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The neglected role of relative humidity in the
interannual variability of urban malaria in Indian
cities
M. Santos-Vega1,2, P. P. Martinez 3, K. G. Vaishnav4, V. Kohli5, V. Desai6, M. J. Bouma7 & M. Pascual 1✉

The rapid pace of urbanization makes it imperative that we better understand the influence of

climate forcing on urban malaria transmission. Despite extensive study of temperature

effects in vector-borne infections in general, consideration of relative humidity remains

limited. With process-based dynamical models informed by almost two decades of monthly

surveillance data, we address the role of relative humidity in the interannual variability of

epidemic malaria in two semi-arid cities of India. We show a strong and significant effect

of humidity during the pre-transmission season on malaria burden in coastal Surat and

more arid inland Ahmedabad. Simulations of the climate-driven transmission model with the

MLE (Maximum Likelihood Estimates) of the parameters retrospectively capture the

observed variability of disease incidence, and also prospectively predict that of ‘out-of-fit’

cases in more recent years, with high accuracy. Our findings indicate that relative humidity is

a critical factor in the spread of urban malaria and potentially other vector-borne epidemics,

and that climate change and lack of hydrological planning in cities might jeopardize malaria

elimination efforts.
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Many climate-sensitive infectious diseases exhibit sig-
nificant interannual variability in the size of seasonal
epidemics1,2. Identification of climatic factors shaping

both interannual and seasonal variability is fundamental to
understanding the transmission dynamics of vector-borne infec-
tions such as malaria and dengue. It also provides a basis to
formulate early warning systems for these diseases and to
examine their responses to both climate variability and climate
change3,4. Despite extensive study of vector-borne infections and
climate variability, the role of humidity remains neglected in
comparison to that of other local climate drivers such as tem-
perature and rainfall, and of global ones such as the El Niño
Southern Oscillation. Early entomological studies on the effects of
humidity on vectors5–7 suggest the importance of this variable.

Cities of South Asia from Thailand to the Arabian Peninsula,
and throughout the Indian subcontinent, harbor the mosquito
Anopheles stephensi, a truly urban vector that thrives in the built
human environment. This mosquito relies on various artificial
containers within homes and on water that collects in construc-
tion sites for breeding sites for its larvae7,8. Its existence exacer-
bates the malaria control problem because cities can act as
important reservoirs for transmission in surrounding rural areas,
with urbanization promoting the persistence of the disease
regionally and opposing current elimination plans by 2030 in
India9,10. A better understanding of climate factors driving the
population dynamics of urban malaria via An. stephensi is also
imperative given the reports of the expansion of this vector across
the Arabian Peninsula into the Horn of Africa11–13. Further
expansion into this continent would expose to malaria large urban
populations who are currently protected by the unsuitability of
polluted waters for the larvae of dominant African vectors.
Understanding population effects of humidity should also be of
relevance more generally to other vector-transmitted diseases that
are emerging today in urban settings, such as those caused by
arboviruses including dengue, Zika, and chikungunya14.

The seasonal and relatively low transmission rates of urban
malaria typically generate epidemic behavior and substantial
interannual variation. The presence of an urban vector that does
not rely directly on rainfall for recruitment15 raises the question
of whether climate variability matters to the interannual variation
of the disease in cities, where rainfall-driven models for rural
areas9,16 no longer apply. On the basis of experimental results
with other Anopheles, the population dynamics of An. stephensi
should be affected by changes in both temperature and
humidity15,17–19, although dynamical effects on incidence remain
untested especially for humidity but also for the temperature at
the high end of the spectrum, both of particular relevance under
global warming17 and altered regional hydrology20.

Experiments have shown that temperatures in the approximate
range of 21–32 °C and relative humidity (RH) of at least 60% are the
most conducive conditions for the maintenance of transmission19,20.
Mosquito vectors need to live at least 8 days in order to allow for the
development of the parasite and therefore, the transmission of the
disease, and higher humidity can increase both their survival and
activity rates17,19–21. When the average monthly RH is below 60%,
the lifespan of the mosquito should be too short for effective malaria
transmission22,23. In regions of unstable malaria, transmission is
most sensitive to changes in the vector’s lifespan17,24. This sensitivity
is particularly relevant for An. stephensi, with a relatively short
lifespan25,26, and points to humidity as a potential critical parameter
for this urban vector (in the more arid range of its niche). Despite
these observations, most mathematical models of malaria transmis-
sion rely exclusively on studies of the temperature dependence of
fundamental demographic parameters for Anopheles gambiae (and
for the development of Plasmodium falciparum within this vector),
including rates of parasite sporogony, vector survival, and biting25–28.

Here, we take advantage of extensive surveillance records for
two cities in semi-arid Northwest India, Surat and Ahmedabad, to
address the role of humidity and to contrast it with that of other
climate drivers, temperature, and rainfall, with a combination of
mathematical models and statistical inference methods for time
series data.

Results
Coherence of temporal scales and climate–malaria association.
We begin by characterizing the temporal scales present in the
interannual variability of malaria in relation to those of humidity
(Supplementary Fig. 1). Figure 1A–C shows significant wavelet
coherence between malaria cases and RH at periods of about 2 and
4 years, with these scales respectively predominant in Surat and
Ahmedabad. Changes in malaria cases and humidity appear
coherent over intervals of time, in a fairly continuous fashion
for Surat and mostly after mid-2000 for Ahmedabad. In addition,
average RH in a selected critical window preceding the transmission
season and chosen on the basis of lagged correlations (Supple-
mentary Fig. 2), is significantly correlated to total cases during the
malaria season (Aug–Nov), with a correlation coefficient of 0.72
for Ahmedabad (p= 0.0002) and 0.69 for Surat (p= 0.004)
(Fig. 1B–D). Cross-coherence appears weaker when considering
rainfall or temperature, with smaller significant areas identified in
the corresponding spectra (Supplementary Figs. 3 and 4). Similar
interannual frequencies are identified for temperature, with more
variation for rainfall. Although some similarity is expected given the
physical connection of the three variables, the correlations for total
malaria cases during the transmission season are stronger for
humidity than for the other two climate factors (compare Fig. 1 to
Supplementary Figs. 3 and 4).

