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miR-222-3p is involved in neural tube closure by directly targeting Ddit4 in RA 
induced NTDs mouse model
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ABSTRACT
Previously our results showed miR-222-3p was significantly downregulated in retinoic acid- 
induced neural tube defect (NTD) mouse model through transcriptome. Down-regulation of 
miR-222-3p may be a causative biomarker in NTDs. In this study, RNA was extracted from 
mouse embryos at E8.5, E9.5 and E10.5, and the expression level of miR-222-3p was measured 
by quantitative real-time PCR analysis. The preliminary mechanism of miR-222-3p in NTDs 
involved in cell proliferation, apoptosis and migration was investigated in mouse HT-22 cell line. 
The expression of miR-222-3p was significantly decreased at E8.5, E9.5 and E10.5 developed in 
mouse embryos which were consistent with our transcriptome sequencing. Suppression of miR- 
222-3p in HT-22 cells resulted in the inhibition of cell proliferation and migration, cell cycle and 
apoptosis. Moreover, DNA damage transcript 4 (Ddit4) was identified as a direct and functional 
target of miR-222-3p. miR-222-3p is negatively regulated by Ddit4. The mutation of binding site of 
Ddit4 3ʹUTR abrogated the responsiveness of luciferase reporters to miR-222-3p and showed that 
Ddit4 expression partially attenuated the function of miR-222-3p. We preliminatively confirmed 
that low expression of miR-222-3p has reduced the expression of β-catenin, TCF4 and other 
related genes in the Wnt/β-catenin signaling pathway.
Collectively, these results demonstrated that miR-222-3p regulates the Wnt/β-catenin signaling 

pathway through Ddit4 inhibition in HT-22 cells, resulted in cell proliferation and apoptosis 
imbalance, and thus led to neural tube defects.
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1. Introduction

Neural tube defects (NTDs) are the most common 
(second in occurrence after congenital heart dis
ease) and serious birth defects of central nervous 
system [1], due to failure of complete neural tube 
closure during embryonic development [2]. 
World-wide, it has been estimated that approxi
mately 300,000 NTDs cases are reported each year 
[3]. According to the World Health Organization 
estimate, the incidence rate of birth defects in 
China is about 5.6%, which is close to the average 
level of middle-income countries in the world [4]. 
Li et al. has reported that prevalence of NTDs 
tends to be higher in northern China (18.7 per 
10,000 births) than in southern China (9.7 per 
10,000 births) [5]. The clinical manifestations of 
NTDs have two main sub-groups (open and closed 

defects) NTDs including anencephaly, spina bifida 
and myelomeningocele [5–8]. NTDs are multifac
torial disorders induced both by genetic and envir
onmental factors [9–11]. Despite many etiological 
studies in humans [11–15], pathogenesis of NTDs 
remains poorly understood.Table 1

Retinoic acid (RA) is a vitamin A metabolite 
and nutritionally derived small molecule involved 
in anterior-posterior and neural tube patterning 
[16,17]. Excess or insufficient RA levels can lead 
to neural tube abnormalities which have been 
extensively investigated in the developmental toxi
city with retinoids in animal models, as well as in 
humans after taking RA in multivitamin prepara
tions during pregnancy [18–21]. During early 
embryogenesis (E7-E10), excessive RA exposure
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can lead to NTDs, including anencephaly, exence
phaly and spina bifida [16,22].

MicroRNAs (miRNAs) are non-coding RNAs, 
composed of approximately 22 nucleotides which 
regulate gene expression by complementarily 
binding to the 3ʹUTR sequence of their target 
mRNA and thus lead to mRNA degradation or 
translational repression. MiRNAs are widely 
involved in crucial life processes such as cell 
cycle, embryonic development, cell growth and 
differentiation, apoptosis, stress response, metabo
lism and morphogenesis [23–26]. It has been con
firmed that miRNAs play key role in neurobiology 
of neuronal lineage, synapses and neurogenesis, 
and have significant effects on differentiation of 
neuronal cells [27]. An increasing number of stu
dies have implied that miRNAs could be 
a biomarker for NTDs, but still the underlying 
mechanism involved is not clear. Recently, several 
miRNAs have been reported to be associated with 
NTDs. miR-129-1, miR-129, miR-9, miR-197, 
miR-124 and miR-27 have been shown to influ
ence neural tube formation [28–33]. Our previous 
transcriptome sequencing showed that miR-222- 
3p has markedly down-regulated in NTDs mice. 
The expression of miR-222-3p has been reported 
to be up-regulated in human breast cancer [34], 
thyroid cancer [35] and glial cancers [36]. 
However, miR-222 is elevated in Human TK-6 
and DKO cells under folate deficiency [37,38]. 
The function of miR-222-3p in neural tube closure 
and formation of defects (NTDs), as well as its 
possible target genes, were still unknown.

