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BACKGROUND: Obesity is a pressing public health concern worldwide. Novel pharmacological means are urgently needed to
combat the increase of obesity and accompanying type 2 diabetes (T2D). Although fully established obesity is associated with
neuromolecular alterations and insulin resistance in the brain, potential obesity-promoting mechanisms in the central nervous
system have remained elusive. In this triple-tracer positron emission tomography study, we investigated whether brain insulin
signaling, μ-opioid receptors (MORs) and cannabinoid CB1 receptors (CB1Rs) are associated with risk for developing obesity.
METHODS: Subjects were 41 young non-obese males with variable obesity risk profiles. Obesity risk was assessed by subjects’
physical exercise habits, body mass index and familial risk factors, including parental obesity and T2D. Brain glucose uptake was
quantified with [18F]FDG during hyperinsulinemic euglycemic clamp, MORs were quantified with [11C]carfentanil and CB1Rs with
[18F]FMPEP-d2.
RESULTS: Subjects with higher obesity risk had globally increased insulin-stimulated brain glucose uptake (19 high-risk subjects
versus 19 low-risk subjects), and familial obesity risk factors were associated with increased brain glucose uptake (38 subjects) but
decreased availability of MORs (41 subjects) and CB1Rs (36 subjects).
CONCLUSIONS: These results suggest that the hereditary mechanisms promoting obesity may be partly mediated via insulin,
opioid and endocannabinoid messaging systems in the brain.
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INTRODUCTION
Prevalence of obesity has more than doubled from 1975 to date,
and in 2016, there were over 600 million obese adults globally [1].
Obesity is a major cause of mortality and morbidity worldwide
because it is accompanied with conditions such as type 2 diabetes
(T2D), cardiovascular disease and neurodegeneration [2, 3].
Epidemiological studies have indicated overweight, physical
inactivity, low socioeconomic status, parental obesity and parental
T2D to be key risk factors for future obesity [4–9]. Energy balance
regulation is a complex process controlled by both central and
peripheral neurohumoral mechanisms, and brain’s reward and
appetite circuits play a key role in maintenance of obesity [10]. Yet,
it is not known if alterations in these systems predispose to
subsequent development of obesity.

Among the peripherally produced metabolic hormones, insulin
regulates pleasure-driven feeding in mesolimbic pathways, inter-
acting with opioidergic reward systems [11]. In morbidly obese
subjects, increasing the plasma insulin concentration to supra-
physiological levels results in acceleration of central glucose
metabolism [12]. One human positron emission tomography (PET)
study with [18F]FDG found that middle-aged subjects with
peripheral insulin resistance have blunted glucose metabolism
response to insulin also in brain, especially in appetite-controlling
regions such as ventral striatum [13]. These studies suggest that
cerebral insulin resistance is a pathophysiological trait in devel-
oped obesity, but it is unknown whether alterations in brain’s
insulin signaling could increase the risk of future weight gain in
the non-obese state.

Received: 10 December 2020 Revised: 6 July 2021 Accepted: 12 October 2021
Published online: 2 November 2021

1Turku PET Centre, University of Turku, Turku FI-20521, Finland. 2Clinical Neurosciences, Turku University Hospital, Turku FI-20521, Finland. 3Department of Endocrinology, Turku
University Hospital, Turku FI-20521, Finland. 4Turku PET Centre, Turku University Hospital, Turku FI-20521, Finland. 5Turku PET Centre, Åbo Akademi University, Turku FI-20500,
Finland. 6MediCity Research Laboratory, University of Turku, Turku FI-20500, Finland. 7Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20500,
Finland. 8Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku FI-20500, Finland. 9Department of Radiology,
University of Turku and Turku University Hospital, Turku FI-20500, Finland. 10Department of Medicine, University of Turku, Turku FI-20500, Finland. 11Department of Psychology,
University of Turku, Turku FI-20500, Finland. ✉email: taskan@utu.fi