Climate-driven epidemiological model. With a stochastic
malaria transmission model (Supplementary Fig. 5), we ask next
whether variation in RH is important to the interannual varia-
bility of urban malaria cases. Table 1 shows the comparisons
between the different models, namely a null model with no cli-
mate covariate and those with a respective interannual effect of
RH, temperature, and rainfall on malaria transmission. Based on
a likelihood ratio test, the model incorporating RH as a covariate
performs significantly better than the alternative models, with
either temperature or rainfall (p < 0.001 Table 1).

Numerical simulations of the best model including RH capture
the observed variation in the size of seasonal outbreaks for both
cities (Fig. 2). In particular, the pattern of large outbreaks followed
by smaller ones is well captured (Fig. 2C, D), as well as the main
seasonal pattern of the reported cases (Fig. 2A, B). Interestingly,
Surat experienced large epidemics in 2001 and 2006, coincident with
extremes in RH and flooding events within the city (Supplementary
Fig. 6). Numerical simulations of the best model for each of the
different climate covariates and the one with no covariate show that
the model with RH as a driver outperforms all others on the basis of
several comparisons (Supplementary Figs. 7–10). The similarity in
the temporal patterns of observed and mean predicted cases for the
RH-driven model is particularly striking given that the simulations
do not represent next-month predictions, but those of the complete
temporal trajectories for almost two decades starting from estimated
initial conditions in 1997.

Comparison between the model predictions and observed cases
shows that the interannual variability is significantly better
captured by the humidity model (Supplementary Figs. 7 and 8).
Not surprisingly most models are capable of capturing the
seasonal pattern of the cases, given the flexibility of the
b-splines (Methods). In addition to the humidity model, only
the temperature one appears to capture the observations in its
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uncertainty interval (Supplementary Figs. 7 and 8) but it does so
with a considerably wider interval. The scatter plots of
accumulated cases for predictions and observations during the
transmission season provide another means to compare the
models and establish the better performance of the humidity
model (Supplementary Fig. 9). For Surat, this superiority is
further confirmed for all years individually with the continuously
ranked probability score (CRPS, Supplementary Fig. 9) used to
evaluate stochastic predictions29. For Ahmedabad, this yearly
evaluation shows again the better performance of RH except for
two-time intervals (2004–2007 and 2010–2012) when all models
exhibit a weaker performance.

Moreover, the model reveals a clear difference in the force of
infection (the instantaneous infection rate per susceptible

individual) between the cities, with larger values in Surat,
typically more humid than Ahmedabad (Fig. 3A, B). Dryer
Ahmedabad exhibits a lower transmission rate during the
monsoon season and a more pronounced response to RH. This
contrast between the cities indicates that a higher intensity of
transmission in more humid environments is accompanied by
higher variance than under hotter temperatures and lower
humidity (Fig. 3C, D). The differential effect of humidity is also
evident in the higher values of the humidity coefficient (bRH) for
Ahmedabad (Supplementary Fig. 11). The model was fitted to
periodic functions of time to incorporate the seasonality through
six splines Sk (Supplementary Figure 12) and their respective
estimated coefficients are shown in Supplementary Table 1.
Results of a permutation test show that only 37 of 10,000 random

Fig. 1 Temporal association of malaria cases and relative humidity. A–C The cross-coherence wavelet spectrum between humidity and monthly malaria
cases in Ahmedabad (A) and Surat (C). Cross-coherence varies between 0 and 1 in a color scale from blue to red with the lines indicating 5% significance
levels. Only regions within these lines exhibit significant cross-coherence at those levels. The shaded region corresponds to periods and times that are
affected by the boundaries and are outside the so-called cone of significance. (The RH time series have been previously filtered with a low-pass filter to
remove seasonality and therefore periods below 1 year, and to therefore focus on interannual variability, Fig. S16). B–D The total cases during the
transmission season from August to November are shown as a function of average RH in a critical window preceding this season from May to July for
Ahmedabad (B) and March to July for Surat (D). (The corresponding Pearson correlation values are R= 0.72 and 0.69).

Table 1 Model comparison for both cities, where SE represents the standard error, and LRT is the result of a Likelihood ratio test
to compare the likelihood of the model with the climate covariate to that of the null model.

Model Log likelihood SE # Parameters Delta AIC LRT

Surat
Humidity −1166.9011 0.1254 25 – <0.001
Temperature −1176.228 0.2174 25 −18.6539
Rainfall −1179.01 0.18731377 25 −24.2178
No climate −1181.6492 0.1885 24 −27.4962
Ahmedabad
Humidity −1111.3123 0.3664 25 – <0.001
Temperature −1120.934 0.321 25 −19.2434
Rainfall −1118.2063 0.70693416 25 −13.788
No climate −1123.9829 0.2657 24 −23.3411
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samples (P= 2.1 × 10−4) resulted in stronger correlations than
the actual simulation. This shows that the strong correlation
between malaria transmission and humidity is unlikely to be
confounding by season.

The maximum likelihood estimates of the parameters are
shown in Table 2 (and their profiles in Supplementary Fig. 13). A
parameter of special interest is the average dynamical delay
between the latent and current force of infection caused by vector
transmission. The model represents the effect of the vector
phenomenologically by implementing such a delay between the
force of infection corresponding to the number of current
infections in humans, and that realized sometime later because
transmission occurs via a vector. Parameter τ implicitly considers
the extrinsic incubation period (or developmental time) of the
parasite within the mosquito. Estimates of approximately 9 and
16 days were obtained for Ahmedabad and Surat respectively in
the models with RH (Table 2). These values are consistent with
empirical values of the parasite’s developmental time within the

vector given the observed temperatures of these regions10,11.
Given the association between temperature and RH, we expect
that the lower RH of Ahmedabad reflects higher temperatures
which lead to faster parasite development according to the
Detinova curve27.

