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High-quality medical data is critical to the development and implementation of machine learning (ML) algorithms in
healthcare; however, security, and privacy concerns continue to limit access. We sought to determine the utility of
“synthetic data” in training ML algorithms for the detection of tuberculosis (TB) from inflammatory biomarker pro-
files. A retrospective dataset (A) comprised of 278 patients was used to generate synthetic datasets (B, C, and D) for
training models prior to secondary validation on a generalization dataset. ML models trained and validated on the
Dataset A (real) demonstrated an accuracy of 90%, a sensitivity of 89% (95% CI, 83–94%), and a specificity of
100% (95% CI, 81–100%). Models trained using the optimal synthetic dataset B showed an accuracy of 91%, a sensi-
tivity of 93% (95% CI, 87–96%), and a specificity of 77% (95% CI, 50–93%). Synthetic datasets C and D displayed di-
minished performance measures (respective accuracies of 71% and 54%). This pilot study highlights the promise of
synthetic data as an expedited means for ML algorithm development.
1. Background

Access to high-quality medical data is often hard to acquire which can im-
pede the development and implementation of artificial intelligence (AI)/ma-
chine learning (ML) algorithms in healthcare.1–3 Common sources of clinical
data include electronic medical record (EMR) systems which are tightly regu-
lated and often inaccessible to AI/ML developers due to patient privacy
concerns.4 Additionally, extraction of clean data from EMR systems can be
challenging due to platform limitations, accuracy of data, as well as prioritiza-
tion of essential day-to-day operations by local institutional information tech-
nology (IT), teams over requests for datasets for developmental purposes.5–7

As an alternative, manual extraction of EMR data may be an option, but is at
risk for transcription errors and is extremely time-consuming. Given these lim-
itations, AI/MLdevelopers often gravitate to othermore easily accessible data-
bases derived from clinical trials and/or unrelated research studies.8 Although
clinical trial/research data could bemore convenient to access due to availabil-
ity, these datasets may not have been collected for the intended use, and also
may not accurately represent “real world” practices.

The use of in silico (i.e., synthetic) data provides opportunities to accel-
erate the development of AI/ML models in healthcare.9,10 The synthetic
data is produced based on using real-world observations to create a de-
identified data set that emulates the “real data equivalent” appropriate
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for distribution to developers. This practice has been leveraged to great
effect in the basic sciences and pharmaceutical industry for drug
development,11,12 however, to date this paradigm has not been widely
adopted in laboratory medicine for AI/ML. To this end, the goal of this
paper is to determine the clinical utility of “synthetic data” trainedML algo-
rithm and their performance measures.

Tuberculosis (TB) serves as a unique opportunity to evaluate the poten-
tial value of the synthetic-data trained ML algorithms to diagnose disease.
Over 10 million people acquire TB annually despite advancements in ther-
apeutics and diagnostic testing methods.13 Therefore, this infectious dis-
ease remains a persistent clinical concern which is responsible for
significant morbidity and mortality, particularly in the developing world.
Continued technological gaps in TB testing include the urgent need for ro-
bust biomarkers to enable identification of latent infection and increased
sensitivity.14 The recent novel application of multiplex biomarker assays
has demonstrated promise toward this goal and serves as our prototype
for evaluating the utility of its synthetic data for training AI/ML algorithms.

The generation of effective TB-predictive ML algorithms is dependent
on robust datasets for training and performance assessment. To that end,
the first objective of this approach was to generate expanded synthetic
datasets that are statistically similar to the original dataset, which contains
recorded values from actual patients. Using the larger, deidentified
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synthetic data instead of the original, limited data will allow users to per-
form downstream analysis and train machine learning models on a larger
dataset without exposing any confidential information about the patients.

2. Materials and methods

The anonymized retrospective datasetwas derived from278patientswho
were initially recruited in Pakistan per World Health Organization (WHO)
general guidelines15 for TB diagnostics from a recently published study that
was conducted to evaluate a multiplex serologic panel for active tuberculosis
patients.16 No patient identifiable information was available or shared (only
raw multiplex serology data and the status of TB positivity and negativity).

2.1. Synthetic data generation

Synthetic datasets were trained and tested on the real-world dataset de-
rived from the aforementioned 278 subjects with and without TB [Fig. 1].
Study subjects were tested on a multiplex serology platform for 31 TB anti-
gen biomarkers. The data was divided into datasets for training and initial
validation and a generalization dataset as depicted in the study design dia-
gram. Dataset A (real data) was used for training and initial validation as
well as synthetic data generation and was comprised of 124 cases (62 TB
positive and 62 TB negative). Similar to Dataset A, the secondary generali-
zation dataset is comprised of the remaining real-world data (154 total
cases, 137 TB positive and 17 TB negative) which is used to validate the
models trained on the real and synthetic datasets.