Further review of relevant literature showed that 
the closure of the neural tube requires coordina
tion of various cellular mechanisms, including api
cal constriction, cell proliferation, and apoptosis 
[39]. Recent studies have shown that NTDs are 
mainly a result of excessive apoptosis of neural 
crest cells or ventral cells of neural tube [40,41]. 
Moreover, abnormal cell proliferation leads to 

NTDs in the process of neuronal furrow formation 
[42]. Previous results of our research group have 
shown that apoptosis is one of the main causes of 
NTDs [43]. Yang et al. [44] evaluated that miR- 
222 has blocked cell cycle by inhibiting the expres
sion of p27 gene and proliferation of hepatoma 
cells. Terasawa et al. [45] studied that low expres
sion of miR-222-3p inhibited cell growth, migra
tion, and promoted apoptosis. The above research 
indicated that miR-222-3p may affect the prolif
eration, apoptosis and cycle of cells, thus affecting 
the normal cell function. However, the effect of 
miR-222-3p on neural tube defects remained lar
gely unknown. Therefore, we speculated that miR- 
222-3p may cause NTDs by affecting cell prolifera
tion and apoptosis.

In this study, we used a retinoic acid (RA)- 
induced mouse NTDs model to correlate the spa
tial and temporal expression pattern of miR-222- 
3p with NTDs. Surprisingly, miR-222-3p was dif
ferentially expressed in NTDs group as compared 
with the control group. We then investigated the 
role of miR-222-3p on cell proliferation, apoptosis 
and migration in HT-22 cell line. To explore the 
underlying mechanism of miR-222-3p in NTDs, 
we hope to explore a promising target in HT-22 
cells. We identified potential target genes of miR- 
222-3p using bioinformatics algorithms 
Targetscan, PicTar, miRanda, PITA and miRDB. 
All resulted in one prediction that Ddit4 was an 
important target gene of miR-222-3p and is also 
an oxidative stress gene [46]. We identified Ddit4 
as a target gene of miR-222-3p and demonstrated 
that it can partially mediate the function of miR- 
222-3p in HT-22 cells. Furthermore, we prelimi
narily confirmed that low expression of miR-222- 
3p inhibited the Wnt/β-catenin signaling path
ways. Taken together, our results demonstrated 
a link between miR-222-3p expression andNTDs,
which enhanced our understanding regarding 
abnormal epigenetic modification in NTDs.

Table 1. List of primers used.
Gene forward primer (5ʹ-3ʹ) reverse primer (5ʹ-3ʹ)
Ddit4 GATGCCTAGCCAGTTGGTAAG CTAAACAGCCCCTGGATCTTG
β-actin GCTCTTTTCCAGCCTTCCTT AGGTCTTTACGGATGTCAAGG
miR-222-3p GAAAGTTCGTCCAGCTACATCTG TATGGTTGTTCTCGTCTCTGTGTC
U6 CAGCACATACTAAAATTGGAACG ACGAATTTGCGTGTCATCC
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2. Materials and methods

2.1 Animals

SPF C57BL/6 mice (8–12 weeks, 19–25 g) were 
purchased from the Experimental Animal Center 
of Shanxi Medical University (Taiyuan, China). 
Mature male and female mice were mated over
night and the vaginal plug was detected in the 
morning. Pregnant mice were randomly divided 
into control and NTDs group. At 7.5 day of preg
nancy (E7.5), NTDs model group mice were 
gavaged with all-trans retinoic acid (ATRA) 
(Sigma, USA, dissolved in sesame oil) at a dose 
of 28 mg/kg, and the control group was treated 
with the same dose of sesame oil. At E8.5, E9.5 
and E10.5, cervical dislocation was used to eutha
nize pregnant mice, and embryonic neural tissues 
were collected according to previous research 
method (Mukhopadhyay P, Brock G, Appana S, 
Webb C, Greene RM, Pisano MM. MicroRNA 
gene expression signatures in the developing 
neural tube. Birth Defects Res A. 2011;91:744–62.).

