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ABSTRACT
Dbf4-Dependent Kinase (DDK) has a well-established essential role at origins of DNA replication, 
where it phosphorylates and activates the replicative MCM helicase. It also acts in the response to 
mutagens and in DNA repair as well as in key steps during meiosis. Recent studies have indicated 
that, in addition to the MCM helicase, DDK phosphorylates several substrates during the elonga
tion stage of DNA replication or upon replication stress. However, these activities of DDK are not 
essential for viability. Dbf4-Dependent Kinase is also emerging as a key factor in the regulation of 
genome-wide origin firing and in replication-coupled chromatin assembly. In this review, we 
summarize recent progress in our understanding of the diverse roles of DDK.
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Introduction

Dbf4-Dependent Kinase (DDK) is responsible for 
a critical step in the activation of the replicative 
helicase MCM and for the initiation of DNA repli
cation at multiple origins throughout the eukaryo
tic genomes. This role of DDK has received 
significant attention and has been discussed in 
detail in several major reviews [1,2]. However, in 
recent years, we have witnessed the accumulation 
of evidence for multiple additional roles of this 
kinase. In this article, we briefly review the recent 
advances in our understanding of the mechanism 
of action of DDK during the initiation of DNA 
replication. We then focus on the potential role of 
DDK in the genome-wide control of origin activity 
and during the elongation stage of DNA 
replication.

DDK is built up of the Cdc7p kinase and its 
Dbf4p regulatory subunit [2]. Functionally related 
kinases have been identified in fission yeast 
(Hsk1p/Dfp1p) and vertebrates (CDC7/ASK) [3]. 
Orthologs of CDC7 and DBF4 have also been 
found in plants and Drosophila and were shown 
to complement the loss of the corresponding genes 
in budding or fission yeasts [4,5]. Hence, the role 
of DDK as a major regulator of DNA replication is 
conserved amongst various species. At the same 
time, in different species there are variations in the 
specific functions of DDK. In this review we 

stipulate if the discussed data has been obtained 
in studies with budding or fission yeasts or in 
vertebrate cells.

DDK is also known to act in Meiosis I. During 
this stage DDK collaborates with the polo-kinase 
Cdc5p and is involved in the recruitment of the 
Monopolin complex to the kinetochores and in the 
destruction of the cohesin rings and the synapto
nemal complex [6–9]. In mitosis DDK associates 
with Rtt107p to control the activity of Mus81- 
Mms4 resolvase [10] and the degradation of the 
cohesin acetyltransferase Eco1p [11]. The meiotic 
and mitotic roles of DDK are not central to this 
review and will not be discussed in detail here. For 
recent reviews we recommend [6,12,13].

DDK and the activation of origins of DNA 
replication

Studies in S. cerevisiae have revealed that DDK, in 
tight coordination with the Cyclin Dependent 
Kinase (CDK) and other kinases, phosphorylates 
several S/T residues on the subunits of the MCM 
replicative helicase [1,2,14] (Figure 1a). In the G1 
phase, the hexameric MCM helicase is loaded on 
specific DNA sequences (referred to as origins or 
Autonomously Replicating Sequences (ARS)) that 
are already occupied by the Origin Recognition 
Complex (ORC). The phosphorylation of the 
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MCM proteins by CDK and DDK is required for 
the subsequent addition of Cdc45p-Sld3p and the 
GINS (Go Ichi Ni San) proteins to the MCM- 
occupied origins, for the activation of the MCM 

helicase and for the initiation of DNA replication 
(Figure 1a). The specificity of MCM phosphoryla
tion by DDK is determined by DDK-docking sites 
on both Mcm2p and Mcm4p [15–17]. However, it 
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Figure 1. A) Essential role of DDK in the phosphorylation of MCM4 (and other MCM proteins) at pre-initiation complexes. b) RIF1- 
Protein Phosphatase 1 (and possibly other phosphatases) could de-phosphorylate MCM proteins after the initiation of DNA 
replication. Positive and negative regulators of DDK control the locus-specific activity of DDK and serve in the global control of 
origin firing.
Speech bubbles are included in all figures to pinpoint the known function of DDK in the described processes. 
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had demonstrated that the sole essential role of 
DDK is to phosphorylate the N-terminal S/T-rich 
domain of Mcm4p and to relieve the inhibitory 
activity of this domain [18,19] (Figure 1a). The 
phosphorylation of other sites on the Mcm4p 
and the other MCM proteins is dispensable for 
viability and their precise role is not entirely 
understood.

