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Transmissible vaccines have the potential to revolutionize how
zoonotic pathogens are controlled within wildlife reservoirs. A key
challenge that must be overcome is identifying viral vectors that
can rapidly spread immunity through a reservoir population. Be-
cause they are broadly distributed taxonomically, species specific,
and stable to genetic manipulation, betaherpesviruses are leading
candidates for use as transmissible vaccine vectors. Here we evalu-
ate the likely effectiveness of betaherpesvirus-vectored transmis-
sible vaccines by developing and parameterizing a mathematical
model using data from captive and free-living mouse populations
infected with murine cytomegalovirus (MCMV). Simulations of
our parameterized model demonstrate rapid and effective control
for a range of pathogens, with pathogen elimination frequently
occurring within a year of vaccine introduction. Our results also
suggest, however, that the effectiveness of transmissible vaccines
may vary across reservoir populations and with respect to the
specific vector strain used to construct the vaccine.
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Pathogen transmission at the human–wildlife interface is a
fundamental threat to human health. Examples of the detri-

mental effects that zoonotic spillover has on humans include the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic (1), the 2014–2015 Ebola virus epidemic (2), and
the persistent threat of Lassa virus (LASV) in West Africa
(3, 4). These spillover events illustrate the significant burden
that zoonotic pathogens can impose on human populations and
emphasize the importance of controlling zoonotic pathogens
before spillover occurs.

Historically, mass vaccination and culling have been the two
most prominent methods for controlling zoonotic pathogens
within wildlife reservoirs. However, the success of these tra-
ditional control measures relies on the ability to vaccinate or
remove a high proportion of the target animal population, a
requirement that may often be infeasible (5, 6). As a conse-
quence, wildlife vaccination has generally proven successful at
limiting spillover only in special cases where mass distribution
of vaccine-laced baits can be regularly accomplished (e.g., rabies
carried by raccoons and foxes in North America and Europe,
respectively) (7). An approach that could overcome the chal-
lenges faced by traditional wildlife vaccination programs is to
use recombinant vector vaccines capable of self-dissemination
(8, 9). Transmissible recombinant vector vaccines are constructed
by engineering a benign vector virus to carry and express an
immunogenic transgene from a specific target pathogen (10). In
theory, the resulting vaccine takes on the transmission charac-
teristics of the vector virus, while triggering an immune response
specific to the target pathogen. Leading candidates to serve as
vectors for transmissible vaccines are betaherpesviruses (e.g.,
murine cytomegalovirus [MCMV]), due to their broad taxonomic

distribution across important groups of reservoir species, high
species specificity, and mild or undetectable virulence in most
natural reservoirs (11, 12).

Although previous modeling efforts have demonstrated the
potential benefits of vaccine transmission (9, 13–17), these mod-
els have been general and not parameterized for specific can-
didate vaccine vectors or zoonotic pathogens. Further, existing
models have focused almost exclusively on steady-state solu-
tions and have not addressed the timescale over which zoonotic
pathogens can be eliminated. Consequently, we do not yet know
how well transmissible vaccines developed using betaherpesvirus
vectors such as MCMV are likely to work in practice. To ad-
dress this gap, we develop a mathematical model describing the
spread of an MCMV-vectored transmissible vaccine through a
reservoir population and parameterize it using data from captive
and free-living mouse populations. We use this parameterized
model to predict how rapidly MCMV-vectored transmissible
vaccines can eliminate pathogens with different properties and
to quantify the scope for variable outcomes across reservoir
populations and across vaccines developed from different vector
strains.

Significance

Spillover of infectious diseases from wildlife populations into
humans is an increasing threat to human health and welfare.
Current approaches to manage these emerging infectious dis-
eases are largely reactive, leading to deadly and costly time
lags between emergence and control. Here, we use mathemat-
ical models and data from previously published experimental
and field studies to evaluate the scope for a more proac-
tive approach based on transmissible vaccines that eliminates
pathogens from wild animal populations before spillover can
occur. Our models are focused on transmissible vaccines de-
signed using herpes virus vectors and demonstrate that these
vaccines—currently under development for several important
human pathogens—may have the potential to rapidly control
zoonotic pathogens within the reservoir hosts.