www.nature.com/ijo International Journal of Obesity

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-021-00996-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-021-00996-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-021-00996-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41366-021-00996-y&domain=pdf
http://orcid.org/0000-0002-2336-0426
http://orcid.org/0000-0002-2336-0426
http://orcid.org/0000-0002-2336-0426
http://orcid.org/0000-0002-2336-0426
http://orcid.org/0000-0002-2336-0426
http://orcid.org/0000-0002-5596-0485
http://orcid.org/0000-0002-5596-0485
http://orcid.org/0000-0002-5596-0485
http://orcid.org/0000-0002-5596-0485
http://orcid.org/0000-0002-5596-0485
http://orcid.org/0000-0002-6420-514X
http://orcid.org/0000-0002-6420-514X
http://orcid.org/0000-0002-6420-514X
http://orcid.org/0000-0002-6420-514X
http://orcid.org/0000-0002-6420-514X
http://orcid.org/0000-0001-5245-8118
http://orcid.org/0000-0001-5245-8118
http://orcid.org/0000-0001-5245-8118
http://orcid.org/0000-0001-5245-8118
http://orcid.org/0000-0001-5245-8118
http://orcid.org/0000-0001-9597-338X
http://orcid.org/0000-0001-9597-338X
http://orcid.org/0000-0001-9597-338X
http://orcid.org/0000-0001-9597-338X
http://orcid.org/0000-0001-9597-338X
https://doi.org/10.1038/s41366-021-00996-y
mailto:taskan@utu.fi
www.nature.com/ijo


Endogenous opioids and particularly μ-opioid receptor (MOR)
ligands mediate reward and are involved in the control of food
intake [14]. Opioid receptor agonists stimulate and antagonists
reduce food intake in rodents and humans [15]. PET studies have
found global MOR downregulation in morbidly obese humans,
and shown that this downregulation recovers after weight loss
following bariatric surgery [16]. However, it is not known whether
the initial MOR downregulation is caused by obesity, or whether it
reflects a vulnerable endophenotype for excessive eating and
weight gain.
In addition to opioids, endocannabinoids influence feeding

through hypothalamic and cortico-limbic circuits [17]. CB1
receptor (CB1R) is the most abundant endocannabinoid receptor
in the brain, modulating central effects of endogenous and
exogenous cannabinoids [18]. In rats, CB1-agonist administration
to nucleus accumbens shell increases food intake [19], whereas
CB1R knockout mice are immune to diet-induced obesity [20] and
have dampened sensitivity to food reward [21]. Furthermore,
central CB1R density is reduced in obese rodents [22]. Lowered
central CB1R density could thus also constitute a risk factor for
developing obesity.
In this triple-tracer PET study, we investigated whether risk

factors for obesity are associated with insulin-stimulated brain
glucose uptake (BGU) and central MOR and CB1R availability in a
sample of healthy, non-obese young males (n= 41). Obesity risk
was indexed by parental obesity and T2D and participant’s physical
exercise and actual BMI. The work was a part of PROSPECT project
which was preregistered to Clinicaltrials.gov (Neuromolecular Risk
Factors for Obesity, PROSPECT, NCT03106688). Based on prior
clinical studies on obesity, we hypothesized that higher obesity risk
would be associated with increased BGU during hyperinsulinemia
[12]. We also hypothesized that higher obesity risk would associate
with reduced MOR and CB1R availability [22, 23].

SUBJECTS AND METHODS
The study was conducted in accordance with the Declaration of Helsinki.
The Ethical Committee (EC) of the Hospital District of South-Western
Finland approved the study, and all participants signed EC-approved
written informed consent forms before data gathering.

Subjects
We recruited 43 men with low or high risk for developing obesity via
Internet discussion forums, traditional bulletin boards, university-hosted
email lists and newspaper advertisements. Clinical screening was done by
a physician (TaK or LP), and it involved medical history checkup, physical
examination, 2-h oral 75 g glucose tolerance test (OGTT), urine drug-
screening and blood tests. None of the subjects had detectable levels of
11-Nor-9-carboxy-Δ9-tetrahydrocannabinol in their blood (a marker of
cannabis consumption).
Exclusion criteria were poor compliance with the study schedule,