DDK and RIF1-Protein Phosphatase 1

An interesting addition to our understanding of 
the roles of DDK in DNA replication have been 
provided by studies on RIF1 [20]. Rif1p had been 
described as a protein that binds to Rap1p and 
counteracts its gene silencing activity [21]. Later 
studies in S. pombe and S. cerevisiae indicated that 
the deletion of RIF1 generated hyperphosphory
lated Mcm4p and that Rif1p interacted with the 
protein phosphatase Glc7p [22–24]. Mutations 
that interfere with the Glc7p-Rif1p interaction in 
cells with defective CDC7 or DBF4 produced 
a normal phenotype arguably because of the 
reduced RIF1-dependent dephosphorylation of 
MCM [23,24]. These results suggested that during 
early S phase Rif1p negatively impacts the firing of 
late origins by counteracting the phosphorylation 
of MCM (and possibly other targets) and by bal
ancing out the activity of DDK [25] (Figure 1b). 
However, it is not known if at the repressed ori
gins Glc7p-Rif1p counteracts the essential phos
phorylation of Mcm4p by DDK or some other 
function of the kinase.

Similar effects of DDK and RIF1 had been 
observed in vertebrate cells. The immuno- 
depletion of RIF1 from Xenopus extracts increased 
the DDK-dependent phosphorylation of chroma
tin-bound MCM and the rate of replication initia
tion [26]. In HeLa cells, the suppression of RIF1 
lead to a speedy transition through S-phase and to 
a substantial deficiency in blocking spurious repli
cation initiation [26]. Importantly, the use of inhi
bitors for DDK, ATR/Chk1 and Protein 
Phosphatase 1 (PP1) demonstrated that PP1- 
dependent MCM dephosphorylation occurs on 
the elongating CMG helicase, but with different 
kinetics and at different S/T residues compared 
to MCM complexes at licensed origins [26] 
(Figure 1b). In addition, fork stability seemed to 

be dependent on the continuous phosphorylation 
of MCM within the CMG (Cdc45/MCM/GINS) 
complex and that both DDK and ATR/Chk1 
were shown to be the contributing kinases [26]. 
Another study demonstrated that the loss of 
ETAA1 (an activator of ATR/Chk1) or RIF1 
reduce the sensitivity to inhibition of DDK during 
late S phase, thus reiterating that both DDK and 
ATR counter the activity of RIF1-PP1 [27]. In 
agreement, the inhibition of DDK alone did not 
reverse the excessive nascent DNA resection in 
cells lacking RIF1 suggesting that RIF1-PP1 bal
ances the activity of other kinases involved in 
DNA repair [28]. Finally, a recent study showed 
that in vertebrate cells RIF1 is enriched at stalled 
replication forks and that cells without RIF1 exces
sively degrade reversed forks [29].

It is apparent that in addition to its roles in 
negatively controlling the firing of origins in ver
tebrates, RIF1-PP1 also acts during the elongation 
stage of DNA replication and could be a protecting 
factor for stalled forks. However, the detailed 
mechanisms of interplay between RIF1-PP1 and 
DDK (and other kinases) during elongation 
remain to be elucidated.

