Skip to main content
. 2022 Jan 14;119(4):e2109194119. doi: 10.1073/pnas.2109194119

Table 2.

Comparison of MNIST benchmark results across neuromorphic platforms

Platform Reference Architecture Node, nm Accuracy, % Energy/inference, µJ Throughput, inference×s–1 Latency, µs
Digital SpiNNaker Stromatias et al. (61) 784-500-500-10 130 95.0 /* /* /
TrueNorth Esser et al. (62) CNN (1 ensemble) 28 92.7 0.27 1,000 /
CNN (16 ensembles) 28 95 4 1,000 /
CNN (64 ensembles) 28 99.4 108.0 1,000 /
Chen et al. (63) 236-20 10 88.0 1.0 6,250 /
784-1024-512-10 10 98.2 12.4 / /
784-1024-512-10 10 97.9 1.7 / /
MorphIC Frenkel et al. (64) 784-500-10 65 97.8 205 / /
784-500-10 65 95.9 21.8 250 /
SPOON Frenkel et al. (38) CNN 28 97.5 0.3 / 117
Analog BSS-1 Schmitt et al. (56) 100-15-15-5 180 95.0 /* 10,000 /
BSS-2 Göltz et al. (57) 256-246-10 65 96.9 8.4 21,000 ¡10
BSS-2 This work 256-246-10 65 97.6 2.4 85,000 8
*

Estimates were given by Pfeiffer and Pfeil (40).

Segmented input and hidden layers.

Based on presilicon estimates.