smoking or use of nicotine products, abusive use of alcohol, use of illicit
drugs, any chronic disease or medication that could affect glucose
metabolism or neurotransmission, neurological or psychiatric disease,
eating disorder, any contraindication to magnetic resonance imaging
(MRI) and prior participation in PET studies or other significant exposure
to radiation. Inclusion criteria for the high-risk (HR) group were male sex,
age of 20–35 years, overweight i.e., body mass index (BMI) of 25–30 kg/
m2, leisure time physical exercise <4 h/week, maternal / paternal

overweight or obesity or maternal/paternal T2D. Inclusion criteria for
the low-risk (LR) group were male sex, age of 20–35 years, normal weight
i.e., BMI of 18.5–24.9 kg/m2, leisure time physical exercise ≥4 h/week, and
no maternal / paternal T2D.
Risk grouping was based on previously established risk factors for future

obesity: BMI [4], leisure time physical exercise (hours/week) [8] and familial
obesity risk (Family Risk i.e., current parental overweight / obesity and T2D;
[7, 9] Table 1). Altogether 19 men were recruited to the HR group and 24
men to the LR group. Subjects’ body fat percentage was measured with air
displacement plethysmograph (the Bod Pod system, software version 5.4.0,
COSMED, Inc., Concord, CA, USA). Sample size was determined by a priori
power analysis based on our prior neuroreceptor PET studies on obesity
[23], which suggested that a sample size of 16+ 16 would be sufficient for
establishing the predicted effects at p < 0.05 with actual power exceeding
0.95, assuming regional effect size of r= 0.5.
Two LR subjects were excluded after the screening because they did not

respond to further contact attempts. The final sample (n= 41) consisted of
19 HR individuals and 22 LR individuals, who were scanned with [11C]
carfentanil and MRI. One LR subject discontinued the [18F]FDG-PET study
before the brain scan, because the cannulas felt unpleasant. Two LR
subjects´ [18F]FDG scan had to be discontinued before the brain scan
because of scheduling problems. A total of 19 LR and 19 HR subjects thus
completed the brain [18F]FDG study. Due to scheduling problems and
technical issues, 36 subjects (16 HR and 20 LR individuals) completed the
[18F]FMPEP-d2 scan successfully. One HR subject did not arrive to the body
composition analysis. Basic characteristics of the sample are summarized in
Table 2.

Radiochemistry
BGU was quantified with [18F]FDG, which was produced using FASTlab
synthesis platform (GE Healthcare) according to a modified method of
Hamacher et al. [24] and Lemaire et al. [25]. Radiochemical purity
was >98%.
MOR availability was measured with radioligand [11C]carfentanil [26],

which was synthesized using [11C]methyl triflate, where cyclotron-
produced [11C]methane was halogenated by gas phase reaction into
[11C]methyl iodide [27] and converted online into [11C]methyl triflate [28].
The [11C]methane was produced at the Accelerator Laboratory of the Åbo
Akademi University, using the 14N(p,α)11C nuclear reaction in a N2-H2

target gas (10 % H2). [
11C]methyl triflate was bubbled into a solution

containing acetone (200 µl), O-desmethyl precursor (0.3–0.4 mg,
0.79–1.05 µmol) and tetrabutylammonium hydroxide (aq) (4 µl, 0.2 M) at
0 °C. The reaction mixture was diluted and loaded into a solid phase
extraction cartridge (C18 Sep-Pak® Light, Waters Corp., Milford, MA) and
the cartridge was washed. Dilution and washing were done using 25%
ethanol in sterile water solution, 10 mL each step. The [11C]carfentanil was
extracted with ethanol from the cartridge, diluted with 0.1 M phosphate
buffer solution into <10% ethanol level and finally sterile filtered (Millex
GV, 0.22 µm polyvinylidene fluoride membrane, 33 mm, Merck Millipore).
Analytical HPLC column (Phenomenex Luna® 5 µm C8(2) 100 Å, 4.6 ×
100mm), acetonitrile (32.5%) in 50mM H3PO4 mobile phase, 1 ml/min flow
rate, 7 min run time and detectors in series for UV absorption (210 nm) and
radioactivity were used for determination of identity, radiochemical purity
and mass concentration. Radiochemical purity of the produced [11C]
carfentanil batches was 98.5 ± 0.3% (mean ± SD). The injected [11C]
Carfentanil radioactivity was 248 ± 11MBq and molar radioactivity at time
of injection 290 ± 110 MBq/nmol corresponding to an injected mass of
0.40 ± 0.23 µg.
CB1R availability was measured with [18F]FMPEP-d2, which was produced

as described previously [29]. The radiochemical purity was >95% and the
molar activity >500 GBq/μmol at the end of synthesis.