Author contributions: T.J.V., C.H.R., A.J.B., and S.L.N. designed research; T.J.V., C.H.R.,
A.J.B., and S.L.N. performed research; T.J.V., C.H.R., A.J.B., S.G., A.R., and S.L.N. analyzed
data; and T.J.V., C.H.R., A.J.B., S.G., A.R., and S.L.N. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. O.B. is a guest editor invited by the Editorial
Board.

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email: varr3316@vandals.uidaho.edu.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2108610119/-/DCSupplemental.

Published January 19, 2022.

PNAS 2022 Vol. 119 No. 4 e2108610119 https://doi.org/10.1073/pnas.2108610119 1 of 7

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2108610119&domain=pdf&date_stamp=2022-01-15
http://orcid.org/0000-0002-8766-0129
http://orcid.org/0000-0002-7111-6735
http://orcid.org/0000-0001-8601-8292
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:varr3316@vandals.uidaho.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108610119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108610119/-/DCSupplemental
https://doi.org/10.1073/pnas.2108610119


Results
Pathogens That Generate Acute Viral Infections Are Vulnerable to
Transmissible Vaccines. We used approximate Bayesian computa-
tion (ABC) to parameterize an epidemiological model tuned to
the biology of betaherpesviruses such as MCMV. Our approach
capitalized on a unique dataset that tracked the spread of MCMV
through naive mouse populations inhabiting seminatural enclo-
sures (18). Applying our ABC algorithm to these time series data
allowed us to estimate the transmission rate of MCMV (βv ) and
the rate at which exposed individuals become infectious (σ) as
the mode of the bivariate posterior distribution (Fig. 1).

Next, we used these parameter estimates to predict how
rapidly an MCMV-vectored transmissible vaccine could reduce
pathogen prevalence. Specifically, simulating the interaction
between the transmissible vaccine and pathogen revealed that
the time required to reduce pathogen prevalence by 95% varies
widely across pathogens and depends on the pathogen’s basic
reproductive number (R0) and infectious period. For example,
our model predicts an MCMV-vectored transmissible vaccine
will reduce pathogen prevalence by 95% in 156 d if the pathogen
has an R0 of 1.5 and infectious period of 10 d, but will require
1,028 d to accomplish an identical reduction for a pathogen with
an R0 of 2.5 and infectious period of 365 d (Fig. 2).

To better ground our predictions in the biology of specific
pathogens, we used our model to predict the impact of an
MCMV-vectored transmissible vaccine on LASV and lympho-
cytic choriomeningitis virus (LCMV). Both pathogens regularly
spill over into the human population from rodent reservoirs
and cause significant morbidity (19, 20). Although the primary
reservoir of LASV, the multimammate rat Mastomys natalensis,
is only distantly related to the domestic mouse, both LASV
and LCMV do infect species within the genus Mus (21). Using
published estimates for the seroprevalence and infectious period
of these pathogens (22, 23) we developed models describing their
response to an MCMV-vectored transmissible vaccine. These
models were used to simulate the introduction of a transmissible
vaccine into a reservoir population where the target pathogen
was endemic. These simulations suggest that LASV is very
susceptible to control with an MCMV-vectored transmissible
vaccine, with 95% reduction achieved in only 212 d. In contrast,
our model predicts that LCMV is more recalcitrant and requires
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Fig. 1. Bivariate posterior distribution of the transmission rate (βv ) and
the rate at which individuals exposed to the virus transition into the in-
fectious class (σ). The marginal distribution of the transmission rate and
rate of becoming infectious are displayed on the top and right of the
density plot, respectively. The modal values of the distribution are βv =

0.033 per individual per d and σ = 0.099 d−1.
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Fig. 2. Time to 95% pathogen reduction as a function of pathogen R0 and
the infectious period (1/δ). Simulations start at the steady-state quantities
for susceptible and pathogen-infected individuals, and 10% of the suscep-
tible population is exposed to the transmissible vaccine. The pathogens
highlighted in this figure include LASV and LCMV.