DDK and the global control of origin firing in 
S. cerevisiae

Recent studies have indicated that DDK is not 
a simple molecular “on” switch for origins, but 
also acts as a global regulator of origin activity. 
Earlier, a link between the transcription factors 
Fkh1p and Fkh2p and the timing of origin firing 
has been observed [30]. In 2017, it was reported 
that Dbf4p is specifically enriched at early origins 
through its interactions with Fkh1p and Fkh2p 
and that the fusion of the Fkh1p DNA-binding 
domain to Dbf4p restores the FKH1-dependent 
origin firing [31] (Figure 1c). The authors also 
indicated that Dbf4p directly interacts with Sld3p 
and promotes the recruitment of downstream lim
iting factors to these FKH1-dependent origins. 
Another paper demonstrated that in G1 and G2 
phases of the cell cycle the Rad53p kinase phos
phorylates Sld3p and Dbf4p at the same sites as in 
S-phase [32]. This activity had a negative effect on 
origin firing and was required to prevent spurious 
initiation at the G1/S transition and re-replication 
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in G2/M [32]. It is not clear if only the kinase 
activity of Rad53p is necessary for the inhibition 
of DDK and Sld3p outside of S-phase. For exam
ple, it has been shown that in a reconstituted 
in vitro system that Rad53p reduces the association 
of DDK to the MCM hexamer, but this function 
was not dependent on the Rad53 kinase activity 
[33]. Hence, steric inhibition or a sequestration of 
DDK by Rad53p is possible [25], but it remains 
unknown if this activity of Rad53p works outside 
S-phase. Importantly, the above papers indicated 
that the abundance of DDK at various loci can be 
positively or negatively regulated by Fkh1p, Fkh2p, 
Rad53p, and possibly other factors (Figure 1c). In 
this regard, a recent study unveiled how the differ
ential abundance of DDK at origins in S-phase can 
regulate the genome-wide regulation of the initia
tion of DNA replication [34]. The authors demon
strated that multiple intermediate Cdc45p/GINS 
complexes are formed on MCM in vivo and that 
the activity of DDK determines the efficiency of 
assembly of these intermediate complexes [34]. In 
a second, less efficient step, some of these com
plexes form the functional CMG complex that is 
poised to initiate DNA replication [34].

The above studies suggest that the control of 
DDK levels over various loci and/or the balancing 
of DDK activity by protein phosphatases contri
bute to the control of the efficiency/timing of 
origin firing throughout the genome (Figure 1c). 
It is not clear if and how this novel role of DDK is 
related to its essential function as a triggering 
kinase at the origins. For example, it is not clear 
if the essential phosphorylation of Mcm4p, the 
phosphorylation of other MCM proteins or the 
phosphorylation of other substrates are central to 
this role of DDK.

DDK and “replication stress

Replication forks encounter various impediments 
to elongation in the form of DNA damage, tightly 
bound proteins, unusual DNA structures or 
a deficiency of dNTPs. All these are jointly 
referred to as “replication stress” and are known 
to activate a conserved checkpoint pathway invol
ving a sensor kinase (Mec1p/Rad3p/ATR), Mrc1p/ 
Claspin and an effector kinase (Rad53p/Cds1p/ 
Chk1p) [3].

In S. cerevisiae DDK is required for the activa
tion of the effector kinase and could play a direct 
role in the response to certain forms of replication 
stress [25]. For example, it has been demonstrated 
that hypomorphic alleles of CDC7 drastically 
reduce the rate of UV-induced or chemically 
induced mutagenesis [35–37]. Conversely, the 
overexpression of CDC7 increases the levels of 
induced mutagenesis [38]. Interestingly, increased 
DDK expression in human cancers was also corre
lated to increased chemoresistance and higher 
mutation frequencies [39]. These studies suggested 
that DDK may be required for some form of error- 
prone DNA repair or translesion error-prone 
DNA replication. In agreement, other studies in 
budding yeasts have presented evidence that the 
activation of the checkpoint by exposure to muta
gens or dNTP depletion leads to the phosphoryla
tion and the suppression of DDK and Sld3p 
activity by the effector Rad53p kinase and to the 
repression of the late-firing origins [40,41] 
(Figure 1c). The suppression of DDK is also 
mediated by an additional non-canonical interac
tion between Dbf4p and Rad53p [42].