Image acquisition
Subjects had a 12-h overnight fast before the [18F]FDG scan, and fasted
6–12 h before the [11C]carfentanil and [18F]FMPEP-d2 scans. The PET scans
were done on separate days. The subjects were advised to abstain from
physical exercise in the PET scan days and the day before. Detailed scan
protocols and hyperinsulinemic euglycemic clamp execution are described
in Supplementary Text 1. The [18F]FDG scans were done with GE Discovery
(Discovery 690 PET/CT, GE Healthcare), and the [11C]carfentanil and [18F]
FMPEP-d2 PET images were acquired with PET/CT (GE Discovery VCT PET/
CT, GE Healthcare). The tracer was administered in a catheter placed in
subject’s antecubital vein. Subject’s head was strapped to the scan table to
prevent excessive head movement. Computed tomography scans were

Table 1. The principles of familial obesity risk (Family Risk) scoring,
total score ranging from 0 to 4. Gestational diabetes (one subject) was
scored as type 2 diabetes.

Parent overweight or obesity No One parent Both parents

0 1 2

Parent type 2 diabetes No One parent Both parents

0 1 2
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acquired before PET scans for attenuation correction. The subjects were
clinically monitored by physician throughout the scans. In the [18F]FDG and
[18F]FMPEP-d2 scans, the plasma radioactivity was measured from
arterialized blood samples in fixed time intervals using automatic γ-
counter (Wizard 1480 3”, Wallac, Turku, Finland). Anatomical T1-weighted
MR images (TR, 8.1 ms; TE, 3.7 ms; flip angle, 7°; scan time, 263 s; 1 mm3

isotropic voxels) were obtained with PET/MR (Ingenuity TF PET/MR, Philips)
for anatomical normalization and reference. Hyperinsulinemic euglycemic
clamp was applied during the [18F]FDG scans as previously described [30].

Image processing and modeling
Automated processing tool Magia [31] (https://github.com/tkkarjal/magia) was
used to process the PET data. Processing began with motion-correction of the
PET data followed by coregistration of the PET and MR images. Magia uses
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) to define the regions of
interest (ROIs) as well as the reference regions (here applicable to [11C]
carfentanil data). The ROI-wise kinetic modeling was based on extraction of
ROI-wise time-activity curves. Prior to calculation of parametric images, the
[18F]FMPEP-d2 and [11C]carfentanil PET images were smoothed using Gaussian
kernel to increase signal-to-noise ratio before model fitting (FWHM= 6mm
for [18F]FMPEP-d2, 2mm for [11C]carfentanil). Parametric images were spatially
normalized to MNI-space and finally smoothed using a Gaussian kernel
(FWHM= 8mm for [18F]FDG, 6mm for [11C]carfentanil and [18F]FMPEP-d2).
BGU-estimates (μmol/min/100g) obtained from the [18F]FDG PET data are
based on fractional uptake rate [32]. [11C]carfentanil binding was quantified by
binding potential (BPND), which is the ratio of specific binding to nondisplace-
able binding in the tissue [33]. Occipital cortex was used as the reference
region [34]. CB1R availability was quantified as [18F]FMPEP-d2 volume of
distribution (VT) using graphical analysis (Logan) [35]. The starting point of
36min was used, since Logan plots became linear after 36min from injection
[35]. Detailed description about the modeling of each tracer is presented in
Supplementary Text 1.