716 d for 95% reduction to be achieved (Fig. 2). The greater
resistance to the vaccine exhibited by LCMV is mostly due to
its increased infectious period which we have assumed is, on
average, lifelong. In contrast, the infectious period for LASV
has been estimated to be 22 d, on average (22, 23). These
results highlight that pathogens that generate acute, short-term
infections and have relatively low R0 are most readily controlled
using MCMV-vectored transmissible vaccines.

We further explored the uncertainty in our predictions for
the impact of an MCMV-vectored transmissible vaccine by
conducting simulated vaccination campaigns where the vaccine
parameters were drawn at random from the bivariate posterior
distribution (i.e., Fig. 1). Performing 100 simulated vaccine
releases for LASV and for LCMV revealed considerable
uncertainty in the timescale over which each pathogen can be
locally eliminated. Specifically, our results show that, when 10%
of the susceptible population is directly vaccinated, the time
required for LASV to be reduced by 95% ranges from 121 d
to 371 d post vaccine introduction, whereas the time required
for LCMV to be reduced by 95% ranges from 609 to 940 d post
vaccine introduction (Fig. 3). In cases where vaccine introduction
is more challenging, the time required to reduce the pathogen is
increased. For instance, if only 1% of the susceptible population
can be vaccinated, we find that the time to reduce LASV by 95%
ranges from 176 d to 762 d, and the time to reduce LCMV by
95% ranges from 652 d to 1,197 d (SI Appendix, Fig. S2).

Transmissible Vaccines Are Robust to Variation in Efficacy. The pre-
ceding results are predicated on the development of an MCMV-
vectored transmissible vaccine that blocks 100% of pathogen
transmission. In practice, however, vaccines for wild animal pop-
ulations will rarely block 100% of transmission, as demonstrated
by vaccination campaigns using oral rabies vaccine (24). To ac-
count for imperfect vaccine efficacy, we extended our basic model
to allow partial blocking of pathogen transmission (SI Appendix).
With the extended model, we explored how vaccine efficacy,
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Fig. 3. Temporal dynamics of (A) LASV and (B) LCMV reduction as a result of using an MCMV-vectored transmissible vaccine. Simulations are initialized at
the steady-state quantities for susceptible and pathogen infected individuals, with 10% of the susceptible population exposed to the transmissible vaccine.
For each pathogen, we randomly sampled βv and σ from the posterior distribution 100 times, and simulated our model forward in time for each set of
parameters. The gray region represents the range of values observed across the 100 replicate simulations, where the orange dashed line is the mean. The
gray vertical lines indicate the minimum, mean, and maximum time to 95% pathogen reduction (in A, min = 121 d, mean = 194 d, max = 371 d; in B,
min = 609 d, mean = 701 d, max = 940 d).

quantified as the reduction in pathogen transmission rate in
vaccinated animals (ρ), impacts a transmissible vaccine’s ability
to protect a reservoir population from pathogen invasion, and
also how it impacts the time required to effectively eliminate an
endemic pathogen.

We began our analysis by deriving the critical vaccine efficacy
that must be achieved for a transmissible vaccine to protect a
reservoir population from pathogen invasion. Specifically, results
derived in SI Appendix show that the efficacy of an MCMV-
vectored transmissible vaccine must exceed the critical value

ρcrit =
R0,v

R0,p

(
1− R0,p

1− R0,v

)
[1]

to prevent the spread of a pathogen, where R0,p and R0,v are
the basic reproductive numbers of the pathogen and vaccine,
respectively. Numerical analyses suggest this critical value also
represents the vaccine efficacy required for a transmissible vac-
cine to eliminate an endemic pathogen (SI Appendix, Fig. S1).
Without reintroduction of the vaccine, this result demonstrates
that transmissible vaccines with lower vaccine efficacy must be
more transmissible to control a pathogen.

