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Abstract

Background: Perfluorooctanoic acid (PFOA) is an environmental contaminant associated with 

adverse metabolic outcomes in developmentally exposed human populations and mouse models. 

Hexafluoropropylene oxide-dimer acid (HFPO-DA, commonly called GenX) has replaced PFOA 

in many industrial applications in the U.S. and Europe and has been measured in global water 

systems from <1 to 9350 ng/L HFPO-DA. Health effects data for GenX are lacking.

Objective: Determine the effects of gestational exposure to GenX on offspring weight gain 

trajectory, adult metabolic health, liver pathology and key adipose gene pathways in male and 

female CD-1 mice.

Methods: Daily oral doses of GenX (0.2, 1.0, 2.0 mg/kg), PFOA (0.1, 1.0 mg/kg), or vehicle 

control were administered to pregnant mice (gestation days 1.5–17.5). Offspring were fed a high- 

or low-fat diet (HFD or LFD) at weaning until necropsy at 6 or 18 weeks, and metabolic endpoints 

were measured over time. PFOA and GenX serum and urine concentrations, weight gain, serum 
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lipid parameters, body mass composition, glucose tolerance, white adipose tissue gene expression, 

and liver histopathology were evaluated.

Results: Prenatal exposure to GenX led to its accumulation in the serum and urine of 5-day 

old pups (P = 0.007, P < 0.001), which was undetectable by weaning. By 18 weeks of age, male 

mice fed LFD in the 2.0 mg/kg GenX group displayed increased weight gain (P < 0.05), fat mass 

(P = 0.016), hepatocellular microvesicular fatty change (P = 0.015), and insulin sensitivity (P = 

0.014) in comparison to control males fed LFD. Female mice fed HFD had a significant increase 

in hepatocyte single cell necrosis in 1.0 mg/kg GenX group (P = 0.022) and 1.0 mg/kg PFOA 

group (P = 0.003) compared to control HFD females. Both sexes were affected by gestational 

GenX exposure; however, the observed phenotype varied between sex with males displaying 

more characteristics of metabolic disease and females exhibiting liver damage in response to the 

gestational exposure.

Conclusions: Prenatal exposure to 1 mg/kg GenX and 1 mg/kg PFOA induces adverse 

metabolic outcomes in adult mice that are diet- and sex-dependent. GenX also accumulated in 

pup serum, suggesting that placental and potentially lactational transfer are important exposure 

routes for GenX.
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1. Introduction

Prevalence of obesity in the U.S. population is on the rise, and recent data from the National 

Health and Nutrition Examination Survey found that 42.2% of Americans were classified as 

obese in the years 2017 and 2018 [1]. Increasing rates of obesity are concerning as obesity 

can lead to other adverse health outcomes, one of which is metabolic syndrome (MetS).

Metabolic syndrome describes a cluster of conditions that tend to co-occur and indicate 

overall poor metabolic health. In humans, these conditions include increased waist 

circumference, decreased high density lipoprotein C (HDL), increased triglycerides, elevated 

fasting glucose, and high blood pressure [2]. The prevalence of both MetS and obesity have 

increased in the US population at a rate that exceeds the effects of genetic predisposition 

and lifestyle alone, suggesting a role for environmental exposures [3]. Furthermore, 

an individual’s risk for developing obesity or MetS is influenced by their in utero 
environment. This phenomenon, called the Developmental Origins of Adult Health and 

Disease, explains how certain in utero conditions, such as maternal nutrition, can influence 

later life metabolic health [4–7]. Previous studies of humans and animals have demonstrated 

an association between gestational perfluorooctanoic acid (PFOA) exposure and adverse 

metabolic outcomes in exposed offspring [8].

PFOA is an environmental contaminant belonging to the family of chemicals known as per- 

and polyfluoroalkyl substances (PFAS). PFOA is a synthetic chemical containing a fully 

fluorinated eight-carbon backbone [9]. PFOA works as a surfactant, making it widely used 

in industrial processes and consumer products such as stain or water-resistant fabrics, food 
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packaging, and cleaning products. This wide variety of uses, along with its high degree 

of chemical stability, has made PFOA a globally ubiquitous environmental contaminant 

[10–13]. In addition to its environmental persistence, PFOA is biologically persistent with a 

half-life of ~3.5 years in human serum [14]. Collaborative efforts by manufacturers and the 

U.S. Environmental Protection Agency (EPA) have led to reductions in the use of long-chain 

perfluoroalkyl acids, but these restrictions have also created the need for PFAS alternatives 

[15]. While levels of PFOA have declined in the US population since the introduction of 

the voluntary US EPA PFOA Stewardship Program, which aimed to first reduce and then 

eliminate production of PFOA [16], there is an increasing need to evaluate the toxicological 

effects of emerging replacement PFAS.

Hexafluoropropylene oxide-dimer acid (HFPO-DA) is a PFOA substitute and a public health 

concern due to its presence as an environmental pollutant. HFPO-DA and its ammonium salt 

are commonly referred to as “GenX chemicals” or simply “GenX”, though the term “GenX” 

technically refers to the trade name for the PFOA-free technology used in fluoropolymer 

manufacturing. For simplicity, here we use GenX and HFPO-DA interchangeably. GenX has 

been detected in the Cape Fear River watershed (North Carolina, USA) [17], residential 

soils in China [18], and in drinking water near a fluoropolymer manufacturing plant 

in the Netherlands [19] at levels between <1 and 9350 ng/L [20], which suggests that 

GenX contamination is a widespread, global concern. Despite widespread pollution in the 

environment, the human health effects of GenX exposure are not well studied including the 

potential for GenX to exert adverse effects during critical windows of in utero development.

Epidemiologic studies have shown associations between prenatal PFOA exposure and low 

birth weight as well as elevated body mass index, weight gain, and adiposity in children 

[21–25]. In addition to impacting metabolic outcomes in infants and children, an association 

between prenatal PFOA exposure and increased risk for obesity has been reported in young 

adult women [26]. Increased visceral fat mass in children has also been associated with 

serum levels of several PFAS [27]. The ability of prenatal PFOA exposure to disrupt 

metabolic disease outcomes in offspring has also been demonstrated in mice. Developmental 

exposure in CD-1 mice to 5–10 mg PFOA/kg body weight/day (mg/kg/day) caused low birth 

weight and reduced early life weight gain in offspring [8,28], while developmental exposure 

to lower doses (0.01, 0.1, 0.3 mg/kg/day PFOA) caused increased weight gain, insulin, and 

leptin in adult offspring [8,29].

The potential for prenatal PFOA exposure to disrupt developmental programming of 

metabolic homeostasis has been explored in both epidemiologic and in vivo studies, yet little 

is known regarding the metabolic health risks posed by the emerging PFOA replacement, 

GenX. One study in rats reported prenatal exposure to 125 mg/kg/day GenX caused 

decreased weight in female offspring from the perinatal period through puberty [30], and in 

mice it enhanced gestational weight gain [31], indicating that GenX may also induce adverse 

metabolic programming effects. These studies suggest altered metabolic programming as 

a mechanism as opposed to direct effects to target organs, as GenX has an estimated 

half-life of <24 h (vs ~3 weeks for PFOA) in mice and therefore would not be present 

in offspring that were only exposed in utero [32]. These initial findings of GenX-induced 

metabolic alterations, in addition to community-based exposure concerns, indicate a critical 
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gap in knowledge regarding the potential lifelong consequences of developmental exposure 

to replacement PFAS, such as GenX, on metabolism.

In this study we compared the effects of developmental exposure to GenX or PFOA on 

metabolism in male and female CD-1 mouse offspring that were subsequently exposed to 

high or low fat diets by analyzing weight gain, serum lipid profile, body mass composition, 

glucose tolerance, liver pathology, and white adipose tissue gene expression.