Analysis of serum endocannabinoids
Circulating endocannabinoids might affect central CB1R availability [36].
Serum endocannabinoids and related fatty acids were analyzed from
fasting-state blood samples drawn in [18F]FMPEP-d2 scan day as described
previously [36], with slight modifications (see Supplementary Text 2 for the
full description). Serum endocannabinoid levels are shown in Supplemen-
tary Table 1.

Experimental design and statistical analysis
Primary analyses. The primary outcome variables in the analyses were
BGU measured with [18F]FDG, [11C]carfentanil BPND and [18F]FMPEP-d2

VT. The primary study question was whether these outcome variables differ
between the LR and HR groups. Full-volume data were analyzed with
nonparametric testing using SnPM13 (http://nisox.org/Software/SnPM13/).
We used p < 0.05 as the cluster-defining threshold, and only report clusters
large enough to be statistically significant (FWE p < 0.05). A total of 5000
permutations were used to estimate the null distribution. LR and HR
groups were compared using two-sample t-test. Age was included as a
covariate in all full-volume models, since age is known to affect at least
[11C]carfentanil binding [37, 38] and [18F]FDG uptake [39].

Secondary analyses. Additionally, we analyzed the associations of
individual risk factors (BMI, physical exercise and Family Risk) to the PET
outcome variables (BGU, BPND, and VT) in a priori ROIs with Bayesian
approach. Based on previous studies [12, 40, 41], FreeSurfer (http://surfer.
nmr.mgh.harvard.edu/) was used to extract 21 bilateral ROIs involved in
emotion and food reward processing: amygdala, caudate, cerebellum,
dorsal anterior cingulate cortex, hippocampus, inferior temporal gyrus,
insula, medulla, midbrain, middle temporal gyrus, nucleus accumbens,
orbitofrontal cortex, pars opercularis, posterior cingulate cortex, pons,
putamen, rostral anterior cingulate cortex, superior frontal gyrus, superior
temporal gyrus, temporal pole, and thalamus. We used varying (random)
slopes and intercepts for the ROIs, and thus the results do not require
separate correction for multiple ROIs [42]. We used regularizing priors
(zero-mean normal distribution with unit-variance) for the regression
coefficients to reduce overfitting. Bayesian hierarchical modeling was done
with the R package BRMS (https://cran.r-project.org/package=brms) that
uses the efficient Markov chain Monte Carlo sampling tools of RStan
(https://mc-stan.org/users/interfaces/rstan). We fitted the models sepa-
rately for body mass index, familial obesity risk, and physical exercise. All
models also included age as a nuisance covariate. We used weakly
informative priors: For intercepts, we used the default of BRMS, i.e.,
Student’s t distribution with scale 3 and 10 degrees of freedom. For
predictors, a Gaussian distribution with standard deviation of 1 was used to
provide weak regularization. The BRMS default prior half Student’s t
distribution with 3 degrees of freedom was used for standard deviations of
group-level effects; BRMS automatically selects the scale parameter to
improve convergence and sampling efficiency. The BRMS default prior LKJ
(1) was used for correlations of group-level random effects. The ROI-level
models were estimated using five chains, each of which had 1000 warmup
samples and 4000 post-warmup samples, thus totaling 20000 post-
warmup samples. The sampling parameters were slightly modified to
facilitate convergence (adapt_delta= 0.99; max_treedepth= 20). The
sampling produced no divergent iterations and the Rhats were all 1.0,
suggesting that the chains converged successfully. Before model estima-
tion, continuous predictors were standardized to have zero mean and unit
variance, thus making the regression coefficients comparable across the

Table 2. Characteristics of the final sample (n= 41). p value is for two-tailed independent samples t test between the two groups. 34 subjects (18
low-risk and 16 high-risk subjects) had no data points missing. The missing data are denoted and specifieda,c,d.