2.2 Cell culture and transfection

The mouse clonal hippocampal neuronal cell line 
HT-22 cells (Jennio Biotech Co, Guangzhou, 
China) were cultured in DMEM high glucose 
medium (Hyclone, Logan, UT) supplemented 
with 10% fetal bovine serum (FBS, Gibco, USA) 
and 1% penicillin/streptomycin (Sigma, USA). All 
cells were maintained in a humidified incubator 
with 5% CO2 and 37 °C atmospheres. 5 × 105 cells/ 
ml was plated in antibiotic-free medium for 24 
h before transfections. miR-222-3p mimics (mim- 
222), miR-222-3p inhibitor (anti-222), miR 
mimics negative control (mim-NC), miR inhibitor 
negative control (anti-NC) and siRNA-Ddit4 plas
mid were designed and synthesized by 
GenePharma Co (Shanghai, China). When the 
HT22 cells become 75–85% confluent, cells were 
transiently transfected with 100 nM miRNA or 
siRNA using Lipofectamine RNAiMax (Santa 
Cruz Biotechnology, USA), according to the man
ufacturer’s instructions. After 6 hours of transfec
tion, the culture medium was replaced with fresh 
medium containing 10% FBS. The transfections 
were performed for 24 or 48 h, and then harvested 

for further analysis. The sequences of the small 
molecules are as follows:

mim-222: 
AGCUACAUCUGGCUACUGGGUCU;

ACCCAGUAGCCAGAUGUAGCUUU.
anti-222: 

AGACCCAGUAGCCAGAUGUAGCU;
mim-NC: CAGUACUUUUGUGUAGUACAA.
siRNA-Ddit4: 

UGAGAGUCAUCAAGAAGAATT;
UUCUUCUUGAUGACUCUGATT.
anti-NC:UUCUCCGAACGUGUCACGUTT;
ACGUGACACGUUCGGAGAATT.

2.3 RNA extraction and qRT-PCR

Total RNAs from E8.5, E9.5 and E10.5 embryonic 
brain tissues were extracted using TRIzol reagent 
(Invitrogen, Carlsbad, CA), the quality and con
centration of total RNA were measured by 
SoftMax Pro7.1 (NanoDrop, Thermo, US). For 
mRNA detection, reverse-transcribed complemen
tary DNA was synthesized using the RevertAidlst 
cDNA Synth Kit (Thermo, USA). Quantitative 
PCR was performed on a Real-Time PCR platform 
(ABI Stepone Real-Time PCR system, USA) with 
SYBR Premix EX Taq (Takara, Japan). The proce
dure was as follows: (95°C, 10 min)×1 cycle; (95°C, 
15 s; 60°C, 1 min)×40 cycles. The results were 
normalized to β-actin expression. For miRNA 
detection, the reverse transcribed cDNA was 
synthesized with the Hairpin-it miRNAs qRT- 
PCR and quantification kit qRT-PCR detection of 
miR-222-3p (GenePharma, China), and normal
ized by U6 small nuclear RNA. The data was 
analyzed using 2−ΔΔCt method and all qPCR reac
tions were performed in triplicate. Primer 
sequences were shown in Additional file 1: 
Table S1.

2.4 Cell proliferation assay

For the cell proliferation assay, the Cell Counting 
Kit-8 (CCK-8; Dojindo) was used to determine the 
viability of cells. After 24 h of transfection, HT22 
cells at a density of 1 × 103 cells/well were plated in
96-well microplates and incubated in normal cul
ture conditions. The cell viability assay was per
formed every 24 h for 96 h by adding 10 μl of
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CCK-8 reagent to each well, incubated at 37°C for 
an additional 1 h and then measured the absor
bance/optical density (OD) at a wavelength of 
450 nm using a Bio-Rad imarkTM microplate 
absorbance reader (Bio-Rad Laboratories, 
Hercules, CA, USA).

