features can then be used for data mining and research purposes.
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and Pathology training as well as to facilitate multi-disciplinary ap-
proaches, improved quality control, and more efficient remote and collabo-
rative access to tissue information.77,78

Thefirst phase of our project focussed on the collection of cases and corre-
lated pathology specimens from the archives of New Jersey State Cancer Reg-
istries and Rutgers Cancer Institute of New Jersey and on targeted prostate
and NSCLC cases. To date, we have established a repository of (1) high-
quality digitized pathology images for subjects whose data are already being
routinely collected by the collaborating registries and (2) Pathomics features
consisting of patterns of TILs, tumor region segmentations and classifications,
and segmented nuclei. We have completed the initial linkages with registry
data, thus enabling the creation of information rich, population cohorts con-
taining objective imaging and clinical attributes that can be mined. As part
of the second phase of the effort, we have increased the number of contribut-
ing state registries to include Georgia, Kentucky, and New York and we have
simultaneously expanded the scope of cancers under study by including
melanoma, breast, and colorectal cancers. We will also build upon our
team’s previous research efforts to design, develop, and optimize algorithms
andmethods that canquickly and reliably search throughagrowing reference
library of cases to automatically identify and retrieve previously analyzed le-
sions which exhibit the most similar characteristics to a given query case for
clinical decision support20–22,25,79–86 and to conduct more granular compari-
sons of tumorswithin and across patient populations. One of the potential ad-
vantages of this approach over purely alphanumeric search strategies is that it
will enable investigators to systematically interrogate the data while visualiz-
ing the most relevant digitized pathology specimens.32,33

As part of the next phase of our project, we plan to investigate the auto-
mated nature of the full range of algorithms and methods for their capacity
to enable clinicians and investigators to quickly and reliably answer ques-
tions such as: (a) What level of morphological variations are detected
among a given set of tumors or specimens? (b) What changes in computa-
tional biomarker signatures occur at onset and key stages of disease progres-
sion? (c) What is the likely prognosis for a given patient population?
7

Software availability

The QuIP software and analysis methods are available as open-source
codes for use by other research groups. The QuIP software platform can
be downloaded and built from https://github.com/SBU-BMI/quip_distro.

The codes for the analysis methods can be accessed from links at
https://github.com/SBU-BMI/histopathology_analysis.
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