Synthetic data were derived from Dataset A (the real dataset) which was
used to produce three different synthetic datasets (B, C, and D). Dataset B
represents a one-to-one ratio of the synthetic data to the real data acquired
from dataset A, while Dataset C and D are the expanded synthetic datasets
representing a one to two and a one to five ratios to Dataset A. Datasets B,
C, andDwere developed using R statistical softwarewith the synthpop pack-
age.We created an R script that reads the original dataset containing the real
data from Dataset A within its comma-separated values (.csv) file into a sep-
arate data frame. We then randomly shuffled the entire dataset and divided
the data frame into two, one containing the target feature “TB-31” and the
other containing the rest of the columns (features). Then we created the syn-
thetic dataset using the features as a source. This was done by calling the syn
function of the synthpop library in R software (R-project. org). The syn func-
tion accepts a parameter m that is defined as number of synthetic copies of
the original (observed) data to be generated. We re-ran the function 3
times with m=1, m=2, and m=5 to generate 1 time, 2 times, and 5
times the rows in the original dataset features, respectively.
Fig. 1. Study
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Once the synthetic features were generated, their respective datasets
were then statistically compared with the original real dataset (Dataset
A) as seen in Fig. 2. This includes calculating 1st quartile, median, and
3rd quartile values. Visual representation was also done to ensure that the
distribution of data between the original and synthetic datasets is as close
as possible. In addition to a similar distribution of each feature individually,
it is also important to ensure that the relationship between features resem-
bles the original dataset as closely as possible. A correlation matrix was
therefore utilized to show differences in the relationship between variables.

Next, we combined the target feature with the synthetic features. For
the synthetic dataset with m=1, we directly combined the target feature
with the synthetic features one to one using the cbind function in R to gen-
erate our final 1-time synthetic dataset (Dataset B). For the ×2 synthetic
dataset (expanded one to two to create Dataset C) and×5 synthetic dataset
(expanded one tofive to create Dataset D), we took each set of the synthetic
datasets generated from synthpop (×5 and×2) and then used cbind func-
tion separately on each set to combine the target feature. This resulted in 2
data frames (for the ×2) and 5 data frames (for the ×5), respectively. We
then merged these multiple data frames into a single, final combined
dataset using the rbind function to generate our final ×2 (Dataset C) and
×5 (Dataset D) synthetic data frame.

2.2. ML training and generalization

Both the real dataset (A) and the respective synthetic datasets (B, C, and
D) were used to train the ML algorithms produced using: (a) traditional
non-automated manual coding techniques of an optimized random forest
(RF) algorithm followed by (b) our automated machine learning
(auto-ML) Machine Learning Intelligence (MILO) platform (MILO ML,
LLC, Sacramento, CA). For the non-automated traditional ML approach,
the RF algorithm in the R software package was used to train the models.
Four different models were subsequently trained: on the original real
dataset (non-synthetic Dataset A), on the ×1 synthetic dataset (Dataset
B), on the ×2 synthetic dataset (Dataset C), and on the ×5 synthetic
dataset (Dataset D). All models generated above were secondarily validated
on a separate “real” (nonsynthetic) generalization dataset to test and mea-
sure performance for all the aforementioned models that were constructed
from the original real (non-synthetic) and synthetic datasets. The same
training and validation steps described above (in the non-automated RF
approach) were also repeated through our automatedmachine learning ap-
proach through the Auto-ML platform MILO. As described previously,17–19

the MILO platform incorporates an automated data processor, a data fea-
ture selector and data transformer, followed by multiple supervised ML
design.



Fig. 2. Distribution of Dataset A vs. Dataset B.
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model building approaches that make use of its custom hyperparameter
search tools that help identify the optimal hyperparameter combinations
for each of the seven algorithms utilized within MILO (neural network/
multi-layer perceptron, logistic regression (LR), naïve Bayes (NB), k-
nearest neighbor (k-NN), support vector machine (SVM), random forest
(RF), and XGBoost gradient boosting machine (GBM) techniques) [Fig. 3].
2.3. Traditional statistical analysis

Traditional statistics was also performed on each dataset via JMP Soft-
ware (SAS Institute, Cary, NC). Data was also assessed for normality using
the Ryan-Joiner Test. Continuous parametric variables were analyzed
Fig. 3. Overview of
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using the 2-sample t-test. A P value <0.05 was considered statistically
significant with ROC analysis also performed to compare TB biomarker
performance.
3. Results

3.1. Demographics

Fig. 2 illustrates histogram distributions for synthetic versus real data
observed and Fig. 4 illustrates QQ plot for synthetic versus real data.
Table 1 provides descriptive statistics for biomarkers used as features in
ML training for datasets A and B.
MILO workflow.