2. Methods

2.1. Animals

Naïve female CD-1 mice from the National Institute of Environmental Health Sciences 

(NIEHS) mouse colony were bred in-house overnight and the next morning copulatory 

plug-positive animals were designated as gestational day (GD) 0.5, removed from the cage, 

weighed, and assigned to experimenter-blinded color-coded treatment groups. Plug-positive 

mice were distributed across color-coded groups to ensure baseline body weights were 

similar across all groups [range of 20–30 grams (g) on GD 0.5]. Animals were maintained 

on a 12/12hr light/dark schedule, with NIH-31 diet (Zeigler, PA, USA) and reverse osmosis 

deionized (RODI) water was provided ad libitum to dams during gestation and through 

weaning (PND 22). At weaning, offspring of all litters (50:50 by sex and number, when 

possible) were randomly assigned to either a high fat diet (HFD, 60% kcal fat diet; 5.21 

kcal/g diet; Product #D12492, Research Diets) or control low fat diet (LFD, 10% kcal 

fat diet; 3.8 kcal/g diet; Product #D12450B, Research Diets, NJ, USA; Table S1). Diets 

and RODI water were provided ad libitum postweaning. Same sex offspring were housed 

together, and enrichment was added to cages. Animal care and use were in accordance 

with the Public Health Service Policy on Humane Care and Use of Laboratory Animals 

(https://olaw.nih.gov/policies-laws/phs-policy.htm). All animal procedures were approved by 

the NIEHS Animal Care and Use Committee (NTPL ASP#2018–0022).

2.2. Chemicals

Perfluorooctanoic acid ammonium salt, CAS# 3825-26-1 was purchased from 

Millipore Sigma (Darmstadt, Germany) and GenX (Ammonium 2,3,3,3-tetrafluoro-2-

(heptafluoropropoxy) propanoate, CAS# 62,037-80-3) was purchased from SynQuest 

Laboratories (Florida, USA). Dosing solutions were prepared every 3–4 days in RODI water 

at concentrations allowing for a daily oral gavage administered volume of 0.01 mL dosing 

solution per g mouse body weight (mL/g).

2.3. Experimental design

Plug-positive dams (target of n = 10 per group) were assigned to one of the following six 

groups on GD 0.5: 0.1 or 1.0 mg/kg/day PFOA; 0.2, 1.0, or 2.0 mg/kg/day GenX; or vehicle 

control (VC, RODI water only). Sample size (# dams per treatment group) was determined 

a priori from data in Blake et al. [31]. Experimenters and technicians were blinded to the 

identity of the treatment groups throughout the experiments. PFOA doses were selected 

based on past studies [8,33]: 1.0 mg/kg/day was a critical dose used to inform the current 

human lifetime health advisory level for PFOA in drinking water of 70 parts per trillion 
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(ppt [34]) and developmental exposure to 0.1 mg/kg/day had metabolic and developmental 

effects in mice in previous studies [8,29]. GenX doses were selected based on previous work 

that indicated a lowest observed adverse effect level (LOAEL) of 2 mg/kg/day for adverse 

maternal and placental outcomes [31]. Dams were weighed daily throughout gestation and 

were exposed to treatments via daily oral gavage from GD 1.5 to GD 17.5; doses were 

adjusted daily based on the previous day’s weight. Dams were monitored every few hours 

on the early morning of GD 18.5 to determine the approximate time of parturition. If a 

litter was present upon the start of the light cycle on GD 18.5, the litter age was considered 

postnatal day 0.5 (PND 0.5). At PND 5.5, litters were standardized to 10 pups, equalizing 

the sex distribution to 5 male and 5 female pups when possible.

On PND 22, necropsy of dams and one pup per sex per litter was performed and the 

remaining pups were weaned and assigned to HFD or LFD (Table S1). Offspring received 

assigned diets from PND 22 (3 weeks of age) to 18 weeks of age. These diets were matched 

in protein source and content, vitamin, and mineral levels [35,36]. From weaning until 

necropsy, offspring were co-housed with 2–5 animals per cage of the same sex and from the 

same treatment group, and at 12 weeks of age some males were individually housed due to 

fighting. Offspring were weighed weekly and numerous inlife outcomes were recorded as 

described below. A timeline demonstrating the experimental design is shown in Fig. 1A.

2.4. Offspring serum and urine dosimetry

When the number of pups/litter was standardized at PND 5.5, urine and trunk blood 

was collected (following swift decapitation) from excess pups within a litter. Pup serum 

(PND 5.5 litter-pooled samples and PND 22 individual pup serum) and urine (PND 5.5 

litter-pooled samples) were analyzed for PFOA and GenX concentrations using methods 

similar to those previously reported [31,37–40]. Briefly, serum or urine samples (25 μL) 

were spiked with 13C4 PFOA (Wellington Laboratories) or 13C3 HFPO-DA (Wellington 

Laboratories) as an internal standard in 0.1 M formic acid denaturation buffer, followed 

by a protein crash step using ice-cold acetonitrile. Samples were then vortex-mixed and 

centrifuged at 10,000×g for 5 min. Extract supernatants were separated using a Waters 

ACQUITY UPLC (Waters Corporation) fitted with a Waters ACQUITY UPLC BEH C18 

Column (130 Å; 1.7 μm; 2.1 mm × 50 mm).

Detection was performed using a Waters Quattro Premier XE tandem quadrupole mass 

spectrometer in negative ionization mode. Isotope dilution mass spectrometry was used to 

quantify PFOA and GenX levels in the vehicle control (quantitative range 5–100 ng/mL; 

7-point curve) and dosed animals (quantitative range 200–20,000 ng/mL; 9-point curve). 

Vehicle control and dosed animal samples were quantified for both PFOA and GenX using 

respective isotope labeled chemicals and calibration curves.

2.5. Glucose tolerance test

Intraperitoneal glucose tolerance tests were conducted at Week 9 (PND 54–58) and Week 

14 (PND 96–100). Animals were weighed and then fasted for 5 h (Week 9) or 5.5 h (Week 

14) prior to the test. Female mice were checked for estrous stage prior to fasting so that all 

females were tested during diestrus. Sterile glucose solutions were prepared prior to each 
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round of testing (D-(+)-Glucose, Sigma, St. Louis, MO #G7021). Baseline glucose levels 

were determined using an Accu-Chek (Roche Diagnostics, Switzerland) glucometer and test 

strips, and glucose was administered at 1 g glucose/kg body weight through intraperitoneal 

injection. Blood glucose was measured at 20, 40, 60, 120, and 180 min post-injection 

using blood from tail vein collection. Animals were monitored until glucose levels returned 

to normal ranges. Area under the curve (AUC) was calculated for each animal using the 

trapezoidal method [41].

2.6. Body mass composition analysis

Body mass composition of mice was evaluated at Week 12 (PND 82–86) and Week 17 

(PND 117–121). Mice were gently restrained, weighed, and then fat, lean and fluid mass 

were measured by time domain Nuclear Magnetic Resonance (TD-NMR) using an LF90 

Minispec Body Mass Analyzer (Bruker, San Jose, CA), and then returned to their cages.

2.7. Necropsy

Necropsies were performed at PND 22, Week 6 (PND 42 ± 2), and Week 18 (PND 126 ± 

2). On PND 22, body weights were recorded for the dam, one male pup, and one female 

pup per litter. Offspring were humanely euthanized via swift decapitation, liver weights were 

recorded, and trunk blood and liver were collected. A portion of the left lateral lobe was 

fixed in 10% neutral buffered formalin (NBF) for histological analysis. Dam uteri were 

collected and kept in cold phosphate buffered saline and implantation sites were counted 

using a light microscope (Leica Z16 APO macroscope). At Week 6, males (N = 8–12) and 

females (N = 8–10) from each diet and treatment group were weighed and euthanized. The 

same procedures were followed as described for PND 22 offspring necropsy.

At Week 18, the remaining mice were weighed and fasted for 5.5–6 h prior to sacrifice to 

allow for collection of serum for fasted glucose and insulin levels. Females were checked 

for stage of estrous so that all female mice were euthanized in diestrus. Vaginal lavage was 

conducted using 1 X phosphate buffered saline and wet preps were read immediately. Mice 

were euthanized by swift decapitation and trunk blood was collected. Males (N = 8–11) 

and females (N = 7–11) were collected from each diet and treatment group. The liver was 

removed and weighed, and a portion of the left lateral lobe was fixed in 10% NBF. White 

adipose tissue from the reproductive fat pads was collected and snap frozen. Frozen tissues 

were stored at −80 °C for future analysis.