Seasonal malaria prediction based on the humidity-driven
model. Given the ability of our best model to capture interannual
variability, we addressed the predictability of malaria cases as a
function of RH in the preceding monsoon season by placing
ourselves in the position one would have been if truly forecasting
future incidence for “out-of-fit” years. To this end, forecasts were
generated for the period between 2009 and 2014 with the model
fitted again, now on the basis of the shorter “training” period up
to 2009. Predictions for the period 2009–2014 were generated one
year at a time, starting with estimated states of the system for each
January (Methods). That is, the initial states of the epidemiolo-
gical variables for each January were updated each year together
with the estimates of the parameters, as data for the additional
twelve months is now in the past and can be assimilated in the
application of the particle filter (Methods). Because the estimates
of the parameters are close for this shorter data set and for the
whole time series (compare Table 2 and Supplementary Table 3),
we can expect accurate predictions, comparable to some degree to
those seen in the simulations of Fig. 2. Because the model
incorporates process noise, we generated both the median value
of malaria cases and the 10–90% quantiles from 1000 predictions
for each month. Median predictions are close to observations and
reported cases for the most part fall within the uncertainty
interval (Fig. 4). We note the added uncertainty arising from
estimated initial conditions for the hidden variables of the model
(namely all the state variables). Figure 4 implements prediction in
the exact conditions one would encounter when adding one year
of additional cases at a time. Starting on the basis of a time series
that spans about two lengths of the characteristic multiannual
variation, we are able to predict the course of the next multi-
annual cycle one season at a time.

Discussion
Our results reveal a clear role of humidity in the interannual
cycles of epidemic malaria in semiarid cities of India. Con-
sideration of RH appears essential to explain the size of seasonal
outbreaks in these urban environments, and to explain differences
in overall transmission intensity between them. Although these
findings are generally consistent with early experimental
entomology7,17–20,22,24,25,30 they also emphasize the need to
revitalize these studies in ways similar to current laboratory
efforts for temperature in a variety of mosquito vectors. At
interannual time scales, we have shown the feasibility of accurate
forecasts of malaria epidemics based on climate variability. Our
approach to statistical inference naturally allows for the con-
tinuous assimilation of new data, an imperative requirement for
forecasting efforts given the non-stationary behavior of malaria
incidence. Besides its application to a climate-based early warning
system, our model can provide a baseline for evaluating public
health efforts in the context of climate variability.

A significant effect of humidity on vector ecology is expected to
apply to other vectors and associated diseases since all insects
have a limited range of tolerable humidity. Given their high
surface area to volume ratio, mosquitoes are especially sensitive to
desiccation at low humidity levels31–33. Likewise, studies have
shown that extremely low levels of RH are fatal to mosquitoes,
ultimately determining mosquito abundance in arid regions34.
Here, we have shown that these demographic and physiological
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Fig. 2 Comparison of observed and simulated monthly cases with the
best model for both cities. Time series and seasonality for the observed
cases (black) and the mean of 1000 model simulations (purple) for the two
cities. The intervals between the 10% and 90% percentiles of the simulated
data are shaded in light purple. Seasonality is shown in (A) for Ahmedabad
and in (B) for Surat; the monthly time series are shown in (C) for
Ahmedabad and in (D) for Surat. The simulated cases are not next step
predictions but the predicted values from forwarding simulations of the
model for the whole 20 years’ study period starting with estimated initial
conditions. The estimation framework considers both types of noise:
process noise to account for “environmental” stochasticity in the
transmission process and observational noise as encoded in a
measurement model.
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effects have a clear and dominant signature in the population
dynamics of a vector-borne infection in urban landscapes.

Our comparison of different models shows that humidity is a
more important driver of urban malaria dynamics than the tem-
perature in these cities. The higher explanatory power of humidity
compared to temperature is consistent with previous statistical
results on the spatio-temporal variability of the disease22,30,34,
showing that RH acts as a global, spatially- homogeneous covariate
whereas temperature acts more locally within Ahmedabad. Tem-
perature is in fact known to exhibit large spatial variation within
cities due to pronounced heterogeneity of impervious surfaces,

whose differing radiative, thermal, aerodynamic, and moisture
properties generate areas of elevated heat35–37. In addition, in our
model, humidity exhibits a positive effect on transmission, opposite
to the negative effect of the high temperatures, beyond optimal
conditions in these locations. (This temperature effect differs from
the more typical positive one considered in the literature for values
near and below optimal17,21,24).

Rainfall, humidity, and temperature are nevertheless closely
related parameters. Humidity is to a large extent driven by rainfall
so pre-monsoon rainfall should also be a predictive malaria
parameter. The complex temporal fluctuations of precipitation
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Fig. 3 Estimated transmission rate and force of infection in the two cities. Monthly average force of infection and transmission rate from one
representative simulation for the period 1997–2014 in Ahmedabad (red, A, C, D) and in Surat (green, B, C, D). The respective box plots of the force of
infection by month per city are shown in (A) and (B) (computed for n= 1000 simulations and with the standard illustration of the minimum, 25th
percentile, median, 75th percentile, and maximum). The force of infection equals the transmission rate (β) times the number of infected individuals and
therefore measures the per capita rate at which susceptible (non-immune) individuals become infected. C The corresponding monthly transmission rate for
each year for Ahmedabad (in red) and Surat (in green), which includes in the model the effect of humidity. D The corresponding variance in the force of
infection is calculated within each year.

Table 2 Parameter estimates and confidence intervals for both cities. (The average human lifespan was fixed at 50 years).