2.5 Cell cycle analysis

The cell cycle was analyzed by flow cytometry 
using a cell cycle detection kit (KeyGEN, Suzhou, 
China). Transfected cells were seeded in 6-well 
plates and incubated for 48 h. Cells were washed 
twice with phosphate-buffered saline (PBS), tryp
sinized and then centrifuged at 1000 × g for 5 min. 
The harvested cells were re-washed twice with 
PBS, fixed in 70% cold ethanol at 4°C for 24 h 
and stained with 50 μg/ml propidium iodide (PI) 
for 30 min. Cell cycle distribution was analyzed by 
Coulter Epics XL flow cytometry (BD Biosciences, 
San Jose, CA, USA) and cells in distinct cell cycle 
phases were determined using ModFit LT3.2 
(Verity Software House).

2.6 Cell apoptosis assay

The apoptosis of transfected cells was measured 
using Annexin V/Fluorescein isothiocyanate 
(FITC) apoptosis detection kit (KeyGEN, Suzhou, 
China). After 48 hours of transfection, the cells 
were digested with 0.25% trypsin without ethyle
nediaminetetraacetic acid (EDTA) and centrifuged 
at 1000 × g for 5 min. A mixture of 500 µL binding 
buffer, 5 µL PI and 5 µL Annexin V/FITC was 
added to the cells, and incubated for 15 minutes. 
The apoptotic rate was detected on flow cytometry 
(BD Biosciences, San Jose, CA, USA). All experi
ments were performed in triplicate for each group.

2.7 Acridine Orange/Ethidium Bromide staining 
(AO/EB)

Acridine Orange/Ethidium Bromide staining (AO/ 
EB) (Solarbio, Beijing, China) was used to detect 
the cell apoptosis according to the manufacturer’s 
instructions. Transfected cells were seeded in 24- 
well plates and incubated for 24 h. The cells were 
then washed thrice with 1x PBS and stained with 
10 μg/ml Hoechst and 10 μg/ml Acridine Orange/ 

Ethidium Bromide (AO/EB) for 15 min in a humi
dified chamber. The cells were washed again with 
1x PBS and visualized by fluorescence inverted 
microscope (Nikon, Tokyo, Japan).

2.8 Cell migration assays

Transfected cells were seeded in 6-well plates, cul
tured for 16–18 h, and serum-starved overnight. 
A perpendicular line was drawn at the center of 
the cells monolayer with the help of p10 pipette tip 
to create the wound. The cells were washed thrice 
with PBS and incubated in serum-free medium at 
37°C and 5% CO2. The wound closure was photo
graphed at specified time intervals (0, 24 h) by an 
inverted microscope with a microscope digital 
camera. Wound healing area was calculated using 
ImageJ with the following formula: Wound heal
ing rate = (initial scratch width – final scratch 
width)/initial scratch width × 100%. These experi
ments were performed in triplicate.

2.9 Western blotting

After 72 h of transfection, the cells were lysed with 
RIPA lysis buffer (Solarbio, Beijing, China) con
taining 10 mM PMSF (Solarbio, Beijing, China). 
The concentration of protein was measured with 
BCA Protein Assay kit (Thermo Fisher Scientific, 
USA). The samples were subjected to SDS-PAGE 
and then electro-transferred into a PVDF mem
brane. The membrane was blocked from nonspe
cific first antibody in 5% skim milk with Tris- 
buffered saline containing 0.1% Tween 20 solution 
(TBST) at room temperature for 1 h. Subsequently, 
the membrane was incubated with primary anti
bodies (Rabbit anti- C-myc, β-catenin, GAPDH, 
PCNA, Cleaved Caspase-3, Cycin-D1, 1:3000, 
Abcam, United Kingdom; Mouse anti-TCF4, 
Ddit4, 1:3000, Abcam, United Kingdom) at 4°C 
overnight, followed by TBST washing and incuba
tion with the corresponding secondary HRP- 
conjugated antibody (HRP-labeled goat anti- 
rabbit IgG and anti-mouse IgG, 1:10,000, ZXGB- 
BIO, Beijing, China). After washing with TBST, 
targeted proteins on the membrane were detected
by using ECL chemiluminescent detection system 
(minibio, Shangxi, China). The blots were scanned 
and detected on the Gene Gnome Western blot
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imaging system (Bio- 
RAD, US). The band density was measured by 
ImageJ software.