Low-risk males
(n= 22)

High-risk males
(n= 19)

p value

mean SD mean SD

Age (years) 23.0 2.9 27.1 4.3 <0.001

BMI (kg/m2) 22.0 1.9 27.2 1.9 <0.001

Body fat (%)a 16.4 5.5 29.1 7.8 <0.001

Physical exercise (hours/week) 6.2 2.8 2.7 1.0 <0.001

Family Risk score (0–4) 0.1 0.3 1.4 0.9 <0.001

Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)b 1.2 0.7 2.2 0.8 <0.001

Fasting plasma glucose (mmol/l) 4.9 0.5 5.5 0.4 <0.001

2-h plasma glucose in oral glucose tolerance test (mmol/l) 4.8 1.0 5.9 1.4 0.004

Injected activity of [11C]carfentanil (MBq) 244.5 10.7 252.6 10.7 0.02

Injected activity of [18F]FDG (MBq)c 153.7 10.3 159.4 8.9 0.08

Injected activity of [18F]FMPEP-d2 (MBq)d 188.2 11.0 187.6 14.8 0.88
aBody fat percentage for high-risk subjects is computed with n= 18, since one high-risk subject didn’t complete the body composition analysis.
bHOMA-IR indexes body insulin resistance and is quantified from fasting blood values with the equation: HOMA-IR= (fP-Glucose × fP-Insulin)/22.5.
cMean and SD for the low-risk (n= 19) and high-risk subjects (n= 19) that completed the [18F]FDG scan successfully.
dMean and SD for the low-risk (n= 20) and high-risk subjects (n= 16) that completed the [18F]FMPEP-d2 scan successfully.
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predictors. All outcome variables ([11C]carfentanil BPND, [
18F]FMPEP-d2 VT

and BGU) were log-transformed to improve model fit [37]. Since all three
outcome variables had associations with the Family Risk score, we created
post hoc Bayesian linear regression model with age-adjusted BGU, BPND
and VT values as the predictors of Family Risk to assess the relative effects
of the outcome variables.
In addition, serum endocannabinoids were studied in separate full

volume models of [18F]FMPEP-d2 VT. Since eight distinct endocannabinoid
compounds were analyzed, we confirmed the results with Bonferroni-
corrected p value as the cluster-defining threshold (0.05/8= 0.00625).

RESULTS
Mean distribution of BGU, MOR availability and CB1R availability
are shown in Fig. 1. Descriptive Pearson correlations of the sample
are presented in the Supplementary Fig. 1 and Supplementary
Table 2.

Risk group comparisons
HR group had increased BGU compared to the LR group in
multiple brain regions. Prominent associations were found in
frontotemporal and cingulate cortices, hypothalamus, and bilat-
erally in insula and putamen (Fig. 2). MOR or CB1R availabilities did
not have statistically significant differences between the two
groups.

Effects of distinct risk factors
Brain glucose uptake. Increase in Family Risk was associated with
globally increased in BGU (Fig. 3, all ROIs in Supplementary Fig. 2).
BMI had a moderate positive association with BGU, while
increased physical exercise associated with lower BGU (Fig. 3).
Full volume visualization of the Family Risk associations is
presented in Fig. 4.

μ-opioid receptor availability. Higher Family Risk was associated
with lower BPND in frontotemporal cortex, insula and striatum
(Figs. 3 and 4, all ROIs in Supplementary Fig. 2), while the effects of
BMI and physical exercise markedly overlapped with zero.

CB1 receptor availability. Family Risk and BMI had negative
association with VT (Fig. 3, all ROIs in Supplementary Fig. 2).
Anandamide (AEA) was the only endocannabinoid to exhibit
significant effects to VT. Increase in serum AEA was associated with
lower VT in frontal striatum (Supplementary Fig. 3).

Linear regression analysis of family risk with three tracers. Finally,
we pooled the data across the three radioligands in a reversed
analysis to test which cerebral alterations are the best predictors
of familial obesity risk. Increased BGU explained the higher Family
Risk score in every ROI. The posterior distributions of [11C]
carfentanil BPND and [18F]FMPEP-d2 VT mostly overlapped with
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Fig. 1 Mean distribution of brain glucose uptake, μ-opioid receptor availability and CB1 receptor availability in the whole study sample.
Top: Mean brain glucose uptake (BGU) of the 38 [18F]FDG scans (19 low-risk and 19 high-risk subjects). Middle: Mean binding potential (BPND)
of the 41 [11C]carfentanil scans (22 low-risk and 19 high-risk subjects). Bottom: Mean volume of distribution (VT) of the 36 [18F]FMPEP-d2 scans
(20 low-risk and 16 high-risk subjects).
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for age. The data are thresholded at p < 0.05, FWE corrected at
cluster level. T-score from the two-sample t-test is shown in red-to-
yellow scale.
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zero, and the directions of the associations were negative
(Supplementary Fig. 4).