Description Unit parameter Ahmedabad CI Surat CI

Meantime from exposure to infected Days 1=μEI1 24 [21–27] 28 [24–33]

Mean recovery time Days 1=μEI1 32 [29–37] 38 [32–43]

Meantime of immunity loss Days 1=μI1S2 48.36 [46.32–52.25] 38.26 [36.53–40.21]

Recovery from asymptomatic infection Days 1=μI2S2 22.7 [20.66–24.23] 18.62 [15.36–22.46]

Case reporting fraction Days ρ 0.014 [0.09–0.017] 0.015 [0.012–0.019]
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did not exhibit a clear association with seasonal cases. Higher
temperatures in the pre-monsoon season (also related to lower
rainfall) should depress RH as it takes more moisture to saturate
warmer air, and in doing so, should therefore be inversely related
to malaria. In the cities studied, humid sea winds precede the
actual monsoon rains by a few months, providing a rainfall-
independent modulation of seasonal humidity in the region.
Despite the interrelation between these parameters, the super-
iority of RH to predict malaria strengthens our view that this
climate factor is the critical driver aiding the survival and
population surge of An. stephensi.

Our model does not represent the vector dynamics explicitly
but instead implements the effect of the vector as a distributed lag
on transmission. Experimental work is needed to develop and
parameterize a more mechanistic understanding of specific effects
of humidity on both vector and parasite, including potentially
complex and nonlinear interactions with temperature since sev-
eral life-history and transmission-related parameters are involved.
The resulting extensions of our model incorporating vector
dynamics explicitly could be built on the basis of such experi-
ments. These could address whether long-lived mosquitoes whose
survival late in the season depends on RH, mediate the effect of
this climate factor on the intensity of transmission. These models
may also apply more generally across cities, or across districts
within a city, although specific parameters such as the vectors’
carrying capacity typically require calibration specific to a given
location. The degree of shared parameters can be investigated in
future work with a transmission model that considers parallel
time series of reported cases at a higher spatial resolution within
the cities.

An understanding of the relationship between humidity and
urban malaria transmission is also key for anticipating the effect
of climate trends on the incidence and spatial distribution of the

disease, including its potential further expansion into Africa. For
the Indian subcontinent, the presence of An. stephensi, a vector
that does not rely directly on rainfall for larval recruitment7,
highlights the relevance of humidity as a driver of transmission
within cities. Importantly, changes in surface humidity are asso-
ciated with anthropogenic warming, which is expected to increase
under future climate projections38. In particular, Northwest India
is expected to experience a rise in humidity39,40 as well as an
increased frequency of precipitation extremes in the mid and end
of the 21st century41. Under this scenario, the relationship
between humidity and malaria transmission in urban environ-
ments would inform control efforts as part of the malaria elim-
ination target of 2030. Expanding urbanization, with cities acting
as a reservoir for the persistence of the disease beyond their
administrative limits, could prevent elimination despite con-
siderable gains in the fight against rural transmission.

Methods
Data description. In Indian cities, cases of falciparum malaria rise after the
monsoon rains and peak in October–November. To address the question of
whether humidity influences the seasonality and inter-annual variability of urban
malaria we focus on 2 cities, Ahmedabad and Surat, with over 3 million people in
the semi-arid state of Gujarat, India. These cities exhibit a rising population where
sustained, extensive, and consistent surveillance programs have been conducted for
over two decades. Despite their close proximity, these cities also exhibit distinct
environments. While Ahmedabad is semi-arid, Surat is coastal with a maritime
influence on its climate and is prone to flooding from the Tapi river.

The malaria data consists of monthly cases collected from 1997 to 2014 by the
respective Municipal Corporations of the cities of Ahmedabad and Surat (Fig. 1A,
B). The epidemiological data result from two kinds of surveillance: (a) the
collection of blood slides from fever patients by house-to-house visits by a health
worker and examination of these slides for positive malaria parasites at the
Primary/Community Health Center (active surveillance); (b) examination of blood
slides from fever patients reporting directly to the Primary/Community Health
Center (passive surveillance). Both types of data are pooled into a temporal record
for each city. We used climate data of monthly RH, rainfall, and temperature for
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Fig. 4 Malaria prediction. The median predicted cases from 1000 simulations are shown (in purple and green) for Ahmedabad (top) and Surat (bottom)
together with the observed cases (in black). Corresponding shaded purple or green intervals show the 10–90% quantiles of the predicted distribution of
cases for each month. Vertical dotted lines and corresponding background shading indicate two different kinds of model simulations and respective
predictions: (1) For the initial period (light background), the model is simulated from 1997 forward until 2009. Thus, the comparison to data here is not
based on the typical next-step (next-month) prediction (for which it can often be somewhat trivial to capture the fitted data), but on predictions that span
more than a decade starting from estimated initial conditions in 1997. (2) The latter period (gray background) shows predictions for “out-of-fit” years (not
used to fit the model), with simulations spanning the whole year and starting each January from the estimated state variables of the system. Predicted
median cases capture the interannual variability of the data, and observations fall within confidence intervals (for 76% of the months). The estimation
framework considers both types of noise: process noise to account for “environmental” stochasticity in the transmission process and observational noise as
encoded in a measurement model.
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the same 18 years recorded at a local weather station within each city, supplied by
the Indian Meteorological Department in Pune (India) and verified in the GHCN
network of climate data (https://www.ncdc.noaa.gov/ghcn-daily-description). Since
station data sometimes exhibit biases and can fail to represent the climate of the
whole area of interest, here the whole city, we used gridded climate products
(https://www.chc.ucsb.edu/data/chirps for precipitation and https://
modis.gsfc.nasa.gov/data/dataprod/mod11.php for temperature) and constructed
an average of grid cells to verify if climate covariates from the station data coincide
with the satellite-based products (Supplementary Fig. 14). Time series for total
population size were obtained through estimates by the respective municipal
corporation.

Data analyses. The temporal lagged correlation between monthly malaria cases
and monthly meteorological factors from 1997 to 2014 was explored first for the
two cities, by defining an interannual association based on maximum lagged
correlations between the mean of the cases in the peak months (Aug–Nov) and the
climate covariates. For humidity, we defined a three months window preceding the
case epidemic season. This period was determined to fall between April and July for
Surat and from May to July for Ahmedabad (Supplementary Table 2). The win-
dows defined for the other covariates are shown in Supplementary Fig. 2.