2.8. Lipid panels and liver enzymes

Blood was collected at necropsy into Becton Dickinson Vacutainer serum separating tubes 

(ref # 367981) and serum prepared according to manufacturer’s directions. Samples of 

serum (10 μL) were analyzed for cholesterol (total cholesterol, triglycerides, LDL, and 

HDL), liver enzymes (ALP, ALT, and AST), and glucose using an AU480 clinical chemistry 

analyzer (Beckman Coulter Inc., Brea, CA, USA). Reagents and calibrators used to measure 

alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase 

(AST), glucose (Glu), triglyceride (Trig), high density lipoprotein (HDL), and cholesterol 

(Chol), were purchased from Beckman Coulter Inc. (Melville, NY, USA). Reagents used to 

measure low density lipoprotein (LDL) were purchased from Diazyme Laboratories (Poway, 
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CA, USA). Lipid panel measurements were conducted on serum samples collected at PND 

22, Week 6, and Week 18. Liver enzymes were measured for Week 18 samples only.

2.9. Insulin

Fasting insulin was measured in serum collected at week 18 necropsy using the mouse 

metabolic immunoassay kit from Meso Scale Discovery (Catalog number: K15124C, Meso 

Scale Diagnostics, Rockville, MD). Each 25 μL sample was run in duplicate. Samples with 

a coefficient of variation (CV) greater than 20% were re-run two additional times for a total 

of three runs. If the CV across the three runs combined still exceeded 20%, the animal 

was excluded from the analysis (N = 2 mice, both in the male HFD GenX 0.2 mg/kg 

group). Means of samples from the same animal run in duplicate on a plate were considered 

a biological replicate in subsequent analyses. Quantitative insulin check index (QUICKI) 

scores were calculated for each animal [42].

2.10. Histopathology

Livers from offspring were fixed in 10% NBF, trimmed, processed into paraffin blocks, 

cut as 5 μM sections, mounted onto glass slides, and then stained with hematoxylin and 

eosin (H&E). Slides were evaluated by two board-certified veterinary pathologists (S.E. 

and J.H.) and reviewed by a Pathology Working Group with four additional board-certified 

pathologists to confirm final diagnoses. Severity grading was either none/minimal, mild, 

moderate or severe. Hepatocyte single cell necrosis and mixed cell infiltrate was graded 

as none/minimal (<2 foci), mild (2–7 foci), moderate (8–20 foci or 2–4 foci of >4 cell-

layer thick periportal aggregates), or severe (20+ foci or >4 foci of >4 cell-layer thick 

periportal aggregates). Microvesicular fatty change was graded as none/minimal (<10% 

parenchyma affected), mild (multifocal random or centrilobular hepatocytes, >10% and 

<30% parenchyma affected with mild to moderate vacuoles or >30% affected with minimal 

vacuoles), moderate (centrilobular hepatocytes affected, >30% and <70% parenchyma 

affected with moderate to severe vacuoles or near diffuse pattern, >70% with mild 

vacuoles), or severe (near diffuse pattern, >70% hepatocytes affected with severe vacuoles). 

Macrovesicular fatty change was graded as none/minimal (no macrovesicular vacuolation), 

mild (multifocal random or periportal, <30% parenchyma affected), moderate (periportal 

hepatocytes affected, >30% and <70% parenchyma affected), or severe (near diffuse pattern, 

>70% hepatocytes affected). Digital images were captured as screen shots from H&E slides 

scanned on the Aperio ScanScope AT2 instrument (Leica Biosystems Inc., Buffalo Grove, 

IL) using ImageScope software, version 12.3 (Aperio). Formatting of images for publication 

was completed using Adobe Photoshop CC version 19.1.0 (Adobe Systems Inc., San Jose, 

CA).

2.11. Quantitative RT-PCR (RT-qPCR) analysis

White adipose tissue (WAT) was collected at the week 18 necropsy from the intra-abdominal 

perigonadal depots. Tissue from the four heaviest animals in each treatment group was 

selected to capture the effects in animals most sensitive to weight gain. A range in sensitivity 

was expected due to the genetic variation in the outbred CD-1 mice used in the study. 

RNA was isolated by homogenizing WAT with an automated ceramic bead homogenizer 

FastPrep-24 5G (MP Biomedicals, Irvine, CA) in Trizol (Thermofisher Scientific, PA, USA) 
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for 2 cycles of 4 m/s for 30sec. RNA was purified using a Qiagen RNeasy kit (Qiagen, 

MD, USA) and genomic DNA was removed using on-the-column DNase I digestion 

(Qiagen, MD, USA) and quantified with Nanodrop 2000 spectrophotometer (ThermoFisher 

Scientific, PA, USA). RNA (1 mg) was transcribed into cDNA using a High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, USA). cDNA (25 ng) was amplified in 

triplicate using a QuantStudio 7 Flex Real Time PCR System (Applied Biosystems) and 

Power SYBR Green 2 × Mastermix (Applied Biosystems, Foster City, Canada). Primer 

sets for all genes were pre-designed assays (IDT DNA, Redwood City, CA, USA) and are 

shown in Table S2. Mean Ct values were normalized to Rpl19 (60S ribosomal protein L19; 

housekeeping gene) and relative fold change mRNA levels were calculated by using ΔΔ CT 

method [43].

2.12. Statistical analysis

Data were analyzed in R version 1.2.5019 (R Foundation for Statistical Computing; Vienna, 

Austria). Sample sizes for each endpoint are reported in the accompanying figure legends 

or tables. A threshold of P < 0.05 was used for determining statistical significance unless 

otherwise noted. For analyses of data obtained by a single measurement at a single time 

point (e.g. offspring serum and urine dosimetry, litter outcomes at PND 0.5, offspring liver 

weights, serum lipids, and body mass composition), data were analyzed for main effect of 

treatment group using analysis of variance and the lme4 (Bates et al., 2014) and lmerTest 
packages (Kuznetsova et al., 20,117). Simultaneous tests for general linear hypotheses were 

corrected for multiple comparisons of means between all groups using Tukey contrasts in 

the package multcomp (Hothorn et al., 2009) or by Dunnett’s test when comparing treatment 

groups to the vehicle control group in the same package. Jonckheere-Terpstra’s trend test 

in the package clinfun was used to determine dose-response trends in QUICKI scores [44]. 

Mixed effects models were used in analyses of data when multiple pups per litter were 

sampled or when individual pups were measured repeatedly for the same outcome over time 

(e.g. PND 5.5 pup weights and postweaning weight gain). Analyses of data collected after 

diet groups were assigned (PND 22 and older) were stratified a priori by offspring sex and 

diet group.

Average PND 0.5 pup weights were calculated as the litter weight divided by the number of 

pups in the litter. Offspring weights measured after PND 0.5 were obtained from individual 

pups. Multiple individual pups per litter were weighed for each litter at PND 5.5, therefore 

pup weights were analyzed using mixed effect models and included a priori fixed effects 

of treatment group and litter size and a random effects term for the dam (litter) using the 

lme4 package. Point estimates and 95% confidence intervals were determined from the final 

model using the Wald method. Offspring weights measured from PND 22 and later did not 

require a random effects term for the dam (litter), as only one pup per sex per litter was 

measured at these time points.

Postnatal weight gain analyses were stratified by diet type and sex, then analyzed using 

mixed effect models and included a priori fixed effects of treatment group and offspring age 

and a random effects term to account for repeated measures of the same individual using the 
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lme4 package. Point estimates and 95% confidence intervals were determined from the final 

model using the Wald method.

Liver pathology scoring was analyzed using pairwise Fisher’s exact tests between control 

and treatment groups, with post-hoc correction of P values using the Holm method [45]. 

This analysis was done using the RVaidememoire package [46].

RT-qPCR data was analyzed using the delta delta Ct (ΔΔ Ct) method [43]. Delta Ct (Δ 

Ct) was calculated by normalizing to the Rpl19 housekeeping gene and mean Δ Ct was 

calculated for each gene in each animal. Mice were stratified by sex and diet, and within 

these sex and diet groups a one-way ANOVA with Dunnett’s post hoc test was used to 

compare treatment groups to the vehicle using GraphPad Prism (version 8.4.2).

3. Results

3.1. Internal dosimetry

To gain an understanding of the persistence of gestational exposures in the offspring, PFOA 

and GenX concentrations were measured using HPLC mass spectrometry in pooled serum 

or pooled urine from pups within a dose group when culled at PND 5.5. Quantified levels 

of both chemicals fell below the limits of detection of 5 ng/mL for the VC group. However, 

PFOA and GenX were detectable in serum and urine from respective treatment groups (Fig. 