Although vaccine efficacy plays an important role in determin-
ing the success or failure of pathogen control, it has only a mod-
est influence on the timescale over which pathogen elimination
occurs. Specifically, numerical simulations of MCMV-vectored
transmissible vaccines show that, if vaccine efficacy exceeds the
critical value for eliminating LASV and LCMV, the timescale
over which pathogen elimination occurs is relatively insensitive
to vaccine efficacy (Fig. 4).

Reservoir Population and Vector Strain May Matter. An additional
source of uncertainty in our predictions arises from our reliance
on data from MCMV introductions into naive, captive mouse
populations using a single genetic variant of MCMV. Although
the time series data from these experimental introductions is

invaluable for the opportunities it provides for robust parameter
estimation, these parameters may vary across wild mouse popula-
tions and MCMV strains used as vaccine vectors. To evaluate the
scope for local adaptation of vector strains to restrict the spatial
scale over which any specific vector strain can be used effectively
to construct a transmissible vaccine, we analyzed published data
describing the prevalence of two MCMV strains, as defined by the
genotype of ie1, a major immunodominant T cell epitope (25, 26),
within four populations of free-living wild mice (27). This analysis
rests on two important assumptions. First is that the prevalence of
these MCMV sequences represents their strain and population-
specific equilibrium. Second is that all strains are independent.
To the extent that these assumptions hold, we can use classical
epidemiological theory to predict the maximum R0 of a pathogen
that could be eliminated by a transmissible vaccine constructed
from each MCMV strain within each reservoir population (28).
Specifically, we know that the fraction of a population that must
be vaccinated to protect against a pathogen with basic reproduc-
tive number R0 is equal to

p = 1− 1

R0
. [2]

Rearranging Eq. 2 and substituting in the strain and location
specific values for MCMV prevalence for p allows us to calculate
the range of pathogen R0 that an MCMV-vectored transmissible
vaccine with perfect efficacy could protect against (Table 1). The
results of this simple analysis suggest the potential for consider-
able variation in the protective ability of transmissible vaccines
constructed from different MCMV strains and used in different
reservoir populations, with the pathogen R0 that can be sup-
pressed ranging from 1.17 to 11.72. We extended this simple
equilibrium analysis to the timescale of pathogen elimination
by combining our ABC estimate for σ (σ = 0.099 d−1) with
the prevalence of the MCMV variants within each of the four
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Fig. 4. Temporal dynamics of pathogen prevalence for (A) LASV and (B) LCMV for three levels of vaccine efficacy. Here, pathogen prevalence is defined
as the fraction of individuals that are actively infectious with the pathogen. Simulations are initialized at the steady-state quantities for susceptible and
pathogen-infected individuals, where 10% of the susceptible population is exposed to the transmissible vaccine.

free-living mouse populations to yield estimates for the transmis-
sion rate of each MCMV strain within each reservoir population.

Our results reveal potentially important spatial variation in
the time required for a transmissible vaccine to reduce pathogen
prevalence by 95%. For example, the prevalence of a pathogen
with an R0 = 2 is reduced by 95% in only three of the four loca-
tions when using the parameter estimates from our equilibrium
analysis of strain prevalence (Fig. 5). Even in the three locations
where a 95% reduction is achieved, the time it takes to reach this
objective differs by thousands of days between the three locations
and the two MCMV strains defined by their ie1 genotype.

