Skip to main content
. 2022 Jan 25;14(1):2026208. doi: 10.1080/19420862.2022.2026208

Table 2.

Mean squared error (MSE) of the top five one-feature and two-feature combinations of the linear regression, support vector regression (SVR) and k-nearest neighbors regression (KNN) models for predicting aggregation rates. There are 20 mAbs in this study. The MSE are averaged from 100 randomly generated fourfold cross-validation sets

  One-feature MSE Two-features MSE
  SCM_neg_H2 5.04 SCM_neg_H2 SASA_phobic_H3 4.81
  SAP_pos_H1 5.31 SCM_neg_H2 SASA_philic_L3 4.97
Linear SASA_phobic_H3 5.49 SAP_pos_L1 SCM_neg_H2 5.08
  SCM_neg_H1 5.66 SCM_neg_H1 SASA_phobic_H3 5.19
  SASA_philic_L3 5.70 SCM_neg_H2 SCM_pos_L1 5.23
  SCM_pos_H2 4.96 SCM_pos_H2 SASA_phobic_Fv 4.12
  SCM_neg_H2 5.14 SAP_pos_L1 SCM_pos_H2 4.68
SVR SCM_pos_L3 5.43 SAP_pos_L1 SCM_neg_H2 4.89
  SASA_phobic_Fv 5.44 SAP_pos_Fv SASA_phobic_Fv 4.90
  SAP_pos_L1 5.46 SCM_pos_H2 SCM_pos_L3 4.90
  SCM_pos_H2 4.35 SCM_pos_H2 SASA_phobic_Fv 3.37
  SCM_pos_L3 4.97 SAP_pos_L1 SCM_pos_H2 3.80
KNN SCM_neg_H1 5.35 SCM_neg_H1 SCM_pos_H2 3.97
  SCM_pos_H1 5.59 SCM_pos_H2 SASA_philic_L3 4.21
  SAP_pos_Fv 5.65 SCM_pos_L3 SASA_philic_L1 4.73