DISCUSSION
Our main finding was that non-obese young males with high risk
for future obesity had increased insulin-stimulated brain glucose

uptake. Furthermore, the increased familial obesity risk (i.e.,
parental obesity and T2D prevalence) was associated with lowered
μ-opioid and CB1 receptor density in addition to the globally
altered glucose metabolism in the brain. Brain glucose uptake had
the strongest and most consistent association with familial obesity
risk among the three examined PET variables.
Sedentary lifestyle combined to readily available high-calorie

food has been proposed to be core issue for obesity epidemic
[43], yet hereditary factors play a key role in individual obesity
risk. Multiple genes contribute to susceptibility for obesity and
T2D, and a first-degree relative with obesity raises individual’s
obesity risk two- to threefold [44]. Our results highlight that
molecular and metabolic alterations in the brain are also
associated with individual obesity risk. The present findings
complement those previously reported in middle-aged obese
subjects, suggesting that alterations in brain’s insulin signaling
and MOR and CB1R neurotransmission might contribute to
elevated risk for gaining weight.

Brain glucose uptake and obesity risk
The non-obese subjects with high risk for developing obesity
showed widespread increase in brain glucose uptake during
hyperinsulinemia—a phenomenon that has been previously
reported in morbidly obese individuals [12]. It has been suggested
that central inflammation, impaired insulin transport regulation in
the blood-brain barrier and diminished neuronal responses to
insulin might promote these changes in fully developed obesity
[12, 45, 46]. The present results show that these pathophysiolo-
gical processes are active already in non-obese subjects with risk
factors for obesity: HR group had globally increased BGU
compared to the LR group, and a familial history of obesity and
T2D were strongly linked to increased BGU. Central insulin
resistance has been proposed to underlie the pathogenesis of
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(BPND) of the [11C]carfentanil, volume of distribution (VT) of the [18F]FMPEP-d2 and brain glucose uptake (BGU) quantified with [18F]FDG in
representative regions of interest, age as a covariate. The colored circles represent posterior means, the thick horizontal bars 80% posterior
intervals, and the thin horizontal bars 95% posterior intervals. The width of posterior intervals illustrates the level of uncertainty of the
estimate. Abbreviations: Amy = amygdala, Cau = caudate, dACC = dorsal anterior cingulate cortex, Hipp = hippocampus, Ins = insula,
MTemp = middle temporal gyrus, NAcc = nucleus accumbens, Put = putamen, rACC = rostral anterior cingulate cortex, Tha = thalamus.
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Fig. 4 Effects of familial obesity risk to central glucose uptake
and μ-opioid receptor availability. a Brain regions where higher
Family Risk score associated with increased brain glucose uptake in
the 38 individuals studied with [18F]FDG. b Brain regions where
higher Family Risk score associated with lower μ-opioid receptor
availability in the 41 individuals studied with [11C]carfentanil. The
effects of familial obesity risk we global for brain glucose uptake,
whereas the associations were most prominent in striatum and
insula for μ-opioid receptors. The images show results from SnPM13
linear regression, with age and other risk factors (BMI, physical
exercise) as covariates. The data are thresholded at p < 0.05, FWE
corrected at cluster level.
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obesity and T2D [47]. Disturbances in brain insulin action and
impaired signaling between the brain and peripheral organs may
contribute to pathological energy homeostasis and weight gain.
Familial obesity risk had positive correlation with BGU extensively
in the brain, also in cingulate cortex, striatum and nucleus
accumbens that have important role in the central regulation of
food intake and reward [48]. Impaired insulin action in these brain
regions, together with altered neuroreceptor signaling, could
potentially predispose to increased food intake and weight gain.