Discussion
We have developed a parameterized model predicting how
much, and how rapidly, a betaherpesvirus-vectored transmissible
vaccine can be expected to reduce the prevalence of a target
pathogen. Our results demonstrate that the most vulnerable
pathogens are those with relatively short infectious periods and
a modest R0. Pathogens that maintain a greater R0, or that
generate long-term chronic infections, take longer to eliminate

or, in some extreme cases, may be impervious to betaherpesvirus-
vectored transmissible vaccines altogether. Further, our results
demonstrate that MCMV-vectored transmissible vaccines
remain effective against a broad range of pathogens even when
they provide less than perfect blocking of pathogen transmission.
Perhaps most importantly, however, our results suggest that
the effectiveness of MCMV-vectored transmissible vaccines
may depend on the virus strain used to construct the vaccine
and the target population into which the vaccine is ultimately
deployed. If this prediction is borne out, it complicates the
design of transmissible vaccines, and suggests it may be difficult
to develop “universal” transmissible vaccines that transmit well
across geographically distinct reservoir populations.

Although our results support betaherpesvirus-vectored trans-
missible vaccines as effective tools, these results are tempered by
several important assumptions. First, and of critical importance,
is our assumption that MCMV is capable of superinfection.
This assumption is supported by studies showing that betaher-
pesviruses like MCMV can superinfect animals already infected
with MCMV (27, 29). At the same time, however, other studies

Table 1. Parameter estimates

Maximum pathogen control
Location Strain (R0) Method Data source

Outdoor enclosure N1 11.72 ABC (18)
Boullanger Island G4 1.29 Steady state (27)
Macquarie Island G4 11.35 Steady state (27)
Canberra G4 1.75 Steady state (27)
Walpeup G4 1.69 Steady state (27)
Boullanger Island K181 7.83 Steady state (27)
Macquarie Island K181 1.17 Steady state (27)
Canberra K181 2.60 Steady state (27)
Walpeup K181 1.62 Steady state (27)

MCMV parameter estimates were found using a combination of ABC and steady-state methods. Because the N1 strain was not found in any of the natural
populations that were sampled across Australia, the only N1 sample comes from the enclosure study. Further, to account for possible sampling error during
the capture of rodents, we calculated the Clopper–Pearson 95% CI on MCMV sampling data. To be conservative in our parameter estimates, we used the
minimum βv value calculated from the 95% CI to estimate R0.
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Fig. 5. Time to 95% pathogen reduction when parameters are estimated from equilibrium analyses of strain prevalence. Simulations start at the steady-
state quantities for susceptible and pathogen-infected individuals (SI Appendix), where 10% of the susceptible population is exposed to the transmissible
vaccine. R0,p > R0,v represents the scenario when the vaccine fails to reduce the pathogen.

have suggested superinfection is much more challenging (30–32)
and may be achievable only by genetically differentiated MCMV
strains. If superinfection requires genetic divergence, transmis-
sible vaccines constructed from locally common betaherpesvirus
strains or constructed in a way that results in the rapid loss of their
immunogenic cargo are unlikely to succeed (15, 16, 33). Second,
our inferences drawn from wild populations assume the geo-
graphic distribution of MCMV prevalence represents an equi-
librium state and that differences in equilibrium prevalence thus
reflect location specific transmission rates. There are, of course,
many reasons this may not be true, including the possibility that
geographic variation in MCMV prevalence is shaped by seasonal
fluctuations in the population size of the target reservoir (34).
Third, we have assumed betaherpesvirus-vectored transmissible
vaccines will transmit to the same degree as the wild-type virus
vector. This may not be the case, as genetically engineering the
vector virus to carry an immunogenic transgene may alter the
transmissibility of the self-disseminating vaccine (35).

A clear but unavoidable limitation of our work is our reliance
on data from Australian populations of Mus musculus (18, 27).
We focused on these populations due to the availability of unique
experimental and field datasets that do not yet exist for other
betaherpesviruses and reservoir populations. The limitation, of
course, is that our results may not generalize well to other
geographic regions or rodent reservoir populations of greater
concern for viral spillover. In addition, we have defined a strain
based on a 126–base pair sequence of the ie1 gene (27). And,
while this is a dominant T cell epitope, there are other genes
within MCMV that could be expected to modulate geographical
penetrations. Unfortunately, data on the prevalence of beta-
herpesviruses within natural populations of important reservoir

species are extremely scarce (29), and experiments tracking the
spread of betaherpesviruses through important reservoir popu-
lations are absent altogether. Until these data become available,
our results represent the most robust possible assessment of
the future utility of betaherpesviruses for transmissible vaccine
design.