1). At PND 5.5, mean serum levels of PFOA in pups exposed prenatally to 0.1 mg/kg 

PFOA were 2.3 μg/mL and in pups exposed to 1.0 mg/kg PFOA were 13.0 μg/mL (Table 

S3). The pups exposed to 0.2, 1.0, and 2.0 mg/kg GenX had mean serum concentrations of 

0.42 μg/mL, 1.32 μg/mL, and 2.15 μg/mL, respectively (Table S3). Serum measurements of 

GenX demonstrated a different slope than the administered dose. The serum concentration 

increased 3-fold between the 0.2 mg/kg GenX and 1.0 mg/kg GenX groups, which was a 

5-fold increase in dose. The serum concentration increased 0.6-fold between the 1.0 mg/kg 

and 2.0 mg/kg GenX group (a 2-fold increase in dose); therefore, the observed relationship 

between increasing dose and serum accumulation was not parallel (Fig. 1B).

At the PND 5.5 timepoint, GenX was detectable in the urine of all GenX exposed pups (Fig. 

1C). The pups exposed to 0.2, 1.0, and 2.0 mg/kg GenX had mean urine concentrations of 

0.51, 1.81, and 3.4 μg/mL, respectively (Table S3). For the PFOA exposed animals, 0.02 

μg/mL was detected in the urine of the 0.1 mg/kg group, and 0.42 μg/mL in the 1.0 mg/kg 

group, suggesting a larger percentage of administered dose was excreted in urine in the 

higher dose group (Table S3). Serum levels of both PFOA exposed groups and the 2.0 mg/kg 

GenX group were significantly higher than the VC, and the urine levels of 1.0 and 2.0 mg/kg 

GenX were significantly different from VC (Table S4). Other significant differences that 

were present between dose groups are shown in Table S4. At the PND 22 timepoint, there 

was no detectable GenX in the blood of any of the GenX exposed pups. For the 0.1 mg/kg 

PFOA group, the mean serum concentration regardless of pup sex was approximately 0.3 

μg/mL, and for the 1.0 mg/kg PFOA group, the serum concentration was approximately 4.0 

μg/mL (Table S5).
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3.2. Early life weight gain

To minimize stress on dams and pups, pup birth weight at PND 0.5 was determined by 

weighing the litter as a unit and dividing by the number of pups. Using this approach, there 

were no treatment-related differences in average pup weight at PND 0.5 (Table S6). Pup 

body weight at PND 5.5 was determined by weighing each pup individually. After adjusting 

for litter size and including a random effects term (dam), mixed effect models estimated a 

6.3% and 6.7% reduction in pup weight for GenX 1.0 mg/kg and 2.0 mg/kg dose groups at 

PND 5.5 compared to VC, respectively (Fig. 2, Table S6).

3.3. Body and relative liver weights

Individual offspring body and liver weights were measured at necropsy on PND 22, Week 6 

(PND 42 ± 2), and Week 18 (PND 126 ± 2).

3.3.1. PND 22—Prior to assigning offspring to specific diets, body weights in each 

group were determined. There were no significant differences in offspring body weights 

in the treatment groups compared to VC on PND 22 (Tables S7 and S8). There were no 

statistically significant changes in relative liver weights (liver weight as a percent of total 

body weight) in females, though the relative liver weight remained increased by 7.0% in 

the 1.0 mg/kg PFOA group compared to VC (P = 0.1; Table S7). Relative liver weight was 

significantly increased only in males exposed to 1.0 mg/kg PFOA by 11.6% compared to 

VC males (P = 0.02; Table S8).

3.3.2. Week 6—When assessed at six weeks of age, the female VC mice fed LFD 

weighed an average of 25.5 g, compared to 28.0 g for those fed HFD, but no significant 

treatment related changes in body weight were detected at this time point (Table S9). At this 

same age, males fed LFD demonstrated a 9.1% increase in body weight in the 2.0 mg/kg 

GenX group compared to VC and enlarged liver weight (average body weight 34.2 g; P = 

0.036; Table S10). There were no significant treatment-related differences in average body 

weight for males fed HFD (Table S10). However, there was an 18% increase in relative liver 

weight for male offspring fed LFD in the 1.0 mg/kg GenX group compared to VC (P = 

0.002) and a 13.6% increase in relative liver weight for male offspring fed LFD in the 1.0 

mg/kg PFOA (P = 0.036) group compared to VC (Table S10).

3.3.3. Week 18—Females fed HFD exhibited substantial weight gain in the VC group 

by 18 weeks compared with VC females fed LFD (LFD = 35.5 g vs. HFD = 54.2 g; Table 

S11). In females, there was a 31.4% increase in relative liver weight in the 1.0 mg/kg PFOA 

HFD group compared to VC HFD (P = 0.011; Table S11). For males fed LFD, there was 

an 18.2% increase in body weight in the 2.0 mg/kg GenX group compared to VC (P = 

0.026), a doubling in weight gain effect seen at week 6 necropsy, and a 17.6% increase in 

body weights of the 0.1 mg/kg PFOA group compared to VC (P = 0.046; Table S12). There 

was also a 16.0% increase in body weight in the males fed LFD in the 1.0 mg/kg PFOA 

group compared to VC; however, this did not reach statistical significance (P = 0.078; Table 

S12). There were no significant differences in body weight or relative liver weight across 

treatment groups in LFD females or HFD males at Week 18 (Table S11 & Table S12).
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3.3.4. Weight Gain over Time (PND 22-Week 18)—Postnatal weight gain was 

analyzed using repeated measures mixed effect model estimates over time by diet and sex 

(Fig. 3). This revealed two important observations; first, female and male mice on LFD had 

considerably different patterns of weight gain following exposure to PFOA or GenX (Fig. 

3A and C). Specifically, females exposed to the lower dose of PFOA were more sensitive 

to weight gain, while males exposed to the higher dose of GenX showed increased weight 

gain. Females fed LFD and exposed to 0.1 mg/kg/day PFOA gained more weight than VC 

females (17.16 g compared to 15.46 g in controls; Fig. 3C), but this difference did not reach 

statistical significance. However, male mice fed LFD and exposed to 2.0 mg/kg/day GenX 

gained on average 24.6 g from PND 22 to Week 18 (P < 0.05; Fig. 3A & Table S13); a 

22.4% increase compared to the 20.1 g gained by VC mice fed LFD. There were no other 

significant changes in weight gain for males fed LFD, though the males in the 1.0 mg/kg 

PFOA group gained on average 23.4 g, which was a 16.4% increase compared to VC males 

(Table S13). Second, while the developmental exposures to PFOA and GenX exhibited a 

visual trend for dose-dependent weight changes over time in males fed LFD (GenX: 0.2 < 

1.0 < 2.0 mg/kg/d; PFOA: 0.1 < 1.0 mg/kg/d; Fig. 3A), there were no significant changes 

due to chemical exposure on body weight of the male or female mice fed HFD (Fig. 3B and 

D; Tables S11 and 12).

3.4. Serum lipids

3.4.1. PND 22—At PND 22, serum triglycerides were significantly reduced in all female 

treatment groups compared to VC females (P < 0.001; Table 1), even though the GenX-

exposed pups had no measurable circulating exposure remaining (Table S5). The decrease 

in serum triglycerides in females relative to VC was similar across the GenX dose groups: 

42.3% for 0.2 mg/kg GenX, 45.5% for 1.0 mg/kg GenX, 43.5% for 2.0 mg/kg GenX. 

For PFOA-exposed females, triglycerides were decreased by 34.8% (0.1 mg/kg PFOA), 

and 52.8% (1.0 mg/kg PFOA; Table 1). In the females, there were no differences in total 

cholesterol (TC), LDL, or HDLdue to exposures; however, the HDL to LDL ratio was 

increased by 16.9% in the GenX 2.0 mg/kg group (P = 0.008; Table 1). In the males, serum 

triglycerides were reduced by 34.2% in 1.0 mg/kg GenX (P = 0.023), 38.9% in 2.0 mg/kg 

GenX, (P = 0.006), and 40.7% (P = 0.005) in 1.0 mg/kg PFOA groups relative to VC 

males (Table 1, bottom). In the males, there was a 21.3% increase in LDL cholesterol in 

the 1.0 mg/kg PFOA group compared to VC males (P = 0.047; Table 1). Although mean 

TC levels were increased 15–19% due to some PFOA and GenX exposures in males, the 

considerable variability in the endpoint obscured the ability to detect statistical significance 

and no significant differences in TC, HDL, or the HDL:LDL ratio were noted (Table 1).