Fig. 4.QQplot of Dataset A vs. Dataset B: Thefigure shows theQ-Q (quantile-quantile) plot for each attribute in the original dataset and the synthetic dataset. It shows that the
distribution of each attribute is similar across the two datasets.

Table 1
Descriptive statistics for biomarkers in Dataset A (real data) vs. Dataset B (synthetic ×1).
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Table 2
Performance comparison of the models trained on real data versus synthetic data.

Model performances based on the
“real” secondary dataset

Trained on dataset A real
data (95% CI)

Trained on dataset B (synthetic
data ×1) (95% CI)

Trained on dataset C (synthetic
data ×2) (95% CI)

Trained on dataset D (synthetic
data ×5) (95% CI)

MILO’s best models MILO GBM MILO SVM MILO DNN MILO DNN

ROC-AUC 0.95 (0.87–1) 0.83 (0.63–1) 0.91 (0.8–1) 0.55 (0.48–0.62)
Accuracy 90 (84–95) 91 (85–95) 71 (63–78) 54 (46–62)
Sensitivity 89 (83–94) 93 (87–96) 67 (59–75) 49 (40–58)
Specificity 100 (81–100) 77 (50–93) 100 (81–100) 94 (71–99)
MILO’s best RF models MILO RF MILO RF MILO RF MILO RF
ROC-AUC 0.96 (0.82–1) 0.77 (0.67–0.87) 0.87 (0.77–0.97) 0.66 (0.52–0.8)
Accuracy 89 (83–93) 71 (63–78) 74 (66–81) 56 (48–64)
Sensitivity 88 (81–93) 69 (60–76) 72 (64–80) 53 (44–61)
Specificity 100 (81–100) 88 (64–99) 88 (64–99) 82 (57–96)
Non-MILO RF models Non-MILO RF Non-MILO RF Non-MILO RF Non-MILO RF
ROC-AUC 0.97 (0.94–1) 0.73 (0.60–0.88) 0.83 (0.71–0.92) 0.68 (0.57–0.82)
Accuracy 77 (70–84) 62 (54–69) 64 (56–72) 39 (31–47)
Sensitivity 75 (66–82) 61 (52–69) 64 (55–72) 40 (32–49)
Specificity 100 (81–100) 71 (44–90) 71 (44–90) 29 (10–56)

DNN = deep neural network, GBM = gradient boosting machine, RF = random forest, SVM = support vector machine.
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3.2. Machine learning performance

The nonautomated traditional (manual programming) ML approaches
trained onDataset A (real data) identified an RFmodel that produced an ac-
curacy of 77.3%, with clinical sensitivity and specificity of 74.5% (95% CI,
66.3–81.5%) and 100% (95% CI, 80.5–100%) respectively. Using the same
technique, RFmodels built on Dataset B showed an accuracy of 61.6%,with
clinical sensitivity of 60.6% (95% CI, 51.9–68.8%) and specificity of 70.6%
(95% CI, 44.0–89.7%). Random forest models built on Datasets C and D re-
spectively yielded accuracies of 64.2% and 38.9%. Clinical sensitivity, were
respectively, 63.5% (95% CI, 54.9–71.6%) and 40.2% (95% CI,
31.9–48.9%), and specificity was 70.6% (95% CI, 44.0–89.7%) and
29.4% (95% CI, 10.3–56.0%). ROC_AUC for the manually programmed
RF models trained from Datasets A, B, C, and D were 0.97, 0.73, 0.83,
and 0.68, respectively [Table 2].

As a comparison, the best MILO RF models (automated ML approach)
showed slightly better performance within the various datasets evaluated.
The RF MILO model built on the real dataset A showed an accuracy of
89% with a clinical sensitivity and specificity of 89% (95% CI, 83-93%)
and 100% (95% CI, 81-100%), respectively. The best performing MILO
RF model based on the synthetic dataset B (1:1 ratio with the real data)
showed an accuracy of 71% and clinical sensitivity and specificity of 69%
(95% CI, 60–76%) and 88% (95% CI, 64–99%), respectively. The best
MILO RF model based on the expanded synthetic dataset C (×2) showed
an accuracy of 74% with a clinical sensitivity and specificity of 72% (95%
CI, 64–80%) and 88% (95% CI, 64–99%), respectively, while the best per-
forming MILO RF model based on the expanded synthetic dataset D (×5)
showed an accuracy of 56% with a clinical sensitivity and specificity of
53% (95% CI, 44–61%) and 82% (95% CI, 57–96%), respectively. ROC
AUC for the MILO RF models trained from Datasets A, B, C, and D were
0.96, 0.77, 0.87, and 0.66, respectively [Table 2].