2.10 Luciferase reporter gene assay

The target-binding site of miR-222-3p on Ddit4 
was predicted by TargetScan (http://www.targets 
can.org/). The sequence fragments of Ddit4 wild- 
type (Ddit4-WT) and mutant (Ddit4-MUT) were 
synthesized and cloned into GP-miRGLO lucifer
ase vector (GenePharma, China). After transfec
tion with miRNA mimics for 24 hours, GP- 
miRGLO-Ddit4-Wt/Mut (130 ng per well in 96- 
well plate) along with GP-miRGLO-control (130 
ng per well) were transfected into the cells. After 
24 h of incubation, the cells were harvested and 
lysed with passive lysis buffer (Promega, US). 
Luciferase activity was measured by a dual- 
luciferase reporter system (Promega, US). The 
luminescence intensity of Firefly luciferase was 
normalized to that of Renilla luciferase. All 
experiments were performed five times for each 
group.

2.11 Statistical analysis

All reactions were performed at least three times 
and each independent experiment was carried out 
in triplicate for each condition according to the 
manufacturer’s instructions. Statistical analysis was 
performed using SPSS 17.0 software (SPSS, 
Chicago, IL, USA). The data were shown as 
mean ± SD. The Student’s t-test was used to ana
lyze the difference between two samples. *p < 0.05, 
**p < 0.01 or ***p < 0.001 was considered statisti
cally significant.

3. Results

3.1 Down-regulation of miR-222-3p in NTDs 
mouse

In this study, NTDs mouse models were induced 
with 28 mg/kg dose of RA on 7.5 days of gestation, 
the failure of closure at the level of the forebrain at 
this stage leads to significant anencephaly [47,48]. 
As shown in Figure 1a, significant differences were 
shown in embryonic morphology between RA 

treatment group and control group on E10.5. The 
embryos of the normal group were intact with 
obvious outlines, clear sections and full brain. RA 
treated embryos showed a typical anencephalic 
phenotype with blurred outlines, small size and 
unclear body segments. Our previous sRNA 
sequencing in those brain tissues showed that the 
expression level of miR-222-3p was significantly 
decreased in the RA treated group on E8.5, E9.5 
and E10.5 compared with the control group [49] 
(Figure 1c). Subsequently, we confirmed that miR- 
222-3p expression was down-regulated in RA 
treatment group on E8.5, E9.5 and E10.5 com
pared with the control group by qRT-PCR 
(Figure 1b). Results were consistent with 
Transcriptome sequencing. These results suggested 
that miR-222-3p may play a key role in the patho
genesis of NTDs.

3.2 miR-222-3p down-regulation inhibits the 
proliferation of HT-22 cells in vitro

To investigate the biological function of miR-222- 
3p in NTDs, we selected mouse hippocampal neu
ronal cell line (HT-22 cells) . According to the 
results (Figure 1), the expression of miR-222-3p 
in NTDs mice was decreased. Therefore, subse
quent studies were performed on cell function by 
transfecting anti-222 to evaluate expression of 
miR-222-3p. Various types of miR with GFP 
were successfully transfected into HT-22 cells and 
the transfected efficacy is shown in Figure 2a. 
qRT-PCR showed that the expression level of 
miR-222-3p was significantly decreased compared 
with the anti-NC (miR inhibitor negative control) 
and the control groups (con, no transfection 
group) (Figure 2b). CCK-8 assay showed that low 
expression of miR-222-3p suppressed the viability 
of HT-22 cells (Figure 2c). Western blotting con
firmed that knockdown of miR-222-3p signifi
cantly inhibited the expression level of 
proliferating cell nuclear antigen (PCNA), 
a marker of proliferation (Figure 2d).