3.4.2. Week 6—By week 6 of age, GenX significantly affected TC in males fed LFD. 

Relative to LFD VC males, TC was increased by 37% in LFD males exposed to 0.2 mg/kg 

GenX (P = 0.005), 44% in LFD males exposed to 1.0 mg/kg GenX (P < 0.001), and 

29% in LFD males exposed to 2.0 mg/kg GenX (P = 0.022; Table S14). Males fed LFD 

in the 1.0 mg/kg GenX group also had a 21% increase in HDL (P = 0.084) and a 41% 

increase in LDL (P = 0.071) relative to VC males fed LFD, though these results were not 

statistically significant (Table S14). Males fed LFD in the 1.0 mg/kg PFOA group exhibited 

a 20% decrease in HDL:LDL ratio relative to VC males fed, but these effects did not reach 
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statistical significance (P = 0.06; Table S14). HFD males in the 1.0 mg/kg PFOA group had 

a 19.3% decrease in the ratio of HDL to LDL (P = 0.012) relative to VC males fed HFD 

(Table S14). Triglyceride levels in males exposed to either PFOA or GenX had returned to 

VC levels by 6 weeks of age.

At 6 weeks of age, LFD females exhibited increased HDL:LDL ratios of 22.5% for the 0.2 

mg/kg GenX group (P = 0.029), and 22.0% for the 0.1 mg/kg PFOA group (P = 0.043; 

Table S15). Although not detected in males, the decrease in triglyceride levels persisted 

in PFOA and GenX-exposed LFD females; triglycerides were decreased 42.1% in the 1.0 

mg/kg GenX (P = 0.002), 30.4% in the 0.1 mg/kg PFOA (P = 0.038), and 34.2% in the 

1.0 mg/kg PFOA (P = 0.012) groups, compared to LFD VC females (Table S15). TC was 

increased by 20.5% in females fed LFD in the 2.0 mg/kg GenX group (P = 0.057) compared 

to VC (Table S15). There were no significant differences due to treatment in lipid panels for 

females on the HFD.

3.4.3. Week 18—Effects on blood lipids due to developmental exposure to PFOA or 

GenX were diminished by 18 weeks of age compared to effects noted earlier in life. At 

Week 18, males fed LFD following exposure to 1.0 mg/kg GenX had a 20.8% increase in 

HDL (P = 0.04) and a persistent 30.3% elevation in TC (P = 0.04), relative to LFD vehicle 

males (Table S16). There were no differences in the male HFD groups or LFD groups in 

other serum lipid levels compared to their respective VC groups. Females fed HFD in the 

1.0 mg/kg PFOA had a 65.8% increase in LDL (P = 0.01), resulting in a 33.6% decrease in 

HDL:LDL ratio (p < 0.001) relative to HFD VC females (Table S17).

3.5. Glucose metabolism

3.5.1. Week 18 Fasted serum measurements—Serum glucose and insulin levels 

were measured in fasted male and female mice at 18 weeks of age (Table 2). Fasting 

glucose levels were slightly elevated due to the HFD in VC mice relative to LFD VC mice 

(especially in males), but there was no significant effect of developmental PFOA or GenX 

exposure on fasting glucose levels in male or female offspring (Table 2). However, in male 

offspring, GenX had a substantial effect on fasting insulin levels compared to VC for both 

diet conditions. On HFD, 1.0 mg/kg GenX exposure caused more than a 4-fold increase 

in insulin levels compared to HFD VC males (P = 0.004) and on LFD, 2.0 mg/kg GenX 

exposures induced more than a 7-fold increase in insulin compared to LFD VC males (P 

= 0.02; Table 2). Within the LFD males exposed to GenX, there was a dose-dependent 

increase in serum insulin (P < 0.001, Jonckheere’s trend test; Table 2). Insulin levels in 

LFD males exposed to PFOA also increased but did not reach significance when compared 

by ANOVA. However, PFOA also caused a dose-dependent increase in insulin levels (P < 

0.001, Jonckheere’s trend test; Table 2). As such, the QUICKI score was decreased in males 

fed the LFD by 42.2% in the 2.0 mg/kg GenX (P = 0.01) and by 43.1% in the 1.0 mg/kg 

PFOA (P = 0.02) groups and these changes were driven by elevated serum insulin (Table 2). 

Males in the 1.0 mg/kg GenX group fed LFD also had a 33.9% decrease in QUICKI, though 

this decrease did not reach statistical significance (P = 0.085; Table 2).
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3.5.2. Glucose Tolerance—Male and female offspring were also challenged by a 

glucose injection at 9 and 14 weeks of age, and blood glucose levels were measured at 

numerous timepoints thereafter. There were no significant differences in glucose tolerance 

when measured as area under the curve at 9 or 14 weeks across the treatment groups relative 

to respective same-sex and same-diet VC groups (Tables S18–19).

3.6. Body composition

Body composition was measured to determine if fat mass was increasing over time due to 

PFOA or GenX exposure. There were no statistically significant differences in body mass 

composition measurements across treatment groups within sex or within diet vs. VC groups 

at Week 12 (Tables S20–21). There were also no significant body mass composition changes 

in males fed HFD, or females fed either HFD or LFD at Week 17 (Tables S22–23; Fig. 4B, 

C, D). However, by Week 17, males fed LFD and exposed to 2.0 mg/kg GenX exhibited an 

18.5% increase in body weight (P = 0.027; Fig. 4A), a 94.3% increase in grams of body fat 

(P = 0.011), a 66.6% increase in percent fat (P = 0.016; Fig. 4E), a 92.6% increase in the 

fat to lean ratio (P = 0.010; Fig. 4F), and a 12.3% decrease in percent lean mass (P = 0.017) 

compared to VC males fed LFD (Table S23).

At week 17, males fed LFD in the 1.0 mg/kg PFOA group also had an 18.0% increase in 

body weight (P = 0.05; Fig. 4A), an 84.3% increase in body fat (P = 0.04), a 59.3% increase 

in percent fat (P = 0.05; Fig. 4E), and a 76.1% increase in fat to lean ratio (P = 0.06; Fig. 

4F), compared to VC males fed LFD (Table S23). Males fed LFD and in the 0.1 mg/kg 

PFOA group had a 16.2% increase in body weight (P = 0.07; Fig. 4A, Table S23).

Of note, some of the treated groups retained more body fluids. Compared to VC males on 

the same diet, LFD males had a 35.0% increase in grams of fluid in the 2.0 mg/kg GenX 

group (P = 0.059), a 40.0% increase in the 0.1 mg/kg PFOA group (P = 0.044), and 50.0% 

increase in the 1.0 mg/kg PFOA group (P = 0.009; Table S23). The percent fluid was also 

increased in the LFD males in the 0.1 mg/kg PFOA group by 20.8% (P = 0.0827), and in the 

1.0 mg/kg PFOA group by 28.5% (P = 0.011) compared to VC males fed LFD (Table S23).

3.7. Liver histopathology and liver enzymes

Liver histopathology was assessed in mice sacrificed at the 18-week timepoint, 

approximately 4.5 months after the gestational exposure to PFOA or GenX had ended. 

Representative pictures of the primary diagnoses affected by treatments are portrayed in Fig. 

5, with accompanying data shown in Tables S24 and S25. For the HFD mice, there was a 

significant increase in hepatocyte single cell necrosis in the female 1.0 mg/kg GenX group 

(P = 0.022) and 1.0 mg/kg PFOA group (P = 0.003) compared to VC (VC liver shown in 

Fig. 5A; Table S25). The hepatocyte single cell necrosis was characterized by multifocal, 

single or small clusters of individual swollen, necrotic hepatocytes with associated pyknotic 

and karyorrhectic debris and neutrophilic inflammation (Fig. 5B). There was also an 

increase in microvesicular fatty change in LFD mice (shown in Fig. 5C and D), with a 

significant increase in the male 2.0 mg/kg GenX group (P = 0.015) compared to VC (Table 

S24). Microvesicular fatty change was characterized by expansion of the hepatocellular 

cytoplasm with multiple, small, discrete, clear lipid-type vacuoles and was often present 
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in a diffuse pattern when severe but was sometimes only present in centrilobular areas 

(Fig. 5C and D). Among the LFD group within the 18 Week timepoint, there was a 

notably low incidence (0%) of microvesicular fatty change within the control group and, 

as such, all treatment groups appear to have an increased incidence relative to this control 

group. Although diagnoses in livers of exposed mice were made, no statistically significant 

differences due to treatment were observed for macrovesicular fatty changes (shown in Fig. 