Replication stress in vertebrates also leads to the 
phosphorylation of DBF4 by the effector ATR/Chk 
kinases, however DDK remains active and could 
be involved in fork protection and reactivation 
[43,44]. Several recent studies have provided sig
nificant mechanistic details about functions of 
DDK in these organisms. In vertebrates, DDK is 
directly involved in the regulation of Trans-Lesion 
DNA synthesis [45]. It has been shown that in UV 
light treated cells DDK phosphorylates RAD18 
and stimulates its association with DNA polymer
ase η. In turn, RAD18 acts as a chaperone to 
recruit Pol η to PCNA, which is ubiquitinated at 
the stalled fork (Figure 2a). Another study has 
indicated that DDK promotes the resection of 
newly synthesized DNA in human cells treated 
with Hydroxyurea [46]. The treatment with 
Hydroxyurea is known to induce replication fork 
stalling and the generation of extended stretches of 
ssDNA [46]. This effect was likely due to the 
phosphorylation of the EXO1 nuclease, which is 
required for nascent strand degradation [46] 
(Figure 2a). It has not been explicitly shown if 
DDK is recruited to the stalled fork to phosphor
ylate RAD18 and EXO1 or if they are 
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phosphorylated elsewhere in the nucleoplasm. 
However, a third study clearly demonstrated that 
DDK co-localizes with stalled replication forks 
[47]. DDK was also necessary for the slowing 
down of fork progression upon replication stress 
and for the stability of the slowed/paused forks 
and for their subsequent restarting [47]. These 
effects were attributed to the DDK-mediated 

phosphorylation of MRE11, another exonuclease 
involved in the resection of DNA at stalled forks 
[47](Figure 2a).

Another study performed in human cells and 
Xenopus extracts reiterated that DDK has multiple 
roles during the elongation stage of DNA replica
tion [44]. Of significance, most of the experiments 
in this paper were performed without exposure to 
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mutagens. As expected, the highly specific inhibi
tion of DDK affected the firing of late origins that 
are normally inhibited by ATR/Chk [44]. In addi
tion, the inhibition of DDK induced spontaneous 
stalling of early-firing forks and DDK was required 
to stabilize and restart these arrested forks [44]. 
Furthermore, the authors identified multiple DDK 
targets as effectors in fork stabilization. Similar to 
its effect on Mcm4p, the phosphorylation by DDK 
alleviated an auto-inhibitory effect of intrinsically 
disordered regions in these substrates [44]. Many 

of the effects of the inhibition of DDK could be 
reversed by the inhibition of the ATR/Chk kinases 
[44] suggesting that the balance between the activ
ities of these two kinases is a critical regulator of 
both origin firing and fork progression in verte
brates. Further support to the significance of DDK 
in post-initiation events in DNA replication came 
from studies in embryonic stem cells, where repli
cation stress is suppressed by the high abundance 
of the MYBL2 protein [48]. In these cells the loss 
of MYBL2, ATM or MRE11 activity lead to 
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a significant reduction in fork speed, increased 
fork stalling and elevated origin firing [48]. 
Interestingly, the concomitant inhibition of 
CDC7 reversed the effect on replication fork 
speed and replication fork stability without any 
significant effect on the overall replication 
rates [48].

It is noteworthy that that CDC7 and DBF4 are 
overexpressed in a variety of cancer cells, where 
dealing with replication stress is critical [49]. Even 
more, the suppression of DDK by newly developed 
drugs has been identified as a promising anti- 
cancer strategy [50,51]. For this and other good 
reasons the detailed mechanistic description of 
these post-initiation roles of DDK will undoubt
edly be a focus of future studies. Apart from the 
identification of relevant DDK substrates, it will be 
interesting to address these issues in the context of 
other kinases and phosphatases. As discussed ear
lier, the activity of DDK is countered by the 
Protein Phosphatase 1 [25]. It will be interesting 
to test if the inhibition of PP1 or other phospha
tases could abolish the requirement of DDK for 
fork stability, fork speed, and for the resumption 
of elongation upon various forms of replication 
stress.