The overall best performing models (on the real and the synthetic
datasets) were shown to be the MILO non-RF models. The best overall
MILOmodel (a GBMmodel) built on the real dataset A showed an accuracy
of 90% with a clinical sensitivity and specificity of 89% (95% CI, 83–94%)
and 100% (95% CI, 81–100%), respectively. The best performing MILO
model (an SVM model) based on the synthetic dataset B (1:1 ratio with
the real data) showed an accuracy of 91% and clinical sensitivity and spec-
ificity of 93% (95% CI, 87–96%) and 77% (95% CI, 50–93%), respectively.
The best overallMILOmodel used a neural network technique and based on
the expanded synthetic dataset C (×2) showed an accuracy of 71% with a
clinical sensitivity and specificity of 67% (95% CI, 59–75%) and 100%
(95% CI, 81–100%), respectively, whereas the best performing overall
MILOmodel based on the expanded synthetic (×5) dataset D (also a neural
network model) showed an accuracy of 54% with a clinical sensitivity and
specificity of 49% (95% CI, 40–58%) and 94% (95% CI, 71–99%)
5

respectively. ROC AUC for the best (non-RF) MILO models trained from
Datasets A, B, C, and D were 0.95, 0.83, 0.91, and 0.55, respectively
[Table 2].

Overall, as shown above, compared to the random forest models evalu-
ated through the non-automated (non-MILO) approach, the best MILO
models (including the best MILO RF models) were shown to perform
slightly better in both real and the synthetic dataset-trained models evalu-
ated [Table 2]. Also, the overall ROC-AUC comparison measures, within
the various models and datasets (in both the MILO and non-MILO ap-
proaches) showed the real dataset to be the best performing data followed
by the expanded synthetic dataset ×2 when compared to the unexpanded
(×1) synthetic dataset B and the expanded ×5 synthetic dataset D.

4. Conclusions

This work provides proof-of-concept for the utility of converting real-
world patient datasets to synthetic datasets to aid in the development of
ML models for differentiating TB positive and negative patients from com-
plex serologic datasets. Importantly, the synthetic datasets allowed devel-
opment of models with good performance characteristics upon validation
in a secondary, real-world generalization dataset. This was true of models
which were developed from both traditional (non-automated derived RF
models) as well as the models derived from our automated ML approach.
However, the overall MILO approachwas able tofind the better performing
models within the synthetic datasets evaluated which supports its use
within such settings to emulate real-world data modeling. The MILO ap-
proach also displayed that such approach is not model-specific, with its
best performing models employing an array of algorithms (i.e., neural net-
work, gradient boosting machine, and support vector machine), depending
on the synthetic dataset utilized [Table 2]. Although models trained on
datasets with the artificially increased sized (×5) synthetic data (Dataset
D) showed decreased performance, the trend in this study showed that
the unexpanded (×1) dataset (Dataset B) had the best overall accuracy
while the slightly expanded (×2) synthetic dataset (Dataset C) yielding
the overall best models, based on the ROC-AUC, within these synthetic
datasets regardless of the modeling approach employed, MILO auto-ML or
non-MILO RF.

Although this study shows that synthetic datasets can be employed for
diagnostic modeling studies, the fact remains that the models trained on
the real dataset outperformed themodels that were trained on the synthetic
data, regardless of the size of the synthetic data employed. Therefore, there
remains a need for continually improving such synthetic datasets to help
build models that can ultimately closely mimic the performance of the
models that were based on real datasets. Continued improved methods in
dataset processing may in the future allow manufacture of larger sample
sizes with more realistic variations which may closely reflect the original
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real-world dataset. More important than boosting the size of the clinical
datasets at this time is the capability of making them available with fewer
patient privacy concerns. In that regard, we have shown that these syn-
thetic datasets retain similar distribution of features, relationships among
features, and most importantly the ability to train models which subse-
quently exhibit good performance in the desired task as measured against
the secondary generalization dataset (real-world data not altered by the
synthetic data generation process).