Central μ-opioid receptor downregulation as an obesity-
promoting mechanism
Parental obesity and T2D were associated with lower MOR
availability in non-obese state in multiple brain areas, including
frontal cortex, striatum, and insula. Previously MOR downregula-
tion in same brain areas has been found in patients with morbid
obesity [23] and binge eating disorder (BED) [49]. These alterations
accord with genetic studies suggesting that variability in MOR-
coding gene OPRM1 is linked with MOR function and eating
behavior. Variation in OPRM1 (SNP rs1799971, prevalence in
Finland ∼19% [50]) reduces MOR availability [51] and is over-
represented in patients with BED [52]. MOR system mediates
feeding and reward [14], and prior studies have found that MOR
downregulation makes an individual more sensitive to environ-
ment’s rewarding food cues [53]. Individuals with hereditary
predisposition towards downregulated MORs may thus be more
sensitive to respond to the anticipatory food cues in the
environment, leading to excess feeding [54]. Alternatively, they
might also compensate the reduced MOR availability by excessive
food intake to get sufficient reward response and incentive to halt
food intake. These proposed mechanisms could possibly lead to
vicious cycle in feeding behavior, where excessive endogenous
opioid stimulation by feeding [55] would cause further MOR
downregulation and vice versa [16].

CB1 receptor availability and endogenous cannabinoids
Our results suggest that higher familial obesity risk and higher
body mass are associated with lower CB1R availability in the brain.
Our findings are in line with a prior PET study that has linked
increase in BMI to lower CB1R availability [41]. In a recent PET
study, serum endocannabinoid peptides (including AEA) had
negative relationship with central CB1R availability [36]. Our results
add support to these earlier findings: we found that serum AEA
concentration had negative relationship with CB1R in ventral
striatum already in the non-obese state. In animal studies, AEA has
been shown to stimulate food intake via activation of central
CB1Rs [56] and to amplify hedonic reward responses to sweet
taste [57]. In obese humans, serum AEA is increased and associates
with decreased CB1R gene expression [58]. The elevated systemic
AEA concentration might thus be a pathophysiological trait
promoting CB1R downregulation, and possibly weight gain.

Limitations and future directions
First, since we studied only males, the conclusions may not be
generalizable to females. Second, there was a small age-difference
between the two risk groups. Age was however included in all
analyses as a nuisance covariate. By study design, the BMI of HR
group was higher than the BMI in LR group, since overweight in
early adulthood is a predictive factor for future obesity [4].
However, compared to BMI, familial obesity risk had generally
stronger and independent effects to the brain glucose uptake and
neuroreceptor availability (Figs. 3 and 4). Also in healthy males,
BMI in the range of 18–34 does not affect central MOR availability
[37]. Third, we did not have the information about genetic profile
of the subjects, and were therefore not able to directly assess the
genetic obesity risk. Fourth, the information about physical
exercise and parental risk factors were acquired by interview by
licensed physician with a standardized medical history checkup,

rather than by direct measurement. Finally, as a cross-sectional
work this study cannot differentiate whether the detected cerebral
alterations are the cause or the effect of increasing obesity risk or
whether one receptor system’s alteration would serve as the
primal cause for the detected changes in the other systems. In a
single PET scan, it is also not possible to demonstrate the exact
molecule-level mechanism for altered receptor availability [37].
Follow-up studies with assessment of eating behavior are needed
to confirm the proposed effects of these brain signaling
alterations to future weight gain.

CONCLUSIONS
Individuals with well-established risk factors for obesity have
alterations in the brain’s insulin responsivity and opioid and
endocannabinoid signaling that resemble those observed in
obesity. History of parental obesity and T2D is manifested as
altered cerebral insulin sensitivity and reduced MOR and CB1R
availability. The detected neurochemical alterations emphasize
the hereditary and centrally mediated mechanisms in obesity
development. Disturbance of these integrative food intake control
systems in the brain may potentially predispose to weight gain
and obesity.

CODE AVAILABILITY
The code for preprocessing of the PET data (Magia) is available at https://github.com/
tkkarjal/magia.
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