In addition, the temporal and possibly transient association of variability at
different periods between the times series for malaria and humidity was also
examined using wavelet coherence analysis3,42. In contrast to the Fourier spectral
approaches, wavelet analyses are well suited for the study of signals whose
frequency composition changes in time. The wavelet spectrum specifically provides
a time-frequency decomposition of the total variance that is local in time42. The
wavelet coherence analysis indicates the co-occurrence of a particular frequency at
a given time in the number of cases and in the climate covariate.

The wavelet cross-spectrum is given by Wx;yðf ; τÞ ¼ Wx;yðf ; τÞW�
x;yðf ; τÞ where

x and y represent the two-time series, f is the scale parameter and τ, the time
parameter, with * denoting the complex conjugate. As in the Fourier spectral
approaches, the wavelet coherence is defined as the cross-spectrum normalized by
the spectrum of each signal

Rx;yðf ; τÞ ¼
jhWx;yðf ; τÞij

jhWx;xðf ; τÞij1=2jhWy;yðf ; τÞij1=2
ð1Þ

where hi denotes a smoothing operator in both time and scale. Using this
definition, Rx;yðf ; τÞ is bounded by 0<Rx;yðf ; τÞ< 1. The smoothing is performed,
as in Fourier spectral approaches, by a convolution with a constant length window
function both in the time and frequency directions42. We have chosen to use a
procedure based on resampling the observed data with a Markov process scheme
that preserves only the short temporal correlations. Our aim is to test whether the
wavelet-based quantities (the coherence) observed at a particular position on the
time-scale plane are not due to a random process with the same Markov transitions
(time order) as the original time series42. In our wavelet coherence spectrum, the
white lines indicate the α= 5% significant level computed on the basis of 1000
bootstrapped series, and the shaded area, known as the cone of influence, indicates
the influence of edge effects.

Transmission model. With a stochastic transmission model (Supplementary
Fig. 5), we test the hypothesis that humidity is important in driving the temporal
dynamics of malaria. The model subdivides the total population P into two classes
of infectious and susceptible individuals respectively, to allow for heterogeneity in
the degree of clinical symptoms and protection conferred by the previous infection.
Specifically, the number of individuals in those classes is denoted by S1 for those
susceptible to infection, E, for those exposed to infection, I1, for those infected,
symptomatic and infectious, I2, for those that are infected but are asymptomatic
and still infectious, and S2, for those recovering from initial infection with partial
protection. In the equation for S1, the flow of newborns combined with the death
rate of each class results in population numbers equal to those observed for the
overall demographic growth of the city. The system of stochastic differential
equations is given by the following equations:

dS1=dt ¼ δP þ dP=dt
� �þ μS2S1S2 � μSEðtÞS1 � δS1; ð2Þ

dE=dt ¼ μSEðtÞS1 � μEI1E � δE; ð3Þ

dI1=dt ¼ μEI1E þ μI1S2 I1 � δI1; ð4Þ

dS2=dt ¼ μI1S2 I1 þ μI1S2 I2 � μS2S1S2 � μSEðtÞS2 � δS2; ð5Þ

dI2=dt ¼ μSEðtÞS2 þ μI2S2 I2 � δI2; ð6Þ
We rely on a model that represents vector dynamics implicitly by implementing

a Gamma-distributed time delay with mean in the force of infection (the rate of
transmission per susceptible individual)9,16,43. This distributed lag is meant to
account for the developmental delay of P. falciparum parasites within surviving
mosquitoes. For this purpose, we follow the phenomenological representation of
transmission via a mosquito vector introduced in refs. 16,43,44, which includes a

distributed delay in the transmission from infected to susceptible humans. That is,
the force of infection generated by the number of infections at any given time is not
experienced at that same time by susceptible individuals, as would be the case in a
directly transmitted disease. Under vector transmission, susceptible individuals
experience it with a delay, which we consider Gamma distributed, to avoid the
unrealistic assumption of a perfectly fixed delay, and to use a positive distribution
with a flexible shape and a well-defined mode.

Specifically, the development of the parasite within the mosquito introduces a
distributed delay in the “latent” force of infection λ (s) resulting in the realized rate
of infection of susceptible individuals

μSE tð Þ ¼
Z t

γðt � sÞλðsÞds; ð7Þ

where the delay probability function follows a gamma distribution. In this
expression, λ(s) corresponds to the “latent” force of infection

λðtÞ ¼ I1 þ I2
P tð Þ

� �
βðtÞ ð8Þ

where parameter β denotes the transmission rate. The transmission rate is specified
to include the effects of seasonality, (interannual) climate variability, and
environmental noise with the following expression

β tð Þ ¼ exp ∑6
k¼1bkSk þ bRHS4C

� � dΓ
dt

� 	
ð9Þ

where seasonality is represented nonparametrically as the sum of six terms with a
basis of periodic b-splines (t) (k= 1…, 6), and the coefficients (bk) are parameters
to be fitted determining the temporal (seasonal) shape. The b-splines are shown in
Supplementary Fig. 6. The first term in Eq. (9) (the exponential of the weighted
sum of these six splines) provides the basic, seasonal shape of the transmission rate
(Supplementary Fig. 12). We superimpose this seasonality variability in the
transmission rate across years through explicit consideration of a specific covariate
(temperature, rainfall or humidity, depending on the model). We explain first how
the covariate C is defined and second, how its effect is introduced in Eq. (9). C
represents respectively in the different models, the mean of monthly humidity, the
mean of monthly temperature, and the accumulated monthly rainfall, for a defined
temporal window. That is, the covariate is defined here to represent yearly effects in
a given window of time that is critical for the way a specific climate factor affects
transmission. This window was chosen as the one with the highest correlation to
the total cases aggregated for the epidemic season. We examined windows of all
possible sizes within the previous six months which precede the epidemic season,
as climate factors influence the abundance of the vector and the fraction of vectors
infected, and these effects on the vector are manifested in the human cases with a
delay. The resulting windows chosen to calculate C are shown in Supplementary
Fig. 4. The effect of the covariate on the transmission rate was then localized in
time in Eq. (9), by multiplying C to spline S4, which corresponds to the time of the
year preceding the epidemic season (and including the window during which C was
obtained) (Supplementary Fig. 6). Parameter bRH then quantifies the strength of the
climate effect by modulating the seasonal component of the transmission rate
corresponding to this time of the year. Finally, environmental noise is introduced
in the transmission rate with a Gamma distribution Γ to represent additional
fluctuations absent in the climate covariate (details are provided in ref. 46).

In practice and for ease of implementation (including parameter inference), we
transform the integral in Eq. (7) into a Markovian chain of differential equations
going from the equation for λ1 to that for λj (Eqs. 10–11) following

16,44:

dλ1=dt ¼ ðλ� k1Þkτ�1 ð10Þ

dλj=dt ¼ kj�1 � kj

 �

kτ�1 for j ¼ 2 ð11Þ

Parameter estimation. We estimated parameters with an iterated filtering
approach to maximize the likelihood for partially observed, nonlinear and sto-
chastic dynamical models. Specifically, the estimation of parameters and initial
conditions for all state variables was carried out with the iterated filtering algorithm
known as MIF, for maximum likelihood iterated filtering, implemented in the R
package “pomp” (partially observed Markov processes44–46. This “plug-and-play”
method45,47 is simulation-based, meaning that parameter search relies on a
large number of stochastic simulations from initial conditions to the end of the
time series.

For details on the method, see46 and for other applications to malaria and
climate forcing, see refs. 9,16,43,48. This algorithm allows for consideration of
both measurement and process noise, in addition to hidden variables, which are
a typical limitation of surveillance records providing a single observed variable
for the incidence. It consists of two loops, with the external loop essentially
iterating an internal, “filtering” loop, and in so doing generating a new,
improved estimate of the parameter values at each iteration. The filtering loop
implements a selection process for a large number of “particles” over time. For
each time step, a particle can be seen as a simulation characterized by its own set
of parameter values. Particles can survive or die as the result of a resampling
process, with probabilities determined by their likelihood given the data. From
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this selection process over the whole extent of the data, a new estimate of the
parameters is generated, and from this estimate, a cloud of new particles is
reinitialized using a given noise intensity adjusted by a cooling factor. The initial
search in parameter space was performed with a grid of 10,000 random
parameter combinations, and the output of this search was used as the initial
conditions of a more local search46,49.

The fitting algorithm provides an estimate of the likelihood itself. On the basis
of the likelihood, we can then implement model comparisons (i.e., model selection)
on the basis of the likelihood ratio test and DIC (Table 1). We further compared
the ability of the different models to explain the temporal patterns of the data with
different comparisons of the observed cases and the predicted ones via model
simulation. Namely, we simulated 1000 runs from the respective stochastic MLE
models from the estimated initial conditions. We obtained the median of monthly
cases from these simulations as well as the uncertainty as to the 10–90% quantiles
of the monthly cases. We considered visually whether this interval includes the
observation and how close the median simulated cases are to the observed cases.
We also considered whether the interannual cycles (in particular, their highs and
lows) in the data and the simulations are in phase. We further compared the
simulated predictions and observations by aggregating cases for the epidemic
season. In a scatter plot of predictions against observations, we can assess how close
the points fall to the diagonal, and whether the uncertainty of predictions contains
the diagonal (where predictions equal observations). We more formally
implemented this comparison with a criterion for evaluating stochastic predictions
known as the CRPS, which is a commonly used measure of performance for
probabilistic prediction of a scalar observation. It is a quadratic measure of the
difference between the prediction cumulative distribution function (CDF) and the
empirical CDF of the observation.

Permutation test. We used a permutation procedure to test whether the asso-
ciation between humidity and malaria transmission might be confounded by
season. In this procedure, we selected the humidity data for each of the 12-months
and randomized these humidity data across years, rerunning the analysis with the
randomized explanatory variables. Then, we correlated the predicted cases in a year
with the humidity in the random window selected. We conducted 10,000 per-
mutations, and sampling was done with replacement. For each permutation, we
then calculated how well the humidity correlated with the time series of malaria. If
the correlation between humidity and malaria incidence in the actual time series
was significantly stronger than the correlations we observed in the randomized
samples, we concluded that confounding by season was an unlikely explanation for
this correlation.

Out-of-fit prediction. To examine the ability of the process-based model to
predict malaria incidence, we compared the total number of malaria cases
observed for each city to those predicted by model simulations in a window of
time not used to estimate the parameters. That is, monthly cases from January
1997 to only December 2008 were used as a training set for parameter estima-
tion. We chose this length of the data set, to place ourselves in the position of
having about two characteristic multiannual cycles (of 4–5 years) of the reported
cases inform inference, while still leaving a sufficient number of seasons to test
prediction on at least one such full cycle. The resulting MLE model relies on
estimated state variables at the end of the training period as the initial conditions
for predicting the first “out-of-fit” year. The estimated initial states are then
obtained for January of each predicted year (between 2009 and 2014) by
extending sequential filtering and assimilating the new data for the past
12 months. That is, because the inference method provides filtered values of the
hidden variables, we can use these estimates and their distribution at a given
time as initial conditions from which to simulate the following year. Parameter
estimates are also continuously updated with the addition of one more year of
data. Predictions are obtained by simulating the model forward over the next
12 months. To consider the uncertainty arising from both dynamic and mea-
surement noise, the distribution of predicted observed cases is obtained for each
month from 1000 simulations with initial conditions resampled from their
estimated values. Departures between the yearly projections and the out-of-fit
data can be used to evaluate the impact of humidity variability on the predict-
ability of the upcoming season.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The monthly reported malaria cases and values of the different climate covariates can be
found in the data file accompanying the code at50 https://github.com/pascualgroup/
Humidity_malaria/.

Code availability
The code developed to fit the transmission model via iterated particle filtering (MIF) and
to produce predictions with this model, using the R-package Pomp, is available at50

https://github.com/pascualgroup/Humidity_malaria/.

Received: 12 December 2019; Accepted: 3 January 2022;

References
1. Pascual, M., Rodó, X., Ellner, S. P., Colwell, R. & Bouma, M. J. Cholera

dynamics and El Niño-Southern Oscillation. Science 289, 1766–1769 (2000).
2. Zhou, G., Minakawa, N., Githeko, A. K. & Yan, G. Association between

climate variability and malaria epidemics in the East African highlands. Proc.
Natl Acad. Sci. USA 101, 2375–2380 (2004).

3. Cazelles, B., Chavez, M., McMichael, A. J. & Hales, S. Nonstationary influence
of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med. 2,
e106 (2005).

4. Alonso, D., Bouma, M. J. & Pascual, M. Epidemic malaria and warmer
temperatures in recent decades in an East African highland. Proc. R. Soc. B
278, 1661–1669 (2011).

5. Li, T., Yang, Z. & Wang, M. Temperature, relative humidity and sunshine may
be the effective predictors for occurrence of malaria in Guangzhou, southern
China, 2006–2012. Parasites Vectors 6, 155 (2013).

6. Boyd, M. Epidemiology: Factors related to the Definitive Host. (Saunders
Company, Philadelphia & London) (1949).

7. Gill, C. The role of meteorology in Malaria. Indian J. Med. Res. 8, 341–342
(1921).

8. Thomas, S. et al. Resting and feeding preferences of Anopheles stephensi in an
urban setting, perennial for malaria. Malar. J. 16, 111 (2017).

9. Roy, M., Bouma, M. J., Ionides, E. L., Dhiman, R. C. & Pascual, M. The
potential elimination of Plasmodium vivax malaria by relapse treatment:
insights from a transmission model and surveillance data from NW India.
PLoS Negl. Trop. Dis. 7, e1979 (2013).

10. Waite, J. L. et al. Increasing the potential for malaria elimination by targeting
zoophilic vectors. Sci. Rep. 7, 40551 (2017).

11. Gayan Dharmasiri, A. G. et al. First record of Anopheles stephensi in Sri Lanka:
a potential challenge for prevention of malaria reintroduction. Malar. J. 16,
326 (2017).

12. Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five
years following first detection of Anopheles stephensi (Diptera: Culicidae) in
Djibouti, Horn of Africa: populations established—malaria emerging.
Parasitol Res. 118, 725–732 (2019).

13. Carter, T. E. et al. First detection of Anopheles stephensi Liston, 1901 (Diptera:
culicidae) in Ethiopia using molecular and morphological approaches. Acta
Trop. 188, 180–186 (2018).

14. Faulde, M. K., Rueda, L. M. & Khaireh, B. A. First record of the Asian malaria
vector Anopheles stephensi and its possible role in the resurgence of malaria in
Djibouti, Horn of Africa. Acta Trop. 139, 39–43 (2014).

15. Vasanthi, V. Field and Laboratory Studies on Selected Ecological and
Behavioral Aspects of Variants of An. stephensi Liston from South India.
(University of Madras, 1996).

16. Laneri, K. et al. Forcing versus feedback: epidemic malaria and monsoon rains
in Northwest India. PLoS Comput. Biol. 6, e1000898 (2010).

17. Murdock, C. C., Blanford, S., Luckhart, S. & Thomas, M. B. Ambient
temperature and dietary supplementation interact to shape mosquito vector
competence for malaria. J. Insect Physiol. 67, 37–44 (2014).

18. Metha, D. Studies on the longevity of some Indian anophelines. Part I.
Survival of Anopheles subpictus Grassi under controlled conditions of
temperature and humidity. Rev. App Ent. B 23, 261–272 (1934).

19. Mayne, B. A study of the influence of relative humidity on the life and
infectibility of the mosquito. Indian J. Med. Res. 17, 1119–1137 (1930).

20. M. N. Bayoh. Studies on the development and survival of Anopheles gambiae
sensu stricto at various temperatures and relative humidities. 1119–1137
(2001).

21. Mordecai, E. A. et al. Optimal temperature for malaria transmission is
dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).

22. The Principles of Insect Physiology. By V. B. Wigglesworth. Proc. R. Entomol.
Soc. Lond. A Gen. Entomol. 14, 100–100 (2009).

23. Basseri, H., Raeisi, A., Ranjbar Khakha, M., Pakarai, A. & Abdolghafar, H.
Seasonal abundance and host-feeding patterns of anopheline vectors in
malaria endemic area of Iran. J. Parasitol. Res. 2010, 1–8 (2010).

24. Cator, L. J. et al. Characterizing microclimate in urban malaria transmission
settings: a case study from Chennai, India. Malar. J. 12, 84 (2013).

25. Gaaboub, I. A., El-Sawaf, S. K. & El-Latif, M. A. Effect of different relative
humidities and temperatures on egg-production and longevity of adults of
anopheles (Myzomyia) pharoensis Theob.1. Z. Angew. Entomol. 67, 88–94
(2009).

26. Kessler, S. & Guerin, P. M. Responses of Anopheles gambiae, Anopheles
stephensi, Aedes aegypti, and Culex pipiens mosquitoes (Diptera: Culicidae) to
cool and humid refugium conditions. J. Vector Ecol. 33, 145–149 (2008).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28145-7

8 NATURE COMMUNICATIONS |          (2022) 13:533 | https://doi.org/10.1038/s41467-022-28145-7 | www.nature.com/naturecommunications

https://github.com/pascualgroup/Humidity_malaria/
https://github.com/pascualgroup/Humidity_malaria/
https://github.com/pascualgroup/Humidity_malaria/
www.nature.com/naturecommunications


27. Detinova, T. S. Age-grouping methods in Diptera of medical importance with
special reference to some vectors of malaria. Monogr. Ser. World Health
Organ. 47, 13–191 (1962).

28. Kiszewski, A. et al. A global index representing the stability of malaria
transmission. Am. J. Trop. Med. Hyg. 70, 486–498 (2004).

29. Onori, E. & Grab, B. Indicators for the forecasting of malaria epidemics. Bull.
World Health Organ. 58, 91–98 (1980).

30. Rowley, W. A. & Graham, C. L. The effect of temperature and relative
humidity on the flight performance of female Aedes aegypti. J. Insect Physiol.
14, 1251–1257 (1968).

31. Parham, P. E. & Michael, E. Modeling the effects of weather and climate
change on malaria transmission. Environ. Health Perspect. 118, 620–626
(2010).

32. Paaijmans, K. P., Imbahale, S. S., Thomas, M. B. & Takken, W. Relevant
microclimate for determining the development rate of malaria mosquitoes and
possible implications of climate change. Malar. J. 9, 196 (2010).

33. Lunde, T. M., Bayoh, M. N. & Lindtjørn, B. How malaria
models relate temperature to malaria transmission. Parasites Vectors 6,
20 (2013).

34. Yamana, T. K. & Eltahir, E. A. B. Incorporating the effects of humidity in a
mechanistic model of Anopheles gambiae mosquito population dynamics in
the Sahel region of Africa. Parasites Vectors 6, 235 (2013).

35. Santos-Vega, M. et al. Quantifying climatic and socio-economic influences on
urban malaria in Surat, India: a modelling study. Preprint at bioRxiv
http://biorxiv.org/lookup/doi/10.1101/583880 (2019).

36. Santos-Vega, M., Bouma, M. J., Kohli, V. & Pascual, M. Population density,
climate variables and poverty synergistically structure spatial risk in urban
malaria in India. PLoS Negl. Trop. Dis. 10, e0005155 (2016).

37. Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions
of local background climate to urban heat islands. Nature 511, 216–219
(2014).

38. Singh, D., Tsiang, M., Rajaratnam, B. & Diffenbaugh, N. S. Observed changes
in extreme wet and dry spells during the South Asian summer monsoon
season. Nat. Clim. Change 4, 456–461 (2014).

39. Dai, A. Precipitation characteristics in eighteen coupled climate models.
J. Clim. 19, 4605–4630 (2006).

40. Mukherjee, S., Aadhar, S., Stone, D. & Mishra, V. Increase in extreme
precipitation events under anthropogenic warming in India. Weather Clim.
Extremes 20, 45–53 (2018).

41. Vittal, H., Ghosh, S., Karmakar, S., Pathak, A. & Murtugudde, R. Lack of
Dependence of Indian Summer monsoon rainfall extremes on temperature: an
observational evidence. Sci. Rep. 6, 31039 (2016).

42. Cazelles, B., Chavez, M., Magny, G. C., de, Guégan, J.-F. & Hales, S. Time-
dependent spectral analysis of epidemiological time-series with wavelets. J. R.
Soc. Interface 4, 625–636 (2007).

43. Roy, M., Bouma, M., Dhiman, R. C. & Pascual, M. Predictability of epidemic
malaria under non-stationary conditions with process-based models
combining epidemiological updates and climate variability. Malar. J. 14, 419
(2015).

44. Bhadra, A. et al. Malaria in Northwest India: data analysis via partially
observed stochastic differential equation models driven by Lévy Noise. J. Am.
Stat. Assoc. 106, 440–451 (2011).

45. Ionides, E. L., Breto, C. & King, A. A. Inference for nonlinear dynamical
systems. Proc. Natl Acad. Sci. 103, 18438–18443 (2006).

46. King, A. A., Nguyen, D. & Ionides, E. L. Statistical inference for partially
observed Markov processes via the R Package pomp. J. Stat. Softw. 69, 1–43
(2016).

47. He, D., Ionides, E. L. & King, A. A. Plug-and-play inference for disease
dynamics: measles in large and small populations as a case study. J. R. Soc.
Interface. 7, 271–283 (2010).

48. Rodó, X., Martinez, P. P., Siraj, A. & Pascual, M. Malaria trends in Ethiopian
highlands track the 2000 ‘slowdown’ in global warming. Nat. Commun. 12,
1555 (2021).

49. Bretó, C., He, D., Ionides, E. L. & King, A. A. Time series analysis via
mechanistic models. Ann. Appl. Stat. 3, 319–348 (2009).

50. Santos-Vega, M., Martinez, P. P. & Pascual, M. The neglected role of relative
humidity in the interannual variability of urban malaria in Indian cities,
Zenodo, 10.528/zenodo.5734922 (2021).

Acknowledgements
We are grateful to the Municipal Corporations of both Surat and Ahmedabad for the
surveillance data and the expertise shared with us on urban malaria and their health efforts
in these cities. We also thank the University of Chicago for the use of the computer clusters
of the Research Computing Center (RCC) and the Center for Research Informatics (HPC).
M.P. acknowledges the support of the National Institutes of Health (“Redefining thermal
suitability for urban malaria transmission in the context of humidity”, R01 AI153444-
01, University of Chicago subaward to Cornell University, Courtney Murdock, PI).

Author contributions
M.S.V., M.J.B., and M.P. conceived the study; M.S.V. performed the analyses and PPM
contributed to parameter inference; K.G.V., V.K., and V.D. provided the data and the
expertise on urban malaria in India; M.S.V. and M.P. drafted the paper; all authors
contributed to the interpretation of the results and the final writing.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-28145-7.

Correspondence and requests for materials should be addressed to M. Pascual.

Peer review information Nature Communications thanks Lawrence Sheppard and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28145-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:533 | https://doi.org/10.1038/s41467-022-28145-7 | www.nature.com/naturecommunications 9

http://biorxiv.org/lookup/doi/10.1101/583880
https://doi.org/10.1038/s41467-022-28145-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities
	Results
	Coherence of temporal scales and climate&#x02013;nobreakmalaria association
	Climate-driven epidemiological model
	Seasonal malaria prediction based on the humidity-driven model

	Discussion
	Methods
	Data description
	Data analyses
	Transmission model
	Parameter estimation
	Permutation test
	Out-of-fit prediction

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