3.3. Knockdown of miR-222-3p promotes HT-22 
cells apoptosis in vitro

To further investigate the mechanism of miR-222- 
3p on HT-22 cell proliferation, cell cycle and
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apoptosis, flow cytometry was used to show that 
the percentage of early apoptotic and late apopto
tic cells were increased (the second quadrant 
represents late apoptotic cells, and the fourth 
quadrant represents early apoptotic cells) in the 
anti-222 transfected group compared with anti- 
NC and blank groups (Figure 3a). The expression 
of apoptosis-related proteins showed that cleaved 
caspase-3 was dramatically elevated in HT-22 cells 
post transfection with anti-222 (Figure 3b). AO/EB 
staining (Figure 3c) further confirmed that most 
cells in the control and anti-NC group have green 
fluorescence representing normal, viable and non- 
apoptotic cells with intact structure. However, 
anti-222 transfected cells showed orange and red 
fluorescence which increased significantly, repre
senting apoptotic cells with condensed or frag
mented chromatin. These results indicated that 
knockdown of miR-222-3p significantly promoted 
apoptosis in HT-22 cells. Flow cytometry assay 
showed that knockdown of miR-222-3p signifi
cantly increased the proportion of cells in the G1 

phase, while the proportion of cells in the S phase 
were decreased between two groups (Figure 3d). 
These results indicated that low expression of 
miR-222-3p affects cell proliferation by promoting 
apoptosis and cell cycle distribution of HT-22 
cells.

3.4. Knockdown of miR-222-3p promotes 
migration of HT-22 cells in vitro

In view of the facts that occurrence of NTDs is 
related to neuronal migration, we further evalu
ated the effect of miR-222-3p on migration of HT- 
22 cells. The results showed that knockdown of 
miR-222-3p significantly inhibited migration of 
HT-22 cells (Figure 3e).

3.5. Ddit4 is a direct target of miR-222-3p in 
HT-22 cells

Real-time qPCR showed that mRNA expression of 
Ddit4 was up-regulated in RA treated group
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compared with the normal group (Figure 4a), 
which was consistent with the sequencing. In 
order to determine whether miR-222-3p endogen
ously regulates Ddit4, miR-222-3p mimic (mim- 
222) and anti-222 were transfected into the cells to 
observe the expression of Ddit4. Figure 4c showed 
that the expression of miR-222-3p in HT22 cells 
could be well increased after transfection with 
mim-222. RT-qPCR showed that the mRNA 
expression level of Ddit4 was significantly 

increased after transfection with anti-222 
(Figure 4b), while it was significantly decreased 
after transfection with mim-222 (Figure 4d). 
Similarly, WB showed that Ddit4 protein level 
was significantly increased in HT-22 cells after 
transfection with anti-222 while significantly 
decreased after transfection with
mim-222 (Figure 4(e, f). Luciferase activity assay 
was used for validation of interaction between 
miR-222-3p and target gene Ddit4. In the empty
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analyzed by flow cytometry. (e) The migration ability in con, anti-NC and anti-222 groups was analyzed by cell scratch experiment.
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Figure 4. Ddit4 is a direct target of miR-222-3p in HT-22 cells. (a) qRT-PCR was used to detect the mRNA level of Ddit4 gene in 
normal and malformed brain tissue at E8.5-E10.5. (b) The mRNA level of Ddit4 gene was analyzed by qRT-PCR in con, anti-NC and 
anti-222 groups. The β-actin gene was used as a control. (c) The mRNA level of miR-222-3p was analyzed by qRT-PCR in con, mim-NC 
and mim-222 groups. The U6 was used as a control. (d) The mRNA level of Ddit4 gene was analyzed by qRT-PCR in con, mim-NC and 
mim-222 groups. The β-actin gene was used as a control. (e) The Ddit4 protein level in con, anti-NC and anti-222 and mim-222 
groups was evaluated via western blot and the expression of β-tubulin was used for confirming equal loading. (f) Histogram analysis 
of graph E. (g) The fluorescence values of Ddit4 PC, Ddit4 WT and Ddit4 MUT combined with miR-222-3p mimis or NC were 
determined by double luciferase assay. (i) The seed sequence, mutated sequence, and complementary sequence of mir-222 and 
ddit4 3` UTR.
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vector group without Ddit4 expression (Ddit4-PC) 
, mir-222 overexpression had no effect on Luc/ 
R-LuC compared with miRNA simulated negative 
control. However, in the wild-type vector group 
(Ddit4-WT) with normal expression of Ddit4, the 
overexpression of miR-222-3p significantly 
decreased the luciferase activity of HT-22 cells 
transfected with GP-mirglo-DDIT4- 
WT. The deletion mutation of Ddit4 binding site 
(Ddit4-MUT) eliminated the effect of miR-222-3p 
on luciferase activity (Figure 4g). At the same time, 
the seed sequence, mutation sequence and com
plementary sequence diagram of Mir-222 and 
DDIT4 3ʹUTR are also shown in Figure 4i.