The development of deployable AI/ML algorithms with real-world util-
ity is reliant upon the availability of robust datasets of sufficient size for
model training, prior to validation and performance assessment on second-
ary generalization datasets.1–3 With the now widespread availability of
computational storage for large datasets and processing speed to facilitate
high-throughput algorithm training, AI/ML models are widely used in a
range of applications from image recognition to control of autonomous
vehicles.20 However, there currently appears to be an underutilization of
these methods to solve challenges in healthcare given the widespread pen-
etrance and successful implementation of AI/ML elsewhere in modern
times.21 Clinical medicine at first glance appears to be an ideal application
for these methods, given that high-impact diagnostic, prognostic, and treat-
ment decisions are often made based on interpretation and synthesis of
multiple quantitative and complex data elements. In addition, the advent
of the EMR means that vast quantities of clinical data have been accumu-
lated over the past several decades, and this only continues to accelerate
with the advent of new diagnostic modalities with even larger data outputs
(e.g., genomics and proteomics).

The successful application of AI/ML methods in other fields outside of
healthcare has been less challenging, since available data may be widely
disseminated and used for development in an open-source fashion. In con-
trast, healthcare data is heavily restricted due to patient privacy
regulations.4 Access to such data must proceed through a very time-
consuming and highly regulated process requiring researchers to submit a
specific protocol defining the dataset required, how it will be developed,
and outcomemeasures.1,2,5 This necessarily onerous processmeans that de-
velopment on clinical data is highly limited, and there is a disconnect be-
tween data related to critical healthcare challenges, and the developers
with the expertise to create models which may solve them. Often the clini-
cal personnel who are most acutely aware of these needs do not have the
specific data science expertise required for robust development, validation,
and deployment of useful AI/ML algorithms. On the other hand, data scien-
tists often lack the clinical background needed to define the scope of the
Fig. 5. Paradigm for AI/ML development in healthcare. Synthetic data may help
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critical tasks that AI/ML can be brought to bear in the healthcare
domain.22,23 More importantly, although public datasets exist in other
fields for developers, data scientists often lack access to clinical datasets,
crippling development in this critical, high-impact field.

We propose a relatively newparadigm [Fig. 5] to address this shortcom-
ing in the field, in which deidentified synthetic datasets may bemademore
accessible for development purposes. Developers may more freely explore
these datasets, increasing the probability of discovery of optimal algorithms
and diagnostic models. Models with great promise may subsequently be
tested on additional real-world datasets, which may at that point require
appropriate compliance with traditional institutional review board proto-
col. However, this step would only need to be taken after identification of
suitable models, shifting the burden of regulatory compliance toward the
generalization and validation phase, rather than prior to development.
This would remove a now rate-limiting step which greatly impinges on
AI/ML development in healthcare.

Increasing access to challenging problems in science and healthcare has
previously resulted in solutions from unexpected sources. A user interface
(Foldit) for the protein-folding software Rosetta allowed widespread access
to non-scientists, who subsequently have provided solutions to difficult
problems in protein structure prediction and design which previously chal-
lenged domain experts and existing algorithms.11,24 Increasing access to
critical problems increases the likelihood of discovery of solutions by in-
creasing throughput and diversification of possible solutions, both of
which increase sampling depth and breadth. Indeed, a priori it may not be
known which approach or algorithm may be optimal for a given task.
Therefore, the best approach is to allow less restrictive research and devel-
opment on each problem, rather than limitingmodel development on a par-
ticular task to the expertise and biases of the researcher with access to the
dataset at hand. Increasing the connectivity of datasets and developers
will inherently lead to improvements in model development and ulti-
mately, potentially clinical outcomes. Computational researchers aim to
avoid the trap of local energyminima (the best solution arising from one al-
gorithm type or approach) and instead discover the true globalminima (the
true optimal model). In order to facilitate this, the social dynamics of the
clinical healthcare and computational (AI/ML) researchermust allowwide-
spread sampling of datasets by a diversity of approaches and personnel ex-
pertise. The most dramatic example of this is public distribution or crowd
sourcing of such problems, but even expanding access to such problems be-
yond the confines of specifically approved protocols would represent a
major enhancement to development of such protocols. To this end, we
to improve access to clinical data if it is shown to reduce regulatory hurdles.
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believe that adoption of an iterative model whichmakes clinical data avail-
able in a synthetic form prior to validation in a clinical setting may be a key
step to realizing the full potential of AI/ML in healthcare.

A limitation to our study is that it is based on one dataset with relatively
modest size and focused on TB. Further studies are needed to evaluate the
impact of synthetic data for this and other medical disciplines.

Access to high-quality and accurate health record data remains an ongo-
ing challenge for both routine patient care as well as for AI/ML develop-
ment. Production of synthetic data derived from “real world” parameters
provides opportunities to accelerate the development of AI/ML methods
when data access remains limited. The use of synthetic data for training
ML approaches to predict TB is feasible and supports further investigations
in other disease states.
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