DDK and stalled replication forks

The replication forks in the rRNA gene cluster of 
S. cerevisiae undergo a programmed arrest to pre
vent collisions with the RNA polymerase I that is 
transcribing in the opposite direction [52]. The 
pausing is produced by the tight binding of the 
Fob1p protein to the RFB (Replication Fork 
Barriers) sites between the rRNA gene repeats 
(Figure 2b). Upon pausing, a Fork Stabilization 
Complex (FSC) is formed by Mrc1p and the 
Tof1p/Csm3p dimer [53] (Figure 2b). FSC inhibits 
the helicase activity of MCM and bridges the DNA 
helicase and DNA polymerase to prevent fork dis
tortions and collapse. It had demonstrated that in 
addition to the stabilization of the paused forks, 
Tof1p is also needed to counteract the activity of 
the Rrm3p helicase [54]. Rrm3p directly binds to 
the replication clamp (PCNA) and is believed to 
facilitate the rescue of the arrested forks by displa
cing the Fob1p protein from the RFB site via its 5ʹ- 
3ʹ helicase activity [55]. Similar Mrc1p/Tof1p/ 

Csm3p complexes are observed on chromatin 
upon the treatment of cells with hydroxyurea 
[56] while the deletion of RRM3 leads to fork 
pausing at numerous loci outside of the rRNA 
gene cluster [57–59]. It seems that the mechanisms 
of fork stabilization and rescue at the rRNA gene 
clusters also operates at other difficult to replicate 
sites throughout the genome.

Recently, it was found that the phosphoryla
tion of MCM by DDK is required for the pro
grammed fork arrest and for the formation of 
FSC at the RFB sites [53] (Figure 2b). Tof1p 
must also be phosphorylated for the formation 
of FSC, but it is not clear if DDK or another 
kinase fulfills this function [53]. Still, DDK 
seems to play a major role in the stabilization 
and processing of paused replication forks at 
the RFB sites. It remains to be established if 
the phosphorylation of MCM by DDK at the 
time of initiation is a prerequisite for the proper 
fork arrest or, alternatively, DDK is required to 
re-phosphorylate MCM (and possibly Tof1p) 
upon the pausing of the fork. The later possibi
lity is fueled by two studies suggesting that the 
continuous re-phosphorylation of MCM by 
DDK is necessary for efficient elongation 
(Figure 1b). It is known that the phosphoryla
tion of MCM2 at S164 and S170 allows for the 
opening of the MCM ring and its loading onto 
DNA [60]. Interestingly, MCM2 with S164E/ 
S170E phosphor-mimicry substitutions reduced 
the helicase activity of MCM while increasing 
its DNA binding [61]. The mutant MCM2- 
S164E/S170E protein had a dominant-negative 
effect and increased the sensitivity of the cells 
to exposure to mutagens [61]. So, the inability 
to dephosphorylate these Serines acts as an 
impediment to the helicase function of MCM 
and to the proper processing of DNA damage 
[61]. More recent studies in vertebrates sug
gested that MCM is gradually dephosphorylated 
upon the progression of the forks [26,44]. If 
indeed MCM needs to be re-phosphorylated 
upon fork arrest, it will be interesting to estab
lish which components of the fork act as DDK 
recruiters and if other kinases are involved. 
Furthermore, the downstream effects of DDK 
at paused forks needs to be addressed by 
mechanistic studies.
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Mrc1p/claspin and DDK