5E) or mixed cell infiltrates (Shown in Fig. 5F; Tables S24–25).

Liver enzymes were also measured at the 18-week timepoint and data are shown in Tables 

S26–S27. There were no differences between treatment groups and vehicle for aspartate 

aminotransferase (AST), alanine transaminase (ALT), or alkaline phosphatase (ALP) for 

males fed HFD (Table S27). ALP was decreased by 32.5% in males fed LFD in the 0.2 

mg/kg GenX group compared to vehicle (P = 0.03; Table S27). For HFD females, AST, 

ALT, and ALP were increased in the 1.0 mg/kg PFOA group by 22.8%, 129.9%, and 

42.8% respectively (Table S26). For females fed HFD, ALT and ALP were increased in 

the 2.0 mg/kg GenX group by 142.8% and 39.3% respectively (Table S26). There were no 

differences in liver enzymes between treatment groups and vehicle for females fed LFD.

3.8. RT-qPCR analysis of adipose tissues

RT-qPCR analysis was performed on intra-abdominal perigonadal WAT collected at the 

week 18 necropsy. Sex-specific differentially expressed gene patterns were observed. WAT 

of GenX-exposed males fed LFD exhibited decreased expression of genes involved in 

metabolic processes, including acetyl-CoA carboxylase alpha and beta (Acaca, Acacb), 

adiponectin (Adipoq), fatty acid synthase (Fasn), insulin receptor (Insr), insulin receptor 

substrate 1 (Irs1), peroxisome proliferator-activated receptor gamma (Pparg), retinoid X 

receptor alpha (Rxra), and sterol regulatory element-binding factor 1 (Srebf1; Fig. 6). WAT 

of females fed LFD had significantly increased expression of the estrogen related receptor 

gamma (Esrrg) in all PFOA and GenX dose groups relative to VC females and elevated 

Pparg expression in the GenX 1.0 mg/kg dose group (Fig. 6). The glucose transporter 4 

(Glut4) was significantly increased (2.4-fold) in the WAT of PFOA 1.0 mg/kg females 

fed LFD. There were no consistent trends in gene expression for WAT of animals on 

the HFD (Fig. 6). However, WAT of GenX-exposed males showed a 4-fold increase of 

estrogen receptor alpha (Esr1) expression while on the HFD, when compared to the HFD 

VC (adjusted P = 0.099; Fig. 6).

3.9. Effect of diet

The above results were focused on the effect of the exposures within the diet groups. 

However, we also observed expected effects of HFD compared to LFD within vehicle 

control animals. HFD significantly increased mean body weights of both VC male and 

female mice compared with LFD VC mice at 18 weeks (P < 0.001; Tables S11–12). VC 

mice fed HFD exhibited altered lipid panels (e.g. increased TC, HDL, and HDL:LDL ratio 

and decreased triglycerides) relative to VC mice fed LFD of the same sex, a trend that 

persisted across observed timepoints (Tables S14–17). Although not yet apparent at the 

9-week timepoint, glucose tolerance AUC increased in response to HFD at the 14-week 

timepoint for both VC males and females (P < 0.01; Tables S19–20). The body mass 
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composition analysis at both 12 and 17 weeks indicated that the increase in mean body 

weight in response to HFD was due mainly to increased fat mass (P < 0.001), but there were 

also increases in fluid mass in both sexes in response to HFD (P < 0.001; Tables S20–23). 

Finally, patterns in gene expression in white adipose tissue were also shifted in response to 

HFD and appeared to differ by sex (Fig. 6).

4. Discussion

In this study we demonstrated for the first time that prenatal exposure to GenX, a 

replacement chemical for PFOA and an emerging contaminant of water systems across 

the globe [17–19], induces adverse, sex-specific, phenotypes in mouse offspring fed a 

typical fixed-formula chow. More specifically, male offspring exhibited adverse metabolic 

phenotypes when gestationally exposed to GenX and fed LFD, and females had evidence 

of liver damage at the histological and functional level. Both sexes showed some evidence 

of both types of phenotypes, but in adulthood the varied sex-specific manifestations were 

evident. Our previous work suggested that prenatal exposure to low levels of PFOA led 

to metabolic alterations in adult female mice, but lacked evaluation of both sexes [8] and 

was conducted on a variable-formula diet, meaning that phytoestrogen content of the diet 

could have varied between our previous work and present study. In this study, we have 

identified several latent adverse outcomes associated with prenatal exposure to PFOA and its 

contemporary replacement, GenX, in mice.

In this study we report three key novel findings [1]: GenX persists in offspring after birth, 

suggesting both transplacental and lactational transfer [2], prenatal PFOA or GenX exposure 

induces adverse metabolic outcomes in adult male offspring, and [3] prenatal PFOA or 

GenX induces liver damage in female and male offspring.

GenX was selected as a replacement chemical for PFOA due in part to its more rapid 

elimination from the body. In mice, GenX has a half-life of about 20 h, whereas PFOA 

has a half-life of 17–19 days [47,48]. GenX similarly has a shorter estimated serum half-

life in humans of approximately 81 hours, while the human serum half-life of PFOA is 

approximately 3 years (Registration Dossier - ECHA (europa.eu); study 002) [47,49,50]. 

A shorter half-life is thought to impart a more favorable toxicological profile through 

quick elimination and, presumably, fewer adverse health outcomes. Our recent work has 

shown that GenX and PFOA are transplacentally transferred to mouse embryos under the 

same exposure conditions used in this study [31]. We have also shown that milk is a 

substantial contributor to PFOA exposure in mouse offspring from exposed dams [51], 

though lactational transfer has not previously been shown for GenX. Based on the previously 

reported half-life of approximately 20 h for GenX in mice, we did not expect to detect 

GenX in pups at PND 5.5 [31]. However, we observed GenX in both the serum and 

the urine of pups at PND 5.5, six days (approximately 7.2 half-lives) after the last dose 

was administered to the dams on the morning of GD 17.5. These findings suggest altered 

elimination kinetics in the maternal:fetal unit (significantly slower than anticipated) and/or 

support the hypothesis that like PFOA, GenX is transferred to the pups via lactation, and 

a combination of the load of GenX obtained as an embryo and continual dosing through 

the milk results in the presence of GenX in the pups at PND 5.5 [52]. This finding is 
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concerning for human health, as PFOA and other PFAS have been shown to be excreted via 

lactation in humans, resulting in increased serum PFAS in children with extended months 

of breastfeeding [53,54]. Future studies should confirm the presence of GenX in milk 

for both mice and human cohorts to better understand the risk profile of this compound. 

Multiple studies have reported the effects of several legacy PFAS on lactation duration/

nursing insufficiency in women [55–57], but GenX exposure/excretion data in women does 

not exist. As little is known about the transport and excretion of GenX in the adult body, 

further evaluation of the half-life of GenX in offspring may be needed. The possibility exists 

that the newborn/infant and adult vary in their ability to metabolize and/or eliminate this 

chemical.

A major concern within the field of PFAS research is consistent reports of PFAS on reduced 

birth weight. Low weight at birth and in early life has been associated with the development 

of metabolic syndrome later in life in humans and mouse models [5,58,59]. The Navigation 

Guide, a standardized method for conducting robust systematic reviews, was applied to both 

mouse and human cohort studies and concluded that prenatal exposure to PFOA results in 

reduced birth weight in both mice and humans [23,60,61]. In this study, PFOA doses were 

chosen (high dose of 1 mg/kg/day) that were not previously associated with a significant 

decrease in birth weight [8,60]. We did not find significant reductions in PND 0.5 litter 

weight in any dose group when litter weight was averaged (PFOA or GenX). However, at 

PND 5.5 we found that individual pup body weight was significantly reduced in the 1.0 

mg/kg GenX and 2.0mg/kg GenX groups. This result was apparent when we statistically 

controlled for litter size, which is a critical consideration due to the inverse relationship 

between litter size and pup weight in rodents [62]. These findings are consistent with 

reduced pup weights previously reported for higher doses of PFOA [60] and GenX [37,63]. 