These results strongly suggested that miR-222- 
3p regulates the expression of Ddit4 by directly 
binding to the Ddit4 3ʹUTR sequence in HT-22 
cells. These results indicated that Ddit4 is 
a potential target gene of miR-222-3p and the 
expression of Ddit4 was regulated by miR- 
222-3p.

3.6. Ddit4 reverses the effect of miR-222-3p on 
HT-22 cells

Previous studies have shown that Ddit4 is asso
ciated with cell apoptosis and cell proliferation 
[46]. Subsequently, Ddit4 was knocked down by 
a small interfering RNA (siRNA). As shown in 
Figure 5a, a significant reduction in Ddit4 was 
achieved in siR-Ddit4 compared with siRNA 
control (siR-NC). The CCK8 assay showed that 
cell proliferation capacity was reduced by miR- 
222 inhibitor, which was reversed by co- 
transfection of siR-Ddit4 (Figure 5b). 
Identically, PCNA was significantly decreased 
in HT-22 cells after transfected with miR-222 
inhibitor and expression was reversed after 
Ddit4 was silenced (Figure 5c). Similarly, knock
down of Ddit4 protected anti-222-induced apop
tosis in HT-22 cells (Figure 5(d, e)). In addition, 
down-regulation of Ddit4 ablated anti-222- 
mediated cell cycle arrest in HT-22 cells (figure 
5f). Besides, low expression of Ddit4 also wea
kened the inhibitory effect of miR-222 on migra
tion of HT-22 cells (Figure 5g). These results 
indicated that down-regulation of miR-222-3p 
in HT-22 cells affects proliferation, apoptosis 
and migration of HT-22 cells by binding and 

promoting expression of the target gene Ddit4 
of miR-222-3p.

3.7 miR-222-3p is involved in regulation of Wnt 
signaling pathway

Ddit4 regulatesvWnt/β-catenin signaling pathway 
and affects the development of the dorsal-ventral 
axis of the embryo [50,51]. The present study 
confirmed that Ddit4 was a direct target of miR- 
222-3p. Wnt signaling pathway and its down
stream indicators were investigated at mRNA and 
protein levels (Figure 6). RT-qPCR results showed 
that expression of β-catenin and TCF4 was signif
icantly decreased in HT-22 cells after transfected 
with anti-222 (Figure 6a), and was greatly reversed 
by co-transfection of siR-Ddit4 (Figure 6b). WB 
showed that the protein levels of β-catenin, TCF4, 
c-Myc and cyclin D1 were significantly decreased 
in HT-22 cells after transfected with anti-222 com
pared with anti-NC (Figure 6c). This effect was 
enormously reversed by co-transfection of siR- 
Ddit4 (Figure 6d). These results suggested that 
down-regulation of miR-222-3p could restrain 
Wnt signaling pathway through Ddit4 inhibition.

4. Discussion

In the present study, we demonstrated that miR- 
222-3p was significantly down-regulated in NTDs 
mouse embryonic brain tissues. At the same time, 
an important link was observed between miR-222- 
3p and Ddit4 that we found miR-222-3p is nega
tively correlated with Ddit4 in HT-22 cells. 
Previous studies have demonstrated that aberrant 
expression of Ddit4 is associated with the occur
rence progression and recurrence of various can
cers, such as gastric and ovarian cancer, but not 
with neural tube malformation [52–54]. 
Collectively, these data supported the present 
study that Ddit4 is a direct target gene of 
miR-222-3p in NTDs.