Mrc1p (called claspin in S. pombe and vertebrates) 
is required for the efficient progression of S phase 
in both budding yeast and in vertebrates and 
associates with the elongating forks in 
S. cerevisiae [62,63]. In a defined in vitro replica
tion system from budding yeasts Mrc1p stimulates 
fork progression [64]. As mentioned, at arrested 
forks in the rRNA gene cluster Mrc1p/Tof1p/ 
Csm3p form the Fork Stabilization Complex 
[53,56]. Hence, Mrc1p needs to be considered as 
a bona fide elongation factor. On the other hand, 
several lines of evidence suggest that DDK is 
involved in post-initiation events mediated by 
Mrc1p/Tof1p/Csm3p. In S. cerevisiae, the binding 
of Mrc1p to chromatin during the mitotic S phase 
is dependent on Dbf4p [65]. In addition, during 
the pre-meiotic S phase Tof1p/Csm3p recruits 
DDK to newly synthesized DNA. Later on, DDK 
phosphorylates key substrates to enable meiotic 
recombination [66]. In S. pombe DDK is required 
for the activation of Cds1 (the homologue of the 
effector kinase Rad53p) and the concomitant 
phosphorylation of claspin, both of which are 
induced by replication fork blockages and 
mediated by Rad3p (the S. pombe homologue of 
Mec1p) [67]. Remarkably, the deletions of the 
CDS1 and MRC1 genes in S. pombe abolished the 
requirement for DDK for viability and for the 
initiation of DNA replication [68].

Mrc1p/claspin physically interacts with multiple 
replication factors and could have additional roles 
in DNA replication [3]. A key study in vertebrates 
demonstrated that MRC1/claspin plays 
a fundamental role in the initiation of DNA repli
cation [69]. It turned out that claspin recruits 
DDK to origins via an interaction with CDC7 
and that this interaction is necessary and sufficient 
for the phosphorylation of MCM and for the firing 
of origins693. The CDC7-binding domain of clas
pin was shown to be involved in an inhibitory 
intramolecular interaction, which is masking the 
DNA-binding domain and a PIP (PCNA 
Interacting Peptide) in claspin [69]. The DDK- 
dependent phosphorylation of claspin abolished 
this intramolecular interaction and is likely to 
contribute to the loading of claspin to the replica
tion fork [69]. Another paper from Masai lab 

showed that DDK participates in the Mec1p/ATR- 
Mrc1p/Claspin-Rad53p/Chk1 pathway by phos
phorylating the Chk1-binding-domain of Claspin 
[70]. This domain is also phosphorylated by 
Casein Kinase 1 [71]. It remains to be established 
how the two kinases cooperate in the response to 
replication stress.

The current evidence indicates that DDK is 
recruited to vertebrate origins via a docking site 
on Claspin [69] and to budding yeast origins via 
a docking site on Mcm4p [19]. In budding yeast 
Tof1p/Csm3p is involved in the recruitment of 
DDK to elongating forks [72]. As mentioned, it 
is also possible that DDK is recruited to paused 
forks by presently unknown “recruiters”. Given the 
recent advances in our understanding of the DDK- 
claspin interactions, it is important to establish if 
the Mrc1p/claspin-DDK association is employed 
in the detection of replication stress, in the sup
pression of late-firing origins and in the re- 
activation of stalled forks (Figure 2 b, c). It also 
remains to be resolved if Mrc1p and DDK in 
S. cerevisiae play a role in the initiation of DNA 
replication.

DDK and replication-coupled assembly of 
chromatin

The disassembly of nucleosomes and their reas
sembly behind the fork is a key parallel process 
during the replication of DNA in eukaryotes [73]. 
The proper recycling of old histones and the reas
sembly of nucleosomes is critical for the faithful 
transmission of epigenetic marks and for the 
rebuilding of the same type of chromatin after 
each passage of the fork. The deregulation of the 
disassembly/reassembly of chromatin can lead to 
altered epigenetic transmission and is best exem
plified by the loss of the heterochromatin- 
mediated gene silencing at various loci in budding 
and fission yeasts as well as other eukaryotes [74]. 
While a role of DDK in the replication-coupled 
disassembly/reassembly of chromatin is yet to be 
detailed, certain evidence suggests that it could be 
directly or indirectly involved in these processes.