In the report, CD-1 mice exposed to 5 mg/kg/day HFPO-DA (GenX) from preconception 

through weaning showed more severe effects than herein, resulting in reduced pup weight 

from PND 1–21, and more severe effects in male offspring [63]. Another study has found 

that prenatal exposure to HFPO-DA results in altered expression of genes involved in 

glucose metabolism in offspring both directly after birth and at PND20 [64]. These findings, 

along with the increases in MetS-associated phenotypes seen in these groups later in 

life, suggest developmental exposure to GenX results in lifelong alterations in metabolic 

function, making metabolic disease a concern for both GenX and PFOA exposures [5]. 

Metabolic programming in response to chemical exposure has previously been documented 

with bisphenol A(BPA) and phthalates through various proposed mechanisms including 

epigenetic regulation [65–68].

Several environmental contaminants have been classified as obesogens due to their ability to 

disrupt adipocyte function and contribute to the development of obesity [69]. Animal models 

have previously been used to understand the effect of prenatal exposure to obesogens, 

such as BPA, on metabolic outcomes [70]. Prenatal exposure to BPA in CD-1 mice 

induced increased weight gain, reduced glucose tolerance, increased abdominal fat mass, 

and increased insulin levels in male offspring [71]. Recent work evaluating the effect of 

ozone exposure during gestation on offspring in rats found that programming of metabolic 

pathways in the fetal liver is impaired in males, but not females [72]. Increased sensitivity 

in males compared to females has also been well documented in toxicology studies [73–
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75]. Here we similarly observed increased susceptibility of male mouse offspring to a 

suite of adverse metabolic outcomes following developmental PFOA and especially GenX 

exposures.

In LFD males exposed to 2.0 mg/kg GenX, we observed consistent alterations in metabolic 

endpoints that worsened with time. Weight gain was increased in this group from PND 

22 to age 18 weeks relative to controls, suggesting that a prenatal exposure to GenX 

sensitizes male offspring to higher weight gain across their lifespan. Additionally, males 

fed LFD in the 2.0 mg/kg GenX group also showed significant alterations in body mass 

composition compared to LFD male controls, indicated by an increased ratio of fat:lean 

mass. Taken together, these findings suggest that excess weight gain in GenX-exposed 

males was driven by increased body fat mass, unrelated to the increase in liver weight. 

An additional contributor to the excess weight gain in the GenX- and PFOA-exposed 

males, which is a novel finding in both this study and our previous work, is excess fluid 

retention [31]. Blake et al. [31] reported fluid retention in the abdomen of pregnant dams 

at term necropsy and here we found male offspring with the same exposures exhibited fluid 

retention measured by magnetic resonance imaging. This consistent finding deserves further 

study and we hypothesize that this may indicate hypertension onset in both cases, another 

commonly reported endpoint in humans with metabolic disease. A growing body of research 

has indicated circulating biomarkers in the hypertensive pregnant dam may be passed to the 

developing fetus and affect birthweight and offspring health [76–78].

There is a strong literature base demonstrating excess weight gain in children and young 

adults developmentally exposed to PFAS [21,22,24–26] and a recent report confirms 

associations between visceral fat depot size and developmental PFAS exposures [27]. In 

addition to increased weight gain and greater fat mass, male mice in our study exposed 

to GenX and fed LFD exhibited further signs of persistent metabolic disease as adults, 

including elevated serum cholesterol and insulin levels. Total cholesterol was increased in 

all GenX groups of males fed LFD at Week 6, relative to LFD vehicle control males. 

Cholesterol and HDL remained elevated in LFD male mice exposed to GenX (1 mg/kg) 

at 18 weeks of age compared to LFD VC mice. Additionally, male mice fed LFD and 

exposed to 2.0 mg/kg GenX or 1.0 mg/kg PFOA were insulin resistant (according to 

QUICKI calculation) in comparison to LFD VC males. Increased serum insulin has been 

reported previously in female mice prenatally exposed to PFOA [8], and cholesterol is a 

reported target of PFAS chemicals in rodent models and human populations [32]. Serum 

triglycerides, another indicator of overall metabolic health, were significantly decreased in 

weanling mice exposed to all PFOA and GenX doses compared to appropriate VC, but this 

shift was transient and attenuated over time, possibly indicating adaptation by the mice. 

PFOA- and GenX-exposed LFD female mice at 6 weeks still had significantly reduced 

triglyceride levels, but by 18 weeks of age, that effect was gone. Glucose tolerance tests 

did not reveal any differences in the ability to process glucose which could be due to 

the large variation in weight of the animals within the groups, a common occurrence in 

outbred strains such as CD-1. Our previous work using transmission electron microscopy 

demonstrated GenX induced depletion of glycogen stores in the liver of pregnant mice [31], 

and recent work reported newborn rat pups exposed in utero to GenX as “hypoglycemic 

at birth” due to observed decrease in serum glucose in neonatal rats prenatally exposed to 
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GenX relative to controls [64]. Therefore, even though glucose tolerance was not altered, 

effects of emerging PFAS on insulin sensitivity should be evaluated in future studies by 

using an inbred strain (though the strain would need to have a comparable sensitivity to 

PFOA and GenX), or conducting experiments in mice at older ages previously shown to 

have altered glucose sensitivity in response to PFOA [8].

An important health effect associated with PFAS exposure in humans that has been 

recapitulated in both in vitro and in vivo experimental models is fatty liver, or steatosis 

[32]. Blake et al. [31] recently reported significant fatty liver effects of PFOA and GenX in 

sectioned livers of adult-dosed pregnant CD-1 mice, and this has been previously reported in 

livers of male CD-1 mice exposed in utero to 1 mg/kg PFOA [79]. Although GenX was no 

longer present in the pups at weaning in the present study, there was a significant increase 

in hepatic microvesicular fatty change in males (LFD, 2 mg/kg GenX) and an increase in 

individual hepatocyte necrosis in females (HFD, 1 mg/kg GenX and 1.0 mg/kg PFOA) in the 

18 week LFD groups compared to VC. Non-alcoholic fatty liver disease is associated with 

risk of MetS in humans, and known to alter metabolic processes in the liver [80,81]. Taken 

together, these progressive, persistent, and sometimes dose-dependent physiological changes 

suggest that developmental exposure to PFOA or GenX enhanced metabolic disease in male 

mice and led to liver damage in female and male mice. We hypothesize that those effects 

were programmed early in development as the chemical exposure ceased shortly after birth.

We did not observe increased weight gain, altered body mass composition, elevated 

cholesterol, or insulin resistance in GenX-exposed males fed HFD. It is possible the effects 

of long-term HFD on these endpoints masked our ability to detect treatment-specific effects. 

In many cases, the effects of PFAS on adverse metabolic and liver outcomes mirrored those 

of HFD alone [82]. We hypothesize that in our study, the effect of the HFD contributed 

more to the alteration of these phenotypes than the PFAS exposure, making it difficult to 

distinguish the PFAS related changes from diet related changes when combined. Another 

study has shown that prolonged exposure to legacy PFAS in adult mice led to altered 

triglyceride and cholesterol content in the liver, which was exacerbated by a high fat, high 

carb diet [83]. While this confirms the importance of diet in long-term adult exposure 

studies on metabolic outcomes, the evidence for role of diet following a prenatal exposure 

of PFAS is still unclear. The interaction between dietary fats and developmental exposure to 

PFAS, including emerging compounds like GenX, should be investigated in future studies 

to determine if diet later in life influences susceptibility to or exacerbation of adverse 

metabolic outcomes.

Gene expression data from WAT of exposed mice in these studies supports the hypothesis 

that prenatal exposure to GenX induces a suite of latent metabolic outcomes and endocrine 

system disorder. Male mice fed LFD in the 2.0 mg/kg GenX group had reductions in 

Acaca, Acacb, Adipoq, Fasn, Insr, Irs1, Pparg, Rxra, and Srebfl mRNA expression, relative 

to LFD VC males. Decreases in Adipoq [84], Insr [85], Pparg [86], and Irs1 [87] gene 

expression have been associated with altered glucose metabolism. Decreased protein levels 

of INSR [88], ADIPOQ [89], and IRS1 [87] in mice are associated with insulin resistance 

and increased insulin levels in the blood. In our study, we report a ~7-fold increase in blood 

insulin over vehicle control in the GenX-exposed group. Based on these findings and the 
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consistency of other studies reporting similar findings related to insulin sensitivity following 

PFOA exposure in mice and children [8,90](64), it may be that the serum insulin increases 

(highest in the same dose group where we observed the most dramatic WAT gene changes) 

affected feedback mechanisms in the WAT. These pathways should be interrogated in future 

studies to further understand how related proteins are altered.