Ddit4 (DNA damage-inducing transcript 4) 
belongs to the DDIT (DNA Damage Inducible 
Transcript) or GADD (Growth Arrest DNA 
Damage) protein family. This family member is
involved in both physiological and pathological 
processes such as growth, development, DNA 
damage repair, apoptosis, inflammatory response,
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Figure 5. Ddit4 reverses the effect of miR-222-3p on HT-22 cells function. (a) The Ddit4 protein level in Con, siR-NC and siR-Ddit4 
groups was evaluated via western blot and the expression of β-tubulin was used for confirming equal loading.(b)The proliferation of 
anti-NC, anti-222 and anti-222 + siR-Ddit4 groups cells were measured by CCK8. (c) The PCNA protein level in anti-NC, anti-222 and 
anti-222 + siR-Ddit4 groups was evaluated via western blot and the expression of β-tubulin was used for confirming equal loading. 
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stress and tumor formation [55–57]. The Ddit4 
proteins in human and mouse are conserved at 
its C-terminus, and both contain RTP801-C pro
tein domain with a sequence identity of 61%, and 
its homologous genes scylla and charybde are 
involved in the formation of the head of fruit fly 
[58]. During mouse embryonic development, 
Ddit4 is specifically expressed in the ectodermal 
axis and participates in the development and 
migration of cerebral cortical neurons during 
early embryonic development [22]. Studies have 
shown that Ddit4 gene is associated with 
a variety of neurodegenerative diseases, and its 
overexpression promotes apoptosis and inhibits 
cell proliferation [59,60].

Therefore, it may be a new breakthrough to 
understand the pathogenesis of NTDs through 
the study of miR-222-3p targeting Ddit4. 
Slawny and O’Shea [61] showed that Ddit4 reg
ulates the Wnt/β-catenin signaling pathway, the 
imbalance of which leads to abnormal neural 
embryonic formation during embryonic develop
ment, and thus cause abnormal closure of neural 
tube [62]. To investigate whether Ddit4 was 
implicated in miR-222-mediated NTDs progres
sion, HT-22 cells were transfected with anti-NC, 
anti-222 and co-transfection of anti-222 and siR- 
Ddit4 simultaneously. The decreased expression 
of β-catenin, TCF4, c-Myc and Cyclin D1 in HT-
22 cells transfected with miR-222 inhibitor was

(d) The cell apoptosis in anti-NC, anti-222 and anti-222 + siR-Ddit4 was analyzed by flow cytometry. (e) The Cleaved Caspase-3 
protein level in anti-NC, anti-222 and anti-222 + siR-Ddit4groups was evaluated via western blot and the expression of β-tubulin was 
used for confirming equal loading. (f)The cell cycle distribution in anti-NC, anti-222 and anti-222 + siR-Ddit4 groups was analyzed by 
flow cytometry. (g) The migration ability in anti-NC, anti-222 and anti-222 + siR-Ddit4 groups was analyzed by cell scratch 
experiment.
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reversed by co-transfection of siR-Ddit4, suggest
ing that Ddit4 was involved in the regulation of 
Wnt/β-catenin pathway. Therefore, the present 
study has concluded an association between 
miR-222-3p and Wnt/β-catenin pathway, and 
the results suggested that knockdown of miR- 
222-3p suppressed the expression of Wnt signal
ing-related genes. Furthermore, the present study 
indicated that miR-222-3p inhibited HT-22 cell 
progression by targeting Ddit4 and further reg
ulates the Wnt/β-catenin signaling pathway.

5. Conclusion

In conclusion, this study suggested a crucial role 
of miR-222-3p in the occurrence of NTDs, indi
cating a potential clinical value of miR-222-3p as 
an effective biomarker for diagnosis and prog
nosis of NTDs. In addition, our study demon
strated that miR-222-3p exerted its role by 
targeting Ddit4 through Wnt/β-catenin signaling 
pathway inhibition. Therefore, miR-222-3p may 
be a novel therapeutic target for the treatment of 
NTDs.
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