It is known that in addition to its effects on 
DNA replication, mutations in CDC7, DBF4 and 
other replication factors significantly reduce the 
heterochromatin-mediated gene silencing at the 

CELL CYCLE 2355



sub-telomeres and the mating-type loci in 
S. cerevisiae[75]. However, it is not clear if these 
effects are linked to defects in the silencing func
tion of dormant origins (these are non-firing 
origins and act as silencers at the mating-type 
loci or as proto-silencers at the telomeres [76]) 
or by a deficiency in the elongation replisome. 
Recent evidence suggests that these effects could 
be linked to the replication-coupled assembly of 
chromatin (Figure 2c). DDK, as well CDK, have 
been shown to phosphorylate the largest subunit 
of Chromatin Assembly Factor 1 (CAF1) in both 
yeast and vertebrates [77,78]. CAF1 is known to 
directly binds to the replication clamp (PCNA). It 
is believed that via this association CAF1 travels 
behind the fork and assembles H3/H4 histone 
tetramers [73]. It is not clear if this histone cha
perone contributes to the reassembly of the old 
dis-assembled H3/H4 histones or if it builds up 
tetramers from the H3/H4 dimers delivered from 
the cytoplasm [74]. In S. cerevisiae, the phosphor
ylation of CAF1 by CDK, but not DDK, is 
required for the loading of CAF1 to chromatin 
[78]. It is plausible that the phosphorylation of 
CAF1 by DDK has a post-initiation role that 
affects chromatin structure. In agreement, it has 
been recently shown that S�A mutations in the 
DDK and CDK target sites of CAF1 have 
a dominant-negative effect and lead to 
a substantial loss of gene silencing at multiple 
loci as well as to a prolonged S-phase and to 
increased sensitivity to mutagens [79]. 
Mutations in the CDK target sites only did not 
have this effect. Hence, its is possible that the 
observed defects in gene silencing in cdc7 and 
dbf4 mutants could be mediated by the phos
phorylation of CAF1 and by the disrupted reas
sembly of chromatin behind the forks. Of notice, 
another major substrate of DDK, the MCM heli
case, also plays a key role in the replication- 
coupled reassembly of chromatin. It has long 
been speculated that the Mcm2p subunit of the 
MCM helicase also acts as a histone chaperone. 
Recently, it has been demonstrated that in both 
human and budding yeast cells Mcm2p distri
butes the disassembled H3/H4 histone tetramers 
to the lagging strand [80,81] while DNA poly
merase ε distributes them to the leading strand 
[82]. At present, it is not known if the 

phosphorylation of Mcm2p by DDK is necessary 
for its histone chaperone function. Another study 
in S. cerevisiae had demonstrated that upon repli
cation stress DDK phosphorylates Histone H3- 
T45 [83]. The H3-T45 residue resides at the 
DNA entry/exit site of the nucleosome. For this 
reason, it has been suggested that its phosphor
ylation could facilitate the resumption of elonga
tion at stalled forks [83]. The role of DDK at 
paused replication forks and the phosphorylation 
of Mcm2p and CAF1 remains enigmatic and 
needs to be addressed in future studies.

Concluding remarks

DDK has been discovered more than 30 years 
ago. Initially, most of the research on this 
kinase had been focused on its essential role 
in the initiation of DNA replication. Indeed, 
in many reviews and most textbooks the only 
discussed function of DDK is the phosphoryla
tion of the MCM helicase at the pre-assembled 
initiation complexes. Later, studies have 
demonstrated that DDK works during mitosis 
and meiosis as well as in trans-lesion DNA 
synthesis. More recently we have witnessed sev
eral lines of solid evidence pointing to far more 
diverse roles of DDK at all stages of DNA 
replication. Many studies have also explored 
the potential of DDK as a drug target for can
cer therapy. The continuation of the studies on 
the emerging roles of DDK in the global control 
of origin firing and upon replication stress will 
certainly provide valuable mechanistic back
ground to these clinical studies. Its less- 
characterized involvement in the replication- 
coupled chromatin assembly will be of interest 
to the fields of chromatin biology and epige
netics. By all means, DDK can no longer be 
treated as a simple molecular switch at origins. 
In the near future we expect to achieve a far- 
better understanding of its non-essential 
functions.
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