Furthermore, our qPCR results corroborate the serum lipid data for the 2.0 mg/kg GenX 

group fed LFD, which also exhibited increased TC and HDL levels. Decreased WAT 

expression of Insr [91], Rxra [92], and Srebf1 [93] are all associated with increased 

circulating concentrations of cholesterol. Additionally, decreased Pparg [94], Insr [95], 

Acacb [96], and Irs1 [87] are linked to dyslipidemia, which again is consistent with the 

serum lipid data for this group. Finally, the sex-specific increase in expression of estrogen-

regulated and related genes in WAT of female offspring exposed to PFOA and GenX 

deserves further research.

Currently, the North Carolina state health goal of 140 ppt in drinking water for GenX 

relies on a Reference Dose (RfD) derived from a no-observed-adverse-effect-level (NOAEL) 

of 0.1 mg/kg/day based on the critical effect of liver single-cell necrosis in adult male 

mice (0/10 mice, 0%) after a 28-day subchronic exposure [97,98]. The incidence of liver 

single-cell necrosis was 40% (4/10 mice) in the 3 mg/kg/day GenX dose group [97]. In 

our study, we observed a liver single-cell necrosis incidence of 38.9% (7/18 mice, males 

and females combined) in offspring exposed for 16 days in utero to 0.2 mg/kg/day GenX, 

nearly double the incidence in controls (3/17 mice, 17.6%; Supplemental Table 24). Given 

the regulatory significance of effects like liver single-cell necrosis, future studies should 

evaluate low-dose effects using larger sample sizes for increased statistical power.

In conclusion, we have identified several adverse outcomes associated with metabolic 

disease that were caused by prenatal exposure to GenX and/or PFOA. These consistent 

metabolic effects were most prominent in male mice exposed to the PFOA replacement, 

GenX. Liver effects were predominantly observed in female mice exposed to GenX or 

PFOA. We have shown that GenX persists in offspring after birth, suggesting transplacental 

and lactational transfer. These exposure routes are human relevant and suggest that prenatal 

exposure to GenX may cause metabolic disease even when it cannot be measured in 

the serum or urine of the exposed individuals. We have also shown that GenX exposure 

results in adverse, sex-specific phenotypes. In male mice, we found that prenatal GenX 

exposure led to increased weight gain, fat mass, retained water weight, fatty liver changes, 

and decreased insulin sensitivity at exposures as low as 1 mg/kg. At the 1 and 2 

mg/kg doses of GenX, female mice displayed signs of liver damage including hepatocyte 

single cell necrosis, and elevated ALP and ALT. This evidence suggests that GenX, a 

PFOA-replacement chemical that is of high concern due to its widespread environmental 

contamination, causes adverse metabolic health effects that may occur at lower internal 

doses than PFOA-exposed groups, and may be unique compared to those effects caused by 

PFOA in some cases. GenX may not be a safe alternative for PFOA.
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Fig. 1. Study design and measured levels of PFOA and GenX in the serum and urine of 
developmentally exposed offspring at postnatal day (PND) 5.5.
(A) The study design encompassed about 22 weeks from start to finish. (B) PFOA 

or GenX concentrations in samples obtained from pooling serum from littermates (μg 

analyte/mL serum) and (C) PFOA or GenX concentration in samples obtained from pooling 

urine from littermates (μg analyte/mL urine) were determined by high performance liquid 

chromatography tandem mass spectrometry. Treatment group mean values are denoted with 

an “X” flanked above and below by error bars showing standard deviation and individual 

data points are shown as circles (N = 5 litters per group). Note: Vehicle control (VC) 
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samples were quantified for PFOA and GenX. Vehicle control samples were run against a 

low concentration calibration curve with a limit of detection of 5 ng/mL. GenX and PFOA 

experimental samples were run against higher calibrations curve with a LOD of 100 ng/mL. 

All vehicle control samples were below the LOD of 5 ng/mL for both PFOA and GenX 

and all 0.1 mg/kg PFOA samples were below the LOD of 100 ng/mL for PFOA. Sufficient 

serum and urine sample quantities were achieved by pooling across pups within the same 

litter. Statistical comparisons across all treatment groups for serum and urine samples are 

shown in Supplemental Table 3.
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Fig. 2. Mixed model estimates of pup body weight (g) at PND 5.5.
Effect estimates are centered around the vehicle control group (y = 0) and show the model 

point estimate for each main effect (dose group and litter size) with 95% confidence 

intervals (CIs). *P < 0.05. **P < 0.01. ***P < 0.001. Beta estimate 95% confidence intervals 

do not overlap zero (mixed-effect model adjusting a priori for litter size as a fixed effect and 

the dam as a random effect, vehicle control as reference group). Adjusted estimates and 95% 

CIs are shown in Table S6. N = 4–19 offspring per litter with 9–10 total litters per group.
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Fig. 3. Mixed model estimates of weight gain (g) from PND 22 to 18 weeks of age.
(A) Low fat diet (LFD) male offspring, (B) high fat diet (HFD) male offspring, (C) LFD 

female offspring, and (D) HFD female offspring. Effect estimates are centered around the 

vehicle control group (y = 0) and show the model point estimate for each main effect (dose 

group) with 95% confidence intervals (CIs). *P < 0.05. **P < 0.01. ***P < 0.001. Beta 

estimate 95% confidence intervals do not overlap zero (mixed-effect model adjusting a priori 
for repeated measures of the same animals over time, vehicle control as reference group). 

Adjusted estimates and 95% CIs are shown in Table S13. N = 7–11 mice per group.
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Fig. 4. Body composition parameters at Week 17.
(A) Low fat diet (LFD) male offspring, (B) high fat diet (HFD) male offspring, (C) LFD 

female offspring, and (D) HFD female offspring grams of fat mass, fluid mass, and lean 

mass. Bars represent mean grams of mass per group calculated using LF90 Minispec Body 

Mass Analyzer. Additional data for males on LFD are shown in E) Relative fat mass 

expressed as percent total body mass, and F) Ratio of fat mass to lean mass. Circles 

represent individual data points within a treatment group (N = 7–11 mice/group) and 
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horizontal dashes represent the group mean flanked by the standard deviation above and 

below in black error bars. *P < 0.05.
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Fig. 5. Examples of liver histopathology in mice at the 18-week timepoint.
(A) Liver from control male mouse fed LFD (20x). (B) Example of multifocal single 

cell hepatocyte necrosis in a liver from a 1.0 mg/kg/day GenX exposed male mouse fed 

HFD (40x). There are three foci of single cell necrosis with associated inflammatory cells 

(arrows). (C) Example of microvesicular fatty change in a liver from a 2.0 mg/kg/day 

GenX-exposed male mouse fed LFD (4x). Note the centrilobular and periportal bridging 

pattern (paler regions). (D) Higher magnification of panel C shows hepatocytes filled 

with numerous small lipid vacuoles giving a “foamy” appearance (40x). (E) Example 
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of periportal macrovesicular fatty change from a female mouse gestationally exposed 

to 0.2 mg/kg/day GenX and fed HFD (20x). The affected hepatocytes contain large, 

well-defined rounded vacuoles, that displace the nucleus and cytoplasm to the periphery 

(arrows). Microvesicular fatty change (asterisk) and single cell necrosis (arrowhead) are also 

present. (F) Example of perivascular mixed cell infiltrates in a liver from a female mouse 

gestationally exposed to 0.2 mg/kg/day GenX and fed HFD (10x). Hematoxylin and eosin. 

LFD = low fat diet; HFD = high fat diet.
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Fig. 6. Heat map of white adipose tissue (WAT) mRNAs altered by PFOA or GenX at 18 weeks of 
age.
Messenger RNA expression was quantified by RT-qPCR using WAT from 18-week old mice 

prenatally exposed to either PFOA or GenX. Relative gene expression data are represented 

as mean fold change over VC in heatmap format, with red indicating an increase expression 

up to a 4-fold change and blue indicating a decrease in expression down to a 4-fold change, 

N = 4. Low fat and high fat denote the different diets. ANOVA with multiple comparisons 

Dunnett’s post hoc was performed on mean dCt values with statistical significance of *P < 

0.1 and **P < 0.05.
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