Recombinant vector transmissible vaccines show promise for
revolutionizing how we mitigate the risk of zoonotic disease.
Our results support the pursuit of betaherpesviruses, such as
MCMV, as vaccine vectors but also highlight critical assump-
tions about the dynamics of reinfection on which this optimistic
outlook rests. Conclusive judgment on the utility of betaher-
pesviruses as transmissible vaccine vectors will require more
extensive study of the interactions between vector strain diversity
and superinfection in the wild. Combining this information with
the predictive framework developed here will help ensure that
the first recombinant vector transmissible vaccines realize their
promise.

Materials and Methods
Epidemiological Model of MCMV. To evaluate the effectiveness of an MCMV-
vectored transmissible vaccine, we rely on an SEI model as defined in the
following sentence, similar to that previously described by Arthur et al. (36).
In the model, individuals can belong to one of three classes: susceptible to
the vaccine (S), exposed to the MCMV-vectored transmissible vaccine via
rodent transmission (E), and actively infectious with the MCMV-vectored
transmissible vaccine (I). We do not model a recovered or immune class,
because infection with MCMV is thought to be lifelong (11, 37). Throughout,
we assume that the total population size, denoted N, is constant. Individuals
are introduced into the susceptible class through a constant birth rate
denoted b and die at a constant per capita rate d. Further, individuals
transition from the susceptible class to the vaccine-exposed class based on
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frequency-dependent transmission with transmission coefficient βv , and
transition from being exposed to actively infectious at rate σ. The deter-
ministic model is as follows:

dS

dt
= b −

βvSI

N
− dS [3]

dE

dt
=

βvSI

N
− σE − dE [4]

dI

dt
= σE − dI. [5]

MCMV Model Parameterization Using Time Series Data. To parameterize the
model of MCMV spread, we rely on a detailed time course study conducted
by Farroway et al. (18) that was later presented in Arthur et al. (36).
Together, these studies detail the time course and spread of MCMV in
seminatural enclosures of naive house mice (M. musculus). The studies
detail the transmission of MCMV within six outdoor enclosures at four time
points (days 35, 49, 63, and 84). Each enclosure consisted of 22 individuals,
where 6 individuals were initially inoculated with MCMV via intraperitoneal
injection, and 16 individuals remained initially susceptible.

We used ABC to parameterize a stochastic version of our epidemiological
model Eqs. 3–5 (SI Appendix) with the time series data. Because the initial
founder population size remained relatively constant across the 12-wk study
period, the birth rate and death rate were set to zero. Mechanistically, ABC
estimates a posterior distribution for the remaining parameters βv and σ

by 1) drawing parameters at random from prior distributions informed by
previous studies, 2) using the sampled parameters to simulate the model
forward in time, and 3) including the sampled parameters in the posterior
distribution if the simulated data are sufficiently close to the real data
(38, 39). Repeating steps 1 through 3 a sufficient number of times and
for an appropriate acceptance threshold results in a posterior probability
distribution for the model’s parameters. To determine whether a simulation
was sufficiently close to the real data, we calculated the total sum of squared
residuals for the predicted prevalence of MCMV for a given time point
across all enclosures. We then averaged this value across all time points,
and compared the result to the critical threshold (0.10). We repeated steps
1 through 3 until the posterior distribution contained 25,000 parameter sets
defining a multivariate probability distribution for the transmission rate
(βv ) and the rate of becoming infectious with MCMV (σ). We used the
mode of the multivariate distribution as the estimate for these parameters
(βv = 0.033 per individual per d, σ = 0.099 d−1).

Model Parameterization Using MCMV Prevalence and Steady-State Assump-
tions. Although the time series dataset is ideal for developing parameter es-
timates, its generality may be limited by focusing on only a single geographic
location and strain of MCMV. To generalize our parameter estimates to
other locations, we used published estimates of MCMV prevalence from four
Australian locations and two MCMV strains defined by their ie1 genotype
(27). A total of 117 M. musculus were live trapped, and qPCR was utilized to
identify the presence of the two MCMV strains. For our modeling purposes,
we assume that all individuals positively identified by qPCR are in the
infectious or exposed classes (I, E) and that only qPCR negative individuals
are in the susceptible class (S). Further, we refer to the fraction of individuals
that tested positive for a particular MCMV strain as pi , where i is the
genotype of ie1 (i.e., K181, G4). To account for possible sampling error
when testing M. musculus, we calculate the Clopper–Pearson 95% CI (40)
for the prevalence of MCMV at each geographic location and use the lower
bound.

We use the prevalence data from Gorman et al. (27) to estimate a
transmission rate for each geographic location and MCMV strain. We start
by solving for the steady-state solution of Eqs. 3–5 when MCMV is endemic.

We then rewrite the susceptible steady-state expression in terms of the
fraction of susceptible individuals, and solve the resulting expression for the
transmission rate, βv . The result is as follows:

βv =
d(d + σ)

(1 − pi)σ
. [6]

Obtaining a numerical value for βv requires knowledge of σ and d. We
use the σ value derived in the ABC fitting process, and we choose d =

0.00274 d−1 to describe an average lifespan of 365 d, typical of free-living
M. musculus (41).

Predicting Time to 95% Pathogen Reduction. To explore a transmissible vac-
cine’s ability to reduce pathogen prevalence in a host population, we extend
the model of MCMV spread to include a target pathogen. In the extended
model, P is a state variable that describes the number of hosts that are
infected with the pathogen. Individuals that have been infected by the
pathogen transmit at a frequency-dependent rate βp. Further, individuals
recover from the pathogen at rate δ, and remain in the recovered class (R)
for the remainder of their lives. The full model is as follows:

dS

dt
= b −

βvSI

N
−

βpSP

N
− dS [7]

dE

dt
=

βvSI

N
− σE − dE [8]

dI

dt
= σE − dI [9]

dP

dt
=

βpSP

N
− δP − dP [10]

dR

dt
= δP − dR. [11]

To calculate the time to 95% pathogen reduction, we simulate the
model forward in time, starting at the pathogen endemic steady state
(SI Appendix) with the following parameter values: d = 0.00274 d−1 and
b = 1.37 d−1. We chose the value of d to reflect the typical lifespan
of individuals in the Mus genus (41) and chose b to reflect a constant
population size of 500 individuals. Each simulation was initialized with a
number of exposed individuals set to 10% of the susceptible population.
Model simulations were carried out until the number of pathogen-infected
individuals is equal to 5% of the starting value.

Estimating Epidemiological Parameters for LASV and LCMV. We estimated
epidemiological parameters for LASV and LCMV using published serological
data and duration of infection estimates from previous studies (22, 23). Simi-
lar to the methods used in Model Parameterization Using MCMV Prevalence
and Steady-State Assumptions, we find the steady-state solutions to our
general pathogen model, and identify the solution where the pathogen
is endemic. We then solve this quantity for the fraction of individuals that
are susceptible, and input our LASV and LCMV seroprevalence data to get
estimates for the transmission rate within each population. The solution is

βp =
(d + δ)

(1 − p)
, [12]

where p is the prevalence for the given pathogen, d = 0.00274 d−1, and δ is
assigned a value based on LASV and LCMV literature [LASV: 1/δ = 22 d (22),
LCMV: 1/δ = 365 d (23)].

Data Availability. Previously published data were used for this
work: refs. 18, 27, and 36. Code can be accessed via GitHub
(https://github.com/tvarrelman/betaherpesvirus_vectored_